Четыре новости о ну совсем не классической генетике

Генетика: между победой и поражением

Агентства научных новостей сообщили об успешном завершении крупного исследования в области генетики человека, которое со всеми основаниями можно считать победой современной науки. 23 ноября журнал Naturе опубликовал результаты сравнения генетических текстов различных людей, выполненные интернациональным, но в основном американским коллективом ученых.

Как известно всем, кто учил биологию в школе, каждый ген имеет определенное место в хромосоме - локус. Поскольку в норме клетки человека (кроме половых) имеют по два набора хромосом (от отца и от матери), они содержат и по две копии каждого гена - по одной в каждой хромосоме. Исключением являются гены, находящиеся в половых хромосомах; точнее, те из них, которые располагаются на X-, но отсутствуют на Y-хромосоме. Гены могут существовать в разных состояниях - аллелях. Так, по какому-то гену можно иметь пару одинаковых аллелей, а можно - два разных. Различие аллелей считалось главной причиной внутривидового разнообразия. Конечно, было известно, что иногда тот или иной кусок ДНК теряется или удваивается. Еще семьдесят лет назад в экспериментах на дрозофилах было показано значение изменения количества генетической информации при дублировании одного из генов, влияющих на развитие глаз. Однако такие данные казались экзотикой. Мало-мальски грамотному человеку понятно, что набор генов - видоспецифичный признак, а люди отличаются друг от друга аллелями генов, стоящих на своих местах в хромосомах. Конечно, отклонения известны, но они достаточно редки и часто сопровождаются серьезными поражениями…

И вот новое исследование. В его ходе в геноме человека искали так называемые CNV (copy number variation) - последовательности, превышающие в длину тысячу нуклеотидных пар и существующие в геномах разных людей в разном количестве. Изучены геномы 270 человек, относившихся к четырем группам: представителей племени йоруба из Нигерии, белых (происходящих из Европы) граждан штата Юта, японцев из Токио и китайцев из Пекина. Чтобы определить различия в последовательностях ДНК, нужны были размножающиеся клетки. Для этого клетки доноров обрабатывали вирусом, обеспечивавшим их превращение в опухолевые1. Специальные меры помогали исследователям различать генетические последствия такого перерождения и исключать их из рассмотрения. Затем они применяли два независимых способа сравнения последовательностей ДНК, чтобы зарегистрировать куски генетического текста, которые есть у одних людей и отсутствуют у других.

Итог: в геномах изученных людей найдено 1447 CNV-последовательностей. Они занимают около 12% от всего размера генома, затрагивая примерно такую же долю от числа всех генов. Благодаря изучению хромосом родственников, удалось не только продемонстрировать, что зарегистрированные отличия передаются из поколения в поколение (в соответствии с законами Менделя), но и в одном случае, при сравнении матери и дочери, даже определить время возникновения одной из вариаций количества ДНК. Возможно, такие феномены являются следствием неравного обмена между парными хромосомами. Наряду с разнообразием аллелей внутри определенного набора генов мощным источником индивидуальной изменчивости оказался сам такой набор!

Одним из результатов работы научного коллектива стала карта распространения CNV по геному человека (см. рис.). Длина красных линий на этой схеме отражает частоту встречаемости каждой из CNV у разных людей, длина зеленых и синих линий - количество пар нуклеотидов в таких последовательностях, а сам зеленый или синий цвет - наличие или отсутствие связи с удвоениями сегментов хромосомы. Сколь эта картина не соответствует традиционным представлениям о «нормальном» строении хромосом!

Для тех, кто продолжает смотреть на гены, как на программу, воплощающуюся в организм, может быть интересной такая аналогия. Представьте себе инсталлятор программы, в котором одна копия от другой отличается более чем на одну десятую часть кода. Какие-то куски добавляются, какие-то меняются, что-то выбрасывается прочь! Такое решение было бы полностью нефункциональным, так как разрушило бы целостность программы. А вот если развитием управляют не гены, а что-то, что их читает (если угодно, это можно назвать эпигенетической системой), подобные изменения оказываются допустимыми. Такой ситуации соответствует роман, разные издания которого отличаются друг от друга на одну десятую своего объема. Какой-то эпизод окажется повторен, какой-то утеряется или станет непонятным, но общий смысл для читателя скорее всего останется тем же самым2.

Итак, зарегистрирован мощнейший источник наследственной изменчивости, который до сих пор оставался недооцененным. Испытывая радость по поводу большого открытия, можно взглянуть на проблему и с другой стороны. А куда раньше смотрели генетики всего мира? Какова на сегодня обоснованность разветвленных научных теорий, согласно которым биоразнообразие определяется и вычисляется, как функция от наблюдаемого в популяции набора аллельных генов? Не является ли нынешняя победа в познании одной из сторон механизма наследственности результатом поражения методологии хромосомной генетики, превозносившейся как одна из вершин человеческого познания?

…Почитайте какое-нибудь хорошее изложение основ классической генетики. Каким все казалось простым и логичным!

Родственный взгляд из скорлупы

Недавно ("КТ» #649) автор этих строк, назвав морских ежей нашими близкими родственниками, должен был специально убеждать редактора, что это не ошибка. Тогда сработала ссылка на сходство наших (человека и морского ежа) ранних этапов эмбрионального развития. Новый довод подарил в этом месяце журнал Science. В статье двухсот двадцати восьми (!) авторов приведены результаты расшифровки генома морского ежа Strongylocentrotus purpuratus. Самый яркий вывод заключается в том, что еж - на 30% человек (и, кстати, человек - примерно на столько же морской еж).

Как это может быть, мы же так непохожи! Морской еж — существо, заключенное в яйцеобразную или дисковидную скорлупу, усаженную более или менее развитыми иглами. Главное заполнение скорлупы - половые железы. Самый сложный орган этого животного - конструкция из 35 подвижно соединенных известковых пластин, которая называется аристотелевым фонарем. На вершине аристотелева фонаря находятся пять зубов, которыми еж скоблит пищу. Передвигаются ежи, перебирая, как ходулями, своими иглами. На противоположной рту стороне тела находятся несложные глазки и пигментные пятна… Тем удивительнее, что значительная часть генов у нас и у этого животного совпадает.

Но что означают эти совпадения? Неужели в еже действительно «заперта» часть человеческой сущности?

Не все так просто. Те гены, которые у нас «отвечают» за зрительное восприятие, есть и у морского ежа. Значит ли это, что еж имеет сходные с нами механизмы анализа визуальной информации? Конечно, нет! Гены - это совокупность переключателей, которые, наряду с прочими факторами, влияют на ход индивидуального развития. В ходе эволюции механизма управления развитием функции генов могут перепрограммироваться. Кнопочки на пульте управления телевизором и на мобильном телефоне могут быть очень похожи (даже цифирь на них бывает одна и та же), но это не значит, что эффект от их нажатия идентичен. Дело в том, что эффект зависит не от кнопочек-переключателей, а от устройства самой системы. У человека и ежа «системы» разные, и результаты включения сходных генов оказываются непохожими. На самом-то деле, суть не в генах!

А как хорошо все начиналось… Только вспомните победные реляции молекулярных генетиков, когда они приступали к расшифровке генома человека. Вот доведем нашу работу до конца, узнаем, как управляется наше развитие, и сможем его менять, как захотим! Довели. Получили массу информации. Значение ее подавляющей части непонятно. Узнали, что кроме генных текстов есть и иные инструменты управления развитием, которые не поддаются линейному описанию. Убедились, что возможности вычислительной техники принципиально недостаточны для описания взаимодействия даже в генных (и не только генных) сетях средней сложности. И дело не только в технике. Наша логика, сами особенности нашего мышления не приспособлены для решения таких задач. По происхождению наша психика - одно из приспособлений животного африканской саванны, которому надо было спасаться от врагов, находить пищу и соблазнять партнера. Наш мозг плохо адаптирован к количественному анализу взаимодействий в сложной сети переплетенных причин и следствий!

Но что делает нас - нами, а морского ежа - морским ежом? Конечно, в первую очередь - устройство яйцеклетки. А еще системная сложность множества механизмов управления развитием, задающая эпигенетический ландшафт - набор допустимых траекторий развития, равно как и непредсказуемая случайность, приводящая к выбору той или иной из этих траекторий. А в чем же наша истинная суть? Хотелось бы понять. Но искать нужно не на уровне генов.

Неправильная генетика

Как меняются общепринятые воззрения? Старые взгляды удерживают позиции до тех пор, пока не накапливается критическая масса не вписывающихся в них фактов. Традиционная генетика, основанная на идеях Менделя — Вейсмана — Де Фриза — Моргана, уже давно не может объяснить широкий круг явлений. Тем не менее, каждый новый результат в этом ряду вызывает искреннее удивление: как же так, неужели азбучные истины могут быть неправильны? В очередной раз такую реакцию вызвала недавняя статья в журнале Nature.

Роберт Пруитт (Robert Pruitt) из Университета Пэдью в Индиане и его сотрудники изучали наследование одного из признаков у Arabidopsis thaliana3. Этот сорняк стал первым растением с полностью расшифрованным геномом и поэтому теперь превратился в излюбленный объект для генетических экспериментов. Рассматривались растения, имевшие дефектные версии гена hothead («горячая голова») в обеих хромосомах. Внешне это проявляется в «склеивании» (неразделенности) лепестков и листьев. Как ни странно, при скрещивании таких растений4 10% потомков имели нормальное строение, что противоречит законам Менделя. Исследуя последовательности соответствующего гена у родителей и потомков, исследователи убедились, что мутанты «переписали» ген, приведя его к норме. Чтобы обосновать это, пришлось доказать, что в данном случае не проявилось действие другого гена, загрязнение чужеродным материалом или какая-то другая причина, позволяющая объяснить зарегистрированный феномен. Оказывается, дело не в этом. Вероятнее всего, растения дешифровали молекулы РНК, синтезированные на генах их нормальных родителей (и сохранявшиеся в клетках), и исправили нарушенную версию гена, содержащуюся в их хромосомах. Для этого было необходимо использовать обратную транскриптазу: фермент, который синтезирует ДНК, используя молекулу РНК как матрицу (Помнится, совсем недавно такая возможность, противоречащая «основной догме молекулярной биологии», казалась абсурдной).

Итак, получается, что растения имеют механизм «отката» (что-то вроде компьютерной команды «Undo»), позволяющий при необходимости вернуться к нормальному состоянию признака, характерному для их родителей. Ряд ведущих генетиков, комментируя данное сообщение, назвали его сенсационным, подчеркивая, что никто даже не мог предполагать существование подобных «неправильных» механизмов. Увы, основания для таких предположений (да и сами предположения) были, но просто вытеснялись на периферию сознания специалистов, твердо уверенных, что они знают, как функционирует механизм наследственности.

Докажем наши утверждения. Что мы узнали из новых результатов? Например, в этом примере проявилось, что организм — не просто результат «побуквенной» реализации наследственной программы. Информация на ДНК не «причина организма», а лишь один из его «инструментов».Наверное, это утверждение покажется сомнительным для большинства читателей. Например, программист не задумывается о том, как возникает свойство процессора выполнять команды программы. Оно задано априори, и проблема состоит лишь в том, как его оптимально использовать. Разве наследственность — не такое же априорное свойство жизни? Нет, у живых организмов наследственность — результат длительного отбора на способность «удачных» организмов производить «удачных» же потомков5.

Arabidopsis thaliana имеет очень небольшой объем генетической информации, и поэтому оказался первым в очереди на ее полное прочтение

В 1920-х годах генетики впервые исследовали наследственные задатки особей из естественных популяций. Результат был удивительным. Внешне одинаковые «нормальные» существа оказались генетически весьма различными. Среди носителей «мутантных» признаков некоторые имели измененные гены (причем разные), а некоторые — были генетически нормальными. Но носители измененных признаков отличаются от нормальных особей одним важным обстоятельством. Характерное для них изменение не прошло через горнило отбора на устойчивость воспроизведения в ряду поколений. Поэтому проявление мутации часто оказывается неустойчивым. К примеру, автор был знаком с семьей носителей гена, вызывающего срастание фаланг пальцев на ногах. В этой семье обнаруживался весь спектр проявлений такой мутации. Один человек может иметь полностью сросшиеся пальцы на одной ноге и нормальные — на другой!

Итак, в нашем мире преимущество имеют те организмы, которые способны к нормальному (являющимся наилучшим компромиссом с точки зрения всех задач приспособления) развитию даже при действии каких-то отклонений (например, в генетической информации). В этом-то и заключается принцип стабилизирующего отбора. В результате часть внешне нормальных особей генетически является мутантами (несут измененную ДНК, которая попросту не проявилась в их развитии). Но ведь мутантный арабидопсис не просто смог развиваться нормально. К норме вернулись и последовательности его ДНК. Известно ли было что-то подобное ранее? Да.

Эти мутанты «помнят» нормальное состояние гена, характерное для их родителей, и могут при необходимости исправить мутацию

Классические опыты, показавшие, что изменения в генах не зависят от потребностей в них, выполнялись на кишечных палочках, которые в результате мутации потеряли способность расщеплять лактозу (молочный сахар). Таких бактерий выращивали на среде, где не было лактозы, а потом пересевали туда, где единственным источником пищи было это вещество. Большинство таких бактерий гибло, но некоторые (те, у кого произошла обратная мутация, давшая им возможность питаться лактозой) выживали. Экспериментаторы показали, что мутация, позволявшая расщеплять нужное вещество, происходила еще на исходной, безлактозной среде, то есть была случайной и ненаправленной.

Казалось бы, все ясно. Но в 1988 году Nature напечатал статью Дж. Кэйрнса (J. Cairns), который лишь слегка изменил условия классического эксперимента. У Кэйрнса неспособные питаться на новой среде бактерии не погибали, а лишь влачили жалкое существование: оставались живы, но не могли делиться6. В этих условиях они интенсивно перестраивали свой наследственный аппарат, и многие из них вскорости приобретали нужный признак. Поставленному перед выбором погибнуть или вернуться к норме мутанту удается «подобрать» обратную мутацию и стать нормальным!

Описанный пример ставит под сомнение один из краеугольных камней современной генетики. Мы ведь знаем, что наследственные изменения возникают случайно и не зависят от потребности в них! Увы, и этот постулат поставлен под сомнение, причем довольно давно. В свое время поиск наследственных изменений, вызванных воздействием среды велся весьма прямолинейно: известный «мичуринец» Лысенко на своем опытном хозяйстве в Горках Ленинских кормил коров шоколадом. Коровы давали очень жирное молоко (еще бы!), а Лысенко надеялся, что это свойство передастся их потомкам. Не вышло. А в 1984 году журнал Science опубликовал статью Дж. Л. Маркса (Marx J. L.), в которой тот вспомнил о «призраке Лысенко». Когда растения льна выращивали на почве с избытком минерального питания, те вырастали высокими и мощными. Однако когда их потомков выращивали на обычной почве, те все равно на протяжении многих поколений сохраняли часть родительской высокорослости. Как было показано в ряде статей7, при избытке питания в хромосомы льна встраивались (и устойчиво передавались потомкам) дополнительные копии гена, ускоряющего рост.

Что еще нового в сообщении об арабидопсисе? То, что в корректировании наследственной информации у высших организмов может участвовать обратная транскриптаза. Но вспомните — недавно «КТ» рассказывала8 о серьезно обоснованном предположении, что в наследовании иммунных свойств принимают участие вирусоподобные частицы. Вероятно, они переносят в половые клетки информацию о тех опасностях, с которыми организму пришлось столкнуться в ходе его жизни, и с помощью обратной транскриптазы встраивают эту информацию в гены.

Итак, новые данные о наследовании у арабидопсиса продолжают ряд результатов, постепенно меняющих наш взгляд на систему наследственности. Капля камень точит: то, что учат дети в школах и студенты в вузах, воспринимать всерьез уже не получается. Но только ли для генетики характерна сегодня подобная ситуация?

Парамутациями не ограничимся!

Французские ученые опубликовали результаты исследования, вызвавшего разговоры об очередной трещине в фундаменте гордого здания современной генетики. На самом деле, очередной раз захрустели лишь школярские упрощения, широко распространившиеся в науке о наследственности и за ее пределами.

Вспомните школьный курс биологии. Вам авторитетно доказывали, что признаки организмов определяют гены - участки ДНК. Изменения в этих участках возникают-де лишь как непредсказуемые поломки, отражающиеся на клетках и организмах - контейнерах генетической информации. Верные РНК помогают переносить информацию с величавой ДНК к исполнительным роботам-рибосомам. Естественному отбору предписано подхватывать и копировать последствия случайных ошибок в ДНК, в результате чего сами собой якобы могут появляться полезные признаки. Их накопление и породило нас с вами и весь тот живой мир, в котором нам выпало жить.

С приведенными рассуждениями согласится не только добросовестный школьный учитель, но и бОльшая часть биологов-профессионалов, которые занимаются другими проблемами. Но от действительного состояния науки (обсуждаемого, перепроверяемого, подвижного совместного знания) эта картина чрезвычайно далека.

Большинство важных для выживания признаков (свойств) организма не заданы в ДНК, а возникают в результате индивидуального развития организма как целого. Указать конкретную причину и ее следствие в путанице проявляющихся в развитии взаимосвязей обычно невозможно. Это удается или в случаях какой-то поломки (поломался ген - исчез фермент - бактерия не может использовать питательную среду), или в тех ситуациях, когда есть два устойчивых возможных пути развития и хорошо отлаженный генетический переключатель между ними (растения гороха с желтыми/зелеными и гладкими/морщинистыми семенами в опытах Грегора Менделя). А вот на те признаки, которые определяют жизненный успех или неудачу соответствующего норме организма, влияет весь генотип и еще много факторов сверх того. Даже зная все начальные условия, мы не сможем точно предсказать, по какой именно траектории пойдет развитие организма. К сожалению, стройной классификации признаков по уровню их предопределения в ходе развития до сих пор нет. В результате выводы, полученные при исследовании простейших биохимических признаков, переносятся на всю совокупность свойств организмов.

ДНК и другие носители наследственной информации - не причины бытия клеток и организмов, не их «истинная суть» ("КТ» #567), а их инструменты, которые, кстати, при необходимости могут целенаправленно перестраиваться. Некоторые изменения ДНК вероятнее остальных и чаще происходят именно тогда, когда в них возникает потребность ("КТ» #585).

Система считывания информации с ДНК кроит и видоизменяет текст, с которым взаимодействует. РНК, образованная в результате этого взаимодействия, претерпевает разнообразные перестройки, механизм которых изучен лишь частично. Свойства белков, синтезирующихся на рибосомах, зависят и от их аминокислотной последовательности, восходящей, с учетом всех перипетий, к последовательности ДНК, и от взаимодействия с другими молекулами.

Вопреки желанию любителей простоты, которым хочется в каждом случае узнать об однозначном соответствии между элементарной причиной и конкретным следствием, сложные системы обладают целостными свойствами и нередко способны передавать (наследовать) свои свойства во времени. Приведем один пример. Что и как делается в том или ином месте клетки, определяет цитоскелет - совокупность белковых тяжей, пронизывающих всю клетку. Это они транспортируют и сортируют разнообразные клеточные детали. А у инфузорий цитоскелет отвечает еще и за слаженную работу бесчисленных ресничек, находящихся на поверхности тела. Если с помощью микрохирургии вырезать участок поверхности инфузории, повернуть на 180° и вставить обратно, реснички на нем будут загребать в сторону, противоположную общему движению. И вот что удивительно: такой участок может сохраниться и в нескольких поколениях потомков оперированной инфузории! Архитектура цитоскелета столь сложна и целостна, что может передавать свои свойства при делении клеток.

Изучая проявления наследственности, мы стоим перед таким клубком взаимосвязей, полное распутывание которого - сверхчеловеческая задача. Цепочка ДНК-РНК-белок-признак - лишь один из множества путей. Естественно, что когда удалось описать столь простой информационный канал, возникла иллюзия, что с его помощью можно объяснить все свойства организмов. Но теперь один за одним становятся известны фрагменты альтернативных путей, например, передачи информации от белка к белку, от РНК к ДНК и т. д. Каждое подобное открытие сопровождается разговорами, что «традиционная генетика опровергнута». Один из последних примеров - обнаружение у резуховидки Таля (Arabidopsis thaliana, хорошо изученного экспериментального растения) способности исправлять мутантные гены в своем генотипе ("КТ» #585). Предполагалось, что ключевую роль в этом играли молекулы РНК, которые «помнили» естественное состояние гена и возвращали мутантов к норме.

Так что же удалось обнаружить на сей раз?

Мино Рассользадеган (Minoo Rassoulzadegan) и его коллеги из института INSERM во Франции работали с генетически измененными бурыми хомячками (Scotinomys)9, близкими родственниками мышей. Они использовали линию хомячков с искусственно вызванной мутацией гена Kit. Как вы помните, продвинутые организмы обычно обладают двумя версиями большинства генов, расположенными в одинаковых местах материнской и отцовской хромосом. Хомячки с двумя мутантными версиями гена Kit гибнут, носители мутантной и нормальной версий несут характерные белые отметины на шерсти, а носители двух нормальных генов имеют (должны иметь!) нормальный внешний вид. Однако выяснилось, что внешние признаки мутации сохранялись и у тех генетически нормальных хомячков, отцом, матерью или более отдаленным предком которых были хомячки с мутантными генами. Этот феномен называется парамутацией.

Генетически нормальные, но внешне измененные особи передают проявления аномалии в потомстве в течение нескольких поколений (хотя и с постепенным ослабеванием). Что же переносит информацию от предков к потомкам, если не гены?

Выясняется, что синтезированная на мутантных генах РНК разбивается на фрагменты, но сохраняется в клетке (вероятно, связываясь с какими-то переносчиками). Особенно много таких фрагментов оказывается в половых клетках. В клетках генетически нормальных потомков эти РНК вмешиваются в работу нормальных генов и каким-то чудом воспроизводят аналогичные себе молекулы. Вероятно, в их присутствии синтезируемая по нормальному гену РНК оказывается аномальной. Тут есть какая-то аналогия с «работой» прионов - молекул белка с измененной пространственной укладкой. «Нормальные» белки, которые клетка синтезирует в присутствии прионов, сами становятся прионами. «Нормальная» РНК, которую синтезирует клетка в присутствии мутантной, становится такой же.

А что касается повышенного содержания РНК в половых клетках… Чарльз Дарвин на склоне лет сформулировал гипотезу пангенезиса. Согласно ей, клетки всего тела отряжают в половые клетки особых «гонцов». Благодаря этому в половых клетках собирается-де информация о текущем положении дел в организме. И как же смеялись над автором этой гипотезы10!

Особенность описываемых экспериментов состоит в том, что к нетрадиционному воспроизводству оказалась способна информация мутантного гена, созданного искусственным путем. Мы имеем дело не с исключительным свойством данного гена, а с некой «боковой дверью», которой, наверное, могут воспользоваться и иные информационные потоки. И на основании этого обстоятельства можно сделать серьезные выводы.

Успехи техники предопределили использование технических аналогий в наших попытках понять живые системы. Как хочется выделить в клетке блок хранения информации, пути ее кодифицированной передачи, исполнительный блок и прописать четкие алгоритмы взаимодействия между этими и другими подсистемами! Так жизнь была бы устроена, если б ее создал разум, подобный нашему.

На самом деле жизнь сделала себя сама, пройдя через бесчисленные попытки нащупать решение проблемы приспособления и запоминания удачных выборов. В живой клетке носитель информации, ее читатель, интерпретатор и исполнитель тесно переплетены. Наследственность - не причина эволюции, а ее следствие. Миллиардолетний отбор шел одновременно и на способность организмов вырабатывать удачные признаки, и на способность передавать эти признаки потомкам. То, что не может быть тем или иным путем передано по наследству, не имеет эволюционной перспективы. «Нормальное» генетическое наследование, конформационная передача информации между белковыми молекулами (как в прионах), «память» цитоскелета, парамутации и, вероятно, многое другое - разные, взаимодополняющие механизмы решения проблемы передачи потомкам важных для выживания признаков.

Кстати, главная причина, которая сделала человека человеком, является решением той же самой задачи. Мы - вид, специализированный на приспособлении путем культурного наследования, передачи признака от особи к особи благодаря научению. Наш эволюционный прорыв - следствие того, что этот информационный канал оказался гораздо эффективнее генетического и всех прочих. Это быстрый путь, допускающий передачу информации от особи к особи независимо от родства. Он открыт для больших объемов передаваемой (наследуемой!) информации. Но если порыться в информационных потоках и взаимосвязях в наших телах, найдется еще немало «боковых дверей». Держу пари: французская находка - далеко не последняя в этом ряду!

 

1 А согласны ли вы, читатель, дать пробу своих клеток, чтобы посредством заражения вирусом Эпштейна-Барра их превратили в клетки лимфобластомы? Есть в этой мысли что-то отталкивающее Обратно к тексту

2 Уже много лет я пытаюсь убедить то коллег, то студентов, то читателей «КТ», что гены - не причина организма, а набор справочной информации и переключателей, куда «заглядывает» гораздо более сложная система управления развитием. На этом я даже заработал (по-моему, незаслуженно) обвинения в «лысенковщине». Ну что ж, Лысенко боролся с «вейсманизмом-морганизмом». Ограниченность «вейсманизма», постулирующего ненаследуемость приобретенных признаков, была показана уже много раз, и «КТ» об этом писала. Нынешний удар пришелся по «морганизму» - хромосомной генетике. Естественно, я не сомневаюсь, что альтернативой распространенным сейчас взглядам должны быть не идеологизированные выдумки Лысенко, а более тонкая и мудрая концепция, которая все еще пребывает в процессе своего становления Обратно к тексту

3 Резуховидка Таля  Обратно к тексту

4 Говоря языком генетики — гомозигот по рецессивному аллелю Обратно к тексту

5 Cм. также Д. Шабанов, «В поисках стрелочника» («КТ» #567) Обратно к тексту

6 Голубовский М. Д. Неканонические наследственные изменения // Природа. 2001, №8, с. 3–9 Обратно к тексту

7 Обзор этой проблемы приведен здесь: Грант В. Эволюционный процесс. — М.: Мир, 1991 Обратно к тексту

8 А. Марков, «От Ламарка к Дарвину» («КТ» #582) Обратно к тексту

9 Это уже не травка-резуховидка, а хомяк-скотиномис, млекопитающее, с генетической точки зрения - почти человек Обратно к тексту

10 Мир, в котором мы живем, устроен так хитро, что придумать нечто совсем не отвечающее действительности почти невозможно Обратно к тексту

 

Д. Шабанов. Генетика: между победой и поражением // Компьютерра, М., 2006. – № 45 (665)
Д. Шабанов. Родственный взгляд из скорлупы // Компьютерра, М., 2006. – № 44 (664) 
Д. Шабанов. Парамутациями не ограничимся! // Компьютерра, М., 2006. – № 23 (643). — С. 46-47  
Д. Шабанов. Неправильная генетика // Компьютерра, М., 2005. – № 13 (585)