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Preface

Our motivation as editors for assembling a book on cur-
rent methods in population ecology arose from our ongo-
ing interactions with graduate students and professionals
in the fields of ecology, conservation biology, and wildlife
management. Over the past several decades, research in
population ecology has developed at a rapid pace, from
a largely descriptive field dominated by observation and
description, to a mature discipline that emphasizes inno-
vative and robust analyses of ecological patterns and
processes.Many recent advances have been driven by per-
sistent knowledge gaps, not the least of which are urgent
questions about the key drivers of population dynamics
and their ecological relevance in the face of ongoing global
environmental change. Increasingly, population ecolo-
gists have recognized that key questions in ecology and
evolutionary biology must be investigated using the data
and analytical methods that allow researchers to make
robust inferences about causality. At the same time,
advances in satellite or GPS-based telemetry, noninvasive
genetic sampling, automated field photography, and other
new technologies have revolutionized our ability to collect
new data on the occurrence, abundance, and distributions
of rare or elusive organisms under natural conditions.
Emerging technologies have opened up new possibilities
for data collection, but many have also required develop-
ment of innovative approaches for data analysis. In some
cases, new quantitative approaches have been adopted
directly from other fields of research but some types of
data have required the development of entirely novel ana-
lytical tools. Improvements in the capacity of personal and
cloud-based computing, availability of Program R and
other freeware statistical packages, and online resources
for learning and troubleshooting new statistical proce-
dures have led to tremendous improvements in the
potential capacity for data analysis in population ecology.
Developments in population ecology have paralleled
improvements in data quality and analysis in genomics,
data sciences, and other scientific disciplines. Still, popu-
lation ecology has been transformed in recent decades so
that our current ability to answer longstanding and elu-
sive questions greatly surpasses what could have been
imaginable even a short time ago.

Development of new tools for ecological analysis has
been exciting to witness but presents a challenge for
both new and seasoned ecologists who would like to
stay current with available technologies and analytical
approaches. During our own formative years as graduate
students a few decades ago, the prevailing quantitative
methods for data analysis consisted mainly of statistical
tests in a frequentist framework that were originally
designed for analysis of data from controlled experiments
and balanced study designs. Basic tests like analysis of
variance and regression were familiar because of their
extensive coverage in undergraduate courses, or else
they were readily adopted following focused reading or
trial and error. Even specialized techniques like popula-
tion estimation or habitat selection analysis were mostly
accessible using off-the-shelf analytical approaches.
Accordingly, at the time most ecologists were not unduly
challenged to conduct data analysis that met contempo-
rary standards. However, ecological systems are rarely
governed by factors that conform to controlled condi-
tions, and therefore ecological research rarely yields field
data that truly fits standard assumptions of independ-
ence, normality, and lack of bias. Moreover, the sheer
volume, structure, and complexity of ecological data col-
lected in many field studies preclude standard statistical
approaches. New quantitative methods in ecology often
deviate substantially from the standard approaches that
form the basis of undergraduate training in statistics,
and ecologists may be left scrambling to correctly identify
and implement an appropriate analytical technique. The
correct application of contemporary methods for data
analysis is increasingly a prerequisite for publication
and for implementation of effective management policy
in ecology.
Our edited volume is primarily aimed at graduate stu-

dents and early career professionals who may be embark-
ing on their first attempt to analyze ecological data using
contemporary methods. We aimed to assemble a series
of chapters that review the state of knowledge in the core
areas of population ecology, and our selection of topics
and authors was purposeful to cover the main areas by
experts in the field. Our final submissions included
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16 manuscripts from 39 contributors working in 8 differ-
ent countries. Our aim was for every chapter to serve as a
stand-alone assessment for different topics in population
ecology, including pros and cons of related quantitative
methods, basic assumptions and limitations when deriv-
ing inference from a given approach, and some of the
potential pitfalls in the application of available techni-
ques. Perhaps unavoidably, the chapters include some
bias toward methods that are especially relevant for use
with wildlife species and for using data that have been
collected through newermonitoring technologies. Never-
theless, many of the general concepts and approaches
covered in our contributed chapters have broad relevance
to a diversity of research questions and study systems.
The 16 chapters of our book are organized into five sec-

tions. The first section begins with two chapters that pro-
vide a framework for asking relevant questions in ecology,
including how research studies can be best designed to
derive robust inference. The second section assembles
five chapters covering a variety of analytical approaches
in population demography and population time series
analysis; these topics normally form the requisite basis
of most investigations into population status and trend.
The analytical approaches differ in whether they are
based on closed or open population models, use encoun-
ter histories from marked or unmarked individuals, or
control for situations where detection may be perfect
or imperfect. The third section highlights population-
level analysis, including newer approaches that use inte-
grative and individual-based models to understand pop-
ulation drivers and forecast their potential change. The
fourth section includes five chapters that address genetic
and spatial approaches in population analysis, covering
topics like home range and resource selection analysis
and species distribution modeling.
This volume is intended to provide an overview for

researchers using a variety of analytical tools and plat-
forms. Importantly, the R statistical software platform
has been transformative to data analysis in ecology, and
to that end the final chapter provides an ecologically
focused overviewof basic nomenclature and datamanage-
ment using R software. Chapters are supported by a com-
pendium of online exercises in R that provide worked
through examples that reinforce topics covered in individ-
ual chapters. The intent is for exercises to provide readers
with both the necessary background to implement more
common analytical approaches, as well as sample code
in R that can be adapted to start their own data analysis.
All online exercises can be accessed from the publisher’s
website (www.wiley.com/go/MurrayPopulationEcology).
Our edited book would not have seen the light of day

without the significant efforts of a number of people to
whom we are indebted. We thank Guillaume Chapron,
who began this journey with us and helped start the

editorial process of selecting topics for the different
chapters and inviting contributors. We thank all of the
contributors who contributed their work to this volume
for sharing with us a vision for the book, mostly adhering
to our editorial requests, peer-reviewing each other’s
chapters, and for working hard to improve the quality
of their chapters. Working on an edited volume can pro-
vide new appreciation of the old adage that a caravan is
only as fast as the slowest camel. We thank the contribu-
tors for their sustained efforts and commitment, but espe-
cially for their patience in graciously accepting delays
that arose while two slow camels worked to keep the
editorial process on track. Special thanks to all of the
external reviewers who provided anonymous reviews of
chapters, including the many graduate students who
served as test groups for the chapters and the online exer-
cises. The students provided many useful comments that
helped calibrate the volume for its intended audience.
We also highlight the valuable contribution by Pat Heney,
who standardized and tested all the online exercises prior to
their release. Likewise, a debt of gratitude is owed to Sam
Sonnega for help with indexing the complete volume.
The staff at Wiley-Blackwell, especially Anupama Sree-
kanth, Kavitha Chandrasekar and Emma Cole, provided
valuable assistance in support of our vision for the book.
Last, we thank H. Dean Cluff for being an initial source
of inspiration and for an exploding can of sardines.
Our hope is that our edited book will contribute to a

growing body of literature that guides researchers in
the rigorous analysis of ecological data. The current state
of our planet, and of the species and ecosystems that have
captivated the fascination of population ecologists for
decades, are under grave peril. The quantitative methods
described in this volume provide a valuable set of tools
for addressing some of the current and emerging envi-
ronmental problems that will command humanity’s
attention for the foreseeable future. Our book will be a
success if it provides a new generation of early career
researchers with the necessary tools to tackle some of
these problems.
In recognition of the daunting environmental challenges

facing this and future generations, the editors are pleased
to donate royalties from the book to conservation activities
of Wildlife Conservation Society Canada. For more
information about this organization, please visit www.
wcscanada.org.

Dennis L. Murray
Trent University

Peterborough, Ontario, Canada

Brett K. Sandercock
Norwegian Institute for Nature Research

Trondheim, Trøndelag, Norway
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How to Ask Meaningful Ecological Questions
Charles J. Krebs

Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada

Summary

I present and discuss four rules for asking good ecological questions:

Rule No. 1. Understand the successes and failures from ecological history but do not let this knowledge become a straitjacket.
Rule No. 2. Develop and define a series of multiple alternative hypotheses and explicitly state what each hypothesis predicts and
what it forbids.

Rule No. 3. Seek generality from your hypotheses and experiments but distrust it.
Rule No. 4. If your research has policy implications, read the social science literature about how scientific information and
policy decisions interface.

Meaningful questions in population ecology address theoretical issues or management questions that demand a solution. The
solution should be looked for among a set of multiple working hypotheses. If you have only one hypothesis with no alternatives,
there is nothing to do. The classical null hypothesis in a statistical sense is not an alternative hypothesis in which population
ecology is interested. Given a question, the possible outcomes of the study should be noted before any field work is carried out,
and an interpretation given of what each possible result means in terms of basic theory or applied management. The most
useful questions often have multiple dimensions and apply to more than one taxonomic group. Once you have an important
question formulated with alternative hypotheses, youmust discuss the critical aspects of the experimental design – replication,
randomization, treatments, and controls. How many replicates are needed over what landscape units? How long a study is
required? How often do you need to sample? Will the confidence limits of any estimates be narrow or wide? If the proposed
steps are not followed, it is possible to get lost in themechanical details of a study without knowing clearly how the outcomewill
reflect back on the original questions. Serendipity may rescue poorly conceived studies, but the probability of this event may be
less than P < 0.01. Management and conservation problems demand both good data and effective policy development. Ecol-
ogists need to become more proactive in providing solutions to politicians and business leaders who develop policy options
with ecological consequences.

1.1 What Problems Do Population
Ecologists Try to Solve?

Every ecological question comes down to a question of
population ecology, and hence it is useful to start by ask-
ing how one goes about asking meaningful ecological
questions in population ecology. Implicitly the starting
point must involve answering the flip question of:
How does one avoid questions that yield information
that do not help in solving an ecological problem?
The first and simplest guide is to look at the historical
literature in population ecology, which is littered with

questions that have led nowhere in terms of increased
understanding of ecological dynamics or improving sus-
tainable land management (Hartway and Mills 2012;
Walsh et al. 2012). The second guide must be that a his-
torical search is not sufficient, because it will not tell you
about future research questions. Thus, it is possible to
make a mistake and to spend time exploring alleys that
are dead ends. But it is useful to realize that setbacks are
not a scientific defeat because these explorations will
show the next generation of ecologists what to avoid.
So this advice might be coded as the first rule of asking
meaningful questions:
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Rule No. 1. Understand the successes and failures from
ecological history but do not let this knowledge become
a straitjacket.
A simple example will illustrate this point. The manage-
ment of Northern Bobwhites (Colinus virginianus) in the
USA involved a controversial issue of whether quail
populations could be limited by the lack of water and thus
would benefit from managers providing free water, such
as a pond, in their habitat. Guthery (1999) examined
the competing hypotheses about water limitation and
showed that even in southern Texas quail did not need
free water to survive and thus that water sources were
not required as a management tool. Whether this conclu-
sion will hold under climate change is an important issue
for managers in the future.
At a general level, philosophers of science provide a set

of guidelines on how to develop general theory. Ask
general questions rather than particular ones. General
questions will apply to a variety of species and habitats,
particular questions will involve only one or a few species
in a restricted environmental space. Formulate your
research questions as testable hypotheses, and if possible
develop multiple working hypotheses with alternative
predictions that are mutually exclusive (Platt 1964;
Chapter 2; Chamberlin 1897).
The two major questions that population ecologists

address involve the distribution and abundance of organ-
isms. This focus for population ecology was clearly stated
by Charles Elton (1927) and rigorously re-stated by
Andrewartha and Birch (1954). Knowing the factors that
limit the distribution of an organism can assist in analyz-
ing problems with introduced pests (Urban et al. 2007), as
well as giving some indication of how organisms might
change their distributions in light of climate change or
other anthropogenic stressors like habitat loss (Thomas
et al. 2006; Flockhart et al. 2015, Chapter 15). Knowing
the factors that affect changes in the abundance of an
organism can be even more critical if the species is a key-
stone in the community or if it is endangered and declin-
ing in numbers. It is with these kinds of problems that this
book grapples, and as methods of approach are continu-
ally improved, we ecologists hope to answer pressing
questions more rapidly and more accurately.
We must recognize at the start that population ecolo-

gists should not pretend to solve every ecological problem
or solve every management question. In particular, ecol-
ogists try to answer scientific questions and not policy
issues. If a songbird is declining in abundance, the job
of the population ecologist is to find out why it is declin-
ing and to recommend what might be done to reverse the
observed decline. Our political systems and society at
large make the policy decisions, for example the decision
either to set aside arable grasslands to protect this bird
population or to use the grassland area to produce more

crops for human consumption. Ecologists will have
strong views about the value of biodiversity conservation,
and will press for policy decisions that favor biodiversity,
but their role as scientists is to make estimates of the
probable course of events under policy A vs. policy B.
So let us begin with a clear understanding that we ecolo-
gists do not run the world and do not make policy, but
rather we provide evidence-based recommendations
from the science we are able to do. The separation of pol-
icy options and research questions is central to this
approach to global issues to which ecological data on
populations are relevant (Sutherland et al. 2010).
Many ecological questions are posed with no clear con-

nection to population ecology. For example, increasing
levels of carbon dioxide (CO2) in the atmosphere are
affecting the acidity of sea water and potentially affecting
the geochemical carbon cycle (Dybas 2006; Ruttimann
2006; Boyd et al. 2010). On the surface the problem
appears to be one for chemical ecologists, but quickly
the question become exactly which species of phyto-
plankton are being affected by changes in seawater acid-
ity, and how this disruption of population growth affects
predators or competitors in the community that either
feed on the particular phytoplankton species or compete
with it for nutrients. Problems of this type, once broken
down in a reductionist manner, quickly fall into the bas-
ket of population dynamics.
There is a temptation to ask questions about commu-

nity or ecosystem ecology with the implicit belief that we
can reach an understanding of the problem, and in partic-
ular to be able to recommend policy alternatives to alle-
viate the problem, without getting buried in population
dynamics. Neither community ecology nor ecosystem ecol-
ogy have solved ecological problems without delving into
the details of population dynamics to sort out mechan-
isms. Macroecology is also useful for recognizing ecolog-
ical patterns that require explanations at the level of both
community and population ecology (Trebilco et al. 2013;
Borrelli et al. 2015).
Given the broad questions about distribution and

abundance, there are many more steps that have to be
decided before one has posed a good ecological question.
The first step is to choose the species of interest. Research
priorities may be dictated to you by your employer if you
work for a wildlife agency, or may be decided by funding
options if you are a graduate student. Financial support
would seem to be a major constraint for a new scientist,
but in fact there are important and interesting questions
to be asked for every species. Important questions are
either general questions that apply to many species, or
conservation questions that have a direct bearing on
management decisions. Important questions always have
at least two and possibly three or more potential answers
which are not presently known. To confirm potential
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knowledge gaps, you will have to know the literature on
your species and closely related species very well.
Studies of single-species populations could be consid-

ered ecological stamp-collecting, but this would be an
error. Some species can be considered model organisms
whose results can be generalized to many species in their
group. Studies of single species are necessary to answer
broad questions regarding, for example, the types of
numerical responses predicted by predator–prey theory
(Sundell et al. 2013; Bowler et al. 2014). Designing sin-
gle-species studies to test broad ecological models is an
essential way to refine ecological theory (Chapters 8–10).
Theoretical ecologists put forward many different

models of the ecological universe; some of these are use-
ful and important, while others are irrelevant and unan-
swerable. The theoretical literature in ecology abounds
with concepts like density dependence, competitive
exclusion, chaos, resilience, and stability that are poten-
tially useful if they can be defined rigorously and are avail-
able for empirical measurement. Resilience, for example,
is a useful word, but its ecological measurement is fraught
with problems (Carpenter et al. 2001; Myers-Smith et al.
2012). Even if a theoretical concept can be measured, it
may not have much utility, so it pays a young investigator
to ask where the concept leads. A key example is the idea
of direct density dependence in reproductive and survival
rates. The concept is clearly presented in every textbook
as the foundation for understanding population changes;
the means of measuring it are fairly straightforward for
many species, but having done so leads one to a dead
end. The concept has the illusion of precision but suffers
from two problems. It provides no predictability, so the
observed density dependence in one population will not
allow one to predict quantitatively the relationship in
other populations of the same species (Krebs 2002).
The second problem is that it does not define mechan-
isms that can be manipulated for wildlife management
or conservation questions. Without mechanisms like
predation, food shortage or disease, managers have no
potential levers to use to solve the problems they face.
Consequently, demonstrating density dependence in
population dynamics is useful only as a first step toward
the much more difficult goal of finding mechanisms
involving births, deaths, and movements that drive den-
sity changes (Strong 1986). Birth rates may not automat-
ically increase (or death rates decrease) as a population
declines in abundance, and Allee effects may doom some
populations to local extinction (Courchamp et al. 2008).
Too many ecological concepts lead one to unanswerable
questions or questions that once answered have no utility
for management or conservation (Peters 1991).
Two major empirical processes stare ecologists in

the face at this time in history and should demand our
attention – climate change and habitat loss. Both factors

are having and will have major impacts on distribution
and abundance, and when they are both occurring
together, they may be difficult to disentangle. These
two processes raise general questions that are applicable
to many species: how is global warming changing the dis-
tribution of species? Are most geographical distributions
limited by climatic factors?Will alpine and subalpine spe-
cies be driven to extinction? How quickly can a species
adapt to temperature shifts? Will top-down systems be
affected by climate change? Habitat loss is universal in
the era of rising human populations, and the effects of
habitat loss and habitat fragmentation are key issues that
may have general effects or individual species-specific
effects (Stephens et al. 2003; Hanski 2011).
Two aspects of these global problems complicate eco-

logical investigations in this century. First, both problems
are strongly affected by human actions.While in past dec-
ades ecologists could argue that human influences were
relatively minor and large ecosystems were relatively
intact over much of the globe, now the rapidly growing
human population and the need for resources for human
consumption have plundered the natural world and set
up new situations for organisms. Thus, the justification
that one was studying a system in a steady state that
was at least, in ecological time, unchanging is now gone.
Given these new realities, past observed population
dynamics are only an approximate guide to future popu-
lation dynamics for any particular species. Second, the
adaptations that organisms have made to their envi-
ronment may now be antiquated (Conroy et al. 2011).
A confronting example is the lack of anti-predator adap-
tations in native Australian mammals and birds to intro-
duced predators such as the red fox (Vulpes vulpes, Short
et al. 2002) or toxic cane toads (Rhinella marina). Cane
toads were introduced into northern Australia, and
because they are toxic to predators, initial concerns were
that generalist predators would be devastated by this
potential prey species. Fortunately, many species have
learned to avoid eating cane toads, and to date, the pre-
dicted devastation of the predator guild has been minimal
for most species (Shine 2010). Both these aspects mean
that ecologists must rely more on empirical studies of
our current ecosystems than on predictions based on past
observations. One alternative is to rely on predictions
from studies on model species, with the assumption that
the dynamics of the chosen model species is general and
applies to all similar species. This alternative assumes a
generality of mechanistic understanding that is only
slowly accumulating in population ecology. An excellent
example is the general observation of strong population
declines in migratory species of insectivorous birds
(Benton et al. 2002). The associated habitat change has
been an intensification of agricultural production, with
the presumption that the mechanism involved was food
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shortage on the nesting ground. The hypothesis of food
limitation was tested and rejected for Tree Swallows
(Tachycineta bicolor, Rioux Paquette et al. 2014), with
the suggestion that the responsible mechanism might
be operating during migration or on over-wintering sites
that are yet unstudied. We do not yet know if these gen-
eral declines in bird populations have many different
causes or whether there is a common mechanism which
could then provide a common solution.
There has always been a tension in ecology between

those who argue that basic studies of population distribu-
tion and abundance are the key to progress, versus others
who feel that all of ecology is now a crisis discipline and
ecologists should study nothing but solutions to practical
management and conservation issues (Fleishman et al.
1999). I doubt that this debate is fruitful, since there is
no way of knowing the future needs of biodiversity con-
servation. There is a pressing need to study immediate
conservation andmanagement problems, but there is also
a pressing need to develop more general understanding
of population dynamics, research that can often be done
with abundant species of no great economic value or
conservation concern.

1.2 What Approaches Do Population
Ecologists Use?

The factors limiting geographic distributions of organ-
isms have been well dissected for more than 100 years
(Chapter 15), but studies of distributional limitations
have become important only since the era of climate
change was recognized during the 1980s. Species distri-
butions can be difficult to map because they are scale-
dependent (Forman 1964; Gaston 1991). The scale
dependency of studies of distributions has produced a
strange literature of limitations that are contradictory.
As a simple example, dispersal abilities may limit a spe-
cies range at a continental scale, but have little rele-
vance to understanding why species X appears in
patch Y but not in patch Z only a few meters away
(Kroiss and HilleRisLambers 2014). Given that you have
mapped a geographic range at an appropriate scale, the
two possible approaches you can take are observational,
“watch and wait, hope something happens,” or experi-
mental manipulations. Studies of distributional limita-
tion are hampered by the long time frame needed to
see changes and the confounding of human actions,
climate change, and organismal adaptations to these
changes.
There are more studies of changes in the abundance

of particular organisms than studies of distributional
limitations. Changes in abundance have been particularly

attractive to theoretical ecologists, and we can surmise
that the number of models now exceeds the number of
empirical studies explicitly designed to test the models
(Chapter 5). In general, the theoretical literature has
directed population ecologists to two paradigms or two
approaches to answering the question of what determines
the rate of population growth of species X (Sibly and
Hone 2002). I have called these the density paradigm
and the mechanistic paradigm (after Kuhn 1970). If
you do not like the word “paradigm” replace it with
“approach.”
The density paradigm instructs us to plot population

growth rate against population density. At this point,
we should become suspicious because the variables on
the X- and the Y-axis are not independent. But we are
assured by some biometricians that this is not a problem
(Griffiths 1998), so we might forget about this potential
problem. If the density data are a time series of one or
more plots, much now depends on the trend shown by
the data (Chapter 4). If density is monotonically falling
(or rising), it will not be possible to estimate an “equilib-
rium” density, except by assuming independence between
points or the use of formal time series methods. If a pop-
ulation does not change much in density, the relationship
may well look like a shotgun pattern (Strong 1986).
Experimental manipulations of density are needed in
many cases.
A decision tree illustrates how to proceed (Figure 1.1). If

there is a negative relationship between population
growth rate and density, the next question is which of
the demographic components drive this relationship.
Given that data are available to answer this question,
the next step is to find out which factors or combinations
of factors cause changes in births and deaths, as well as
movements if the population is open. All this is what
I will call the standard analysis procedure of the density
paradigm. However, what happens if there is no pattern
in the plot of growth rate against density? Does this mean
that the population is not subject to density-dependent
constraints on growth, or merely that there is too much
noise in the data or that there are other factors at play,
such as tradeoffs among demographic rates, that obfus-
cate the relationship?
We are assured by both theoreticians and empiricists

that there must be a negative relationship between pop-
ulation growth rate and density (Nicholson 1933; Sinclair
1989; Turchin 1999). If this is true, it raises an interesting
question of the relationship of theory in ecology to empir-
ical data. If there must be a relationship, the problem of
the field ecologist is to describe this relationship in terms
of its slope and intercept, and to determine if Allee effects
occur at low density. The problem is not to ask if indeed
such a relationship exists (Murray 1999, 2000). There is
no alternative hypothesis to test.

1 How to Ask Meaningful Ecological Questions6



The first strategy that is adopted after finding that there
is no relationship between population growth rate and
population density is to invoke delayed density depend-
ence (Turchin 1990). This is a reasonable strategy because
virtually every interaction in population ecology involves
some time delays. But this strategy opens Pandora’s Box
because data analysis begins to take on the form of data
dredging if we have no a priori way of knowing the dura-
tion of the critical time delays. Fortunately, we have inde-
pendent natural history data for many systems that can
set limits for what are biologically reasonable time delays,
which permits us to define the limits for time series ana-
lyses. There are elegant methods of time series analysis
that can be applied to population data to estimate the
integrated time lags in a series of density estimates
(Stenseth et al. 1998), but it is less clear how to translate
these estimated time lags into ecological understanding.
Do predators respond to changes in prey abundance
quickly via dispersal movements (Korpimäki 1994), or
more slowly via recruitment processes (O’Donoghue
et al. 1997; Eberhardt and Peterson 1999)? Data con-
straints, such as only annual census data, affect our ability
to draw biology out of statistics at this point.
If delayed density dependence can be identified in a

time series of population densities, we can proceed in

the same manner as the standard analysis procedure
of the density paradigm, and try to determine what
causes these time lags. The remaining problem is what
to do with cases in which no direct or delayed density
dependence can be identified in a time series. In theory,
this situation cannot occur, but it seems to arise fre-
quently enough to cause endless arguments in the liter-
ature about the means of testing for direct and delayed
density dependence (den Boer and Reddingius 1989;
Dennis and Taper 1994). Many ecologists in this situa-
tion would not give up studying population regulation,
but would switch to the mechanistic paradigm discussed
by Sibly and Hone (2002).
The mechanistic paradigm can be viewed in two

different ways. Sibly and Hone (2002) consider it an
elaboration of the density paradigm (Figure 1.1), and
indicate that one can proceed to this level of analysis
for populations that are well studied in a reductionist
manner. Note that the key variable in the density
paradigm illustrated in Figure 1.1 is always population
density. Krebs (1995), by contrast, postulated that
the key variable should be population growth rate,
and suggested that the mechanistic paradigm is an
alternative to the conventional approach that proceeds
via the density paradigm. The mechanistic paradigm

Is population growth
rate related to

population density?

Direct density
dependence

Yes No

No direct density
dependence

What demographic
components are

related to density?

Births Deaths Movements

What factors

cause these

relationships?

Extrinsic Intrinsic

Predation
Food supply
Disease
Parasites
Weather
Landscape

Social
Physiological

Genetic

Test for
delayed
density

dependence

Try
another

paradigm

Delayed

density

dependence

No delayed
density

dependence

Figure 1.1 Decision tree for the density paradigm for
explaining changes in population density (after Krebs
2002). The gray boxes indicate the key questions in
which the density paradigm differs from the
mechanistic paradigm shown in Figure 1.2.
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short-circuits the search for density dependence on the
assumption that no predictive science of population
dynamics could be founded on describing relationships
between vital rates and population density without
specifying the ecological mechanisms driving these
rates. Density is not a mechanism but a surrogate for
a variety of mechanisms that require study.
The key question seems to be whether or not any den-

sity-dependent relationships are repeatable in time or
space. I have been able to find few ecologists who have
asked this question. For those I have found, none of the
studies have shown repeatable patterns in time or space
(Krebs 2002) and the explanation for this failure lies in
the fact that density is not a mechanism. When density
dependence can be found, it is not quantitatively repeat-
able in space or in time. Both (1998) showed this in his
elegant work on populations of Great Tits (Parus major)
in the Netherlands. Annual mean clutch size in this spe-
cies declined strongly with density but the regression
lines between population density and clutch size differed
greatly in his six study areas, probably because of food
supplies. The pattern was clear, but the process not.
The conclusion I reached was that density-dependent
relationships occur often (as most ecologists believe)
but are not repeatable (as is rarely tested) and are an unre-
liable basis for a predictive ecology. Thus, spending valu-
able research time on showing density dependence is
rarely needed and should not be the central focus for sol-
ving problem in wildlife management and conservation.
The flow diagram for the mechanistic paradigm

(Figure 1.2) is similar to that of the density paradigm
(Figure 1.1), but has one significant difference (outlined
in gray): instead of asking what demographic components

are related to population density, it asks which compo-
nents are related to the population growth rate. In cases
where density is closely related to population growth rate,
there will be no difference between these two approaches.
But in every nonequilibrial system, the differences can be
large. The critical assumption again depends on whether
there is an equilibrium point for the system under study.
A mechanistic approach is best adapted to short-term
considerations in which questions about ultimate equilib-
rium states are not particularly relevant or interesting
because the world is changing too rapidly. It is closely
related to the approach to population dynamics typified
by the Leslie matrix (Caswell 2001; Chapter 8), and is par-
ticularly well suited to our current ecological situation in
which climate change is rewriting many ecological inter-
actions. The mechanistic approach does not concern
itself with asymptotic properties, but takes into account
the fact that asymptotic properties may not capture tran-
sient, short-term dynamics. An example of the use of the
mechanistic paradigm is given from our long-term stud-
ies of the population cycles of snowshoe hares (Lepus
americanus) in the Yukon (Box 1.1).
The mechanistic paradigm asks how individual animals

are influenced by the factors affecting density, and recog-
nizes that individuals vary in their responses to predators,
food supplies, parasites, and weather, as well as in their
social standing within the population. Behavioral eco-
logy has made a particularly strong contribution to our
understanding of individual differences, and is pushing
strongly to utilize this understanding to enrich population
dynamics.
Is the mechanistic approach better than the density

approach? Both approaches rely on precise estimates of

What demographic components
are related to population growth

rate?

Births

Extrinsic Intrinsic

Deaths Movements

What factors cause

these

relationships?

Predation
PhysiologicalFood supply

Disease

Parasites

Weather

Landscape

Genetic

Social

Figure 1.2 Decision tree for the mechanistic paradigm for
explaining population growth rate changes (after Krebs
2002). The gray box indicates the key question in which this
paradigm differs from that of the density paradigm shown in
Figure 1.1.
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Box 1.1 An Example of Hypothesis Development and Testing – The Kluane Project

The Kluane Project began in 1976 as a research program
aimed at providing an explanation for the 9–10 year cycles
in population numbers of snowshoe hares (Lepus ameri-
canus) in the boreal forests of Canada. Jamie Smith, Tony
Sinclair, and I started the first 10 years of study with the
aim of testing the three most likely explanations for the
hare cycle – winter food shortage, excess predation pres-
sure, or social interactions. We wanted to test social inter-
actions since this was such an important part of the
explanation of the three to four year vole and lemming
cycle, and if we could produce a general explanation for
both these mammalian cycles, it would be a valuable
achievement. Alas it was not to be because we learned
very early that snowshoe hares have no social behavior
that is of any consequence for population limitation (since
they are not territorial and do not commit infanticide),
and our hypothesis list was reduced to two likely
mechanisms – food shortage and predation mortality. It
is critical to note that there was a long history of detailed
work on snowshoe hares before we began, particularly by
Lloyd Keith and his associates but also by many other
ecologists, so we knew much about the natural history
of their population fluctuations when we started in
1976. We knew that cycles were regionally (500 km) syn-
chronous, so movements of animals could not be the
explanation for increases and declines. Lloyd Keith had
shown that hare reproductive rates varied dramatically
with the cycle in a delayed density-dependent manner
so that the number of litters was reduced from four to
two as hares reached peak density and entered the
decline and low phase. Everything in the boreal forest eats
snowshoe hares – Canada lynx (Lynx canadensis), coyotes
(Canis latrans), Great-horned Owls (Bubo virginianus), and
Northern Goshawks (Accipiter gentilis) – and if you include
the predators of juvenile hares you can add another long
list from Gray Jays (Perisoreus canadensis), to red squirrels
(Tamiasciurus hudsonicus) and arctic ground squirrels
(Spermophilus parryii), and several of the smaller raptors.
It was known from the early work of Lloyd Keith, Jerry
Wolff, and John Bryant that in some cycles severe over-
browsing of winter shrubs occurred, which could suggest
food shortage.
Given all this information, how can one proceed? We

first tested the simplest hypothesis of winter food short-
age from 1976 to 1985, predicting that if we provided win-
ter food experimentally to specific populations, we could
stop the cycle or at least slow it down. We provided com-
mercial rabbit chow to three areas over each winter, and
because of a complaint about unnatural high-quality
chow for food, we also supplied natural food over three
winters by cutting down large trees. We knew from natural

history observations that hares devoured white spruce
and aspen trees that blew over in wind storms, and spruce
needles from tall trees were in fact their favorite winter
food in cafeteria tests. The results were unequivocal – add-
ing winter food increased the local hare density by immi-
gration but all the fed grids collapsed at the same time
and at the same rate as the control grids with no added
food. It took 10 years to establish this, and the suggestion
from these results was that we should study predation as a
more likely cause of the cycle.

Consequently in 1986 we began the Kluane Boreal
Forest Ecosystem Project. The entire project was very
much a team effort. In addition to Jamie Smith and Tony
Sinclair, we were fortunate to have Rudy Boonstra, Stan
Boutin, Susan Hannon, Kathy Martin, Roy Turkington,
and Mark Dale on the team, along with many first-class
graduate students. We adopted a conventional statistical
design of control areas (60 ha) and manipulated areas
(100 ha) with the treatments being fertilizer addition
(nutrient bottom up), food addition (bottom up), predator
reduction (top down) and a combined treatment of simul-
taneous food addition and predator reduction. Predator
reduction involved electric fences around 1 km2 to keep
out mammal predators. We attempted to eliminate avian
predation with fishing net strung between trees but it was
unsuccessful due to snow accumulation. For each treat-
ment we wrote down before the studies were done what
the predictions were and what the alternative hypotheses
would predict for all the major species in the ecosystem.

The strongest impact on hare densities was achieved by
the combined food addition – predator reduction treat-
ment, and we were left after 10 years to try to explain this
interaction of food and predation. We had determined by
radio telemetry that the immediate cause of death of
>90% of all hares was predation, so clearly predation
was a critical driver of the mortality component of hare
dynamics. But we were puzzled by the interaction with
food supplies since food limitation seemed the most likely
cause of reproductive curtailment yet at the same time by
no other measures could we find evidence of food short-
age in hares on control areas.

Rudy Boonstra saved the day by suggesting that repro-
ductive curtailment might arise from stress, with the
stressing agent being unsuccessful predator chases. If
this was correct, predation could be the cause of both
the mortality changes as well as the reproductive changes
that occurred to drive the cyclic dynamics. By the 1990s
new methods had been developed by physiologists to
measure stress levels in individuals by the metabolic
breakdown products released in fecal pellets. After much
work the stress hypothesis was validated by Michael
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birth, death, and movement rates (Chapters 6, 7, and 13).
At present, the bulk of the population literature now
favors the density approach, probably because it is simpler
to estimate population density with narrow confidence
limits than it is to estimate population growth rate. But
the question we need to answer is whether or not the
density approach has led to a rapid rate of progress in
understanding the problems ecologists face, whether of
overabundant wildlife or endangered species. Two good
examples to investigate the utility of these two paradigms
would be the issues of how to conserve polar bears (Ursus
maritimus; Sahanatien and Derocher 2012), and how to
manage overabundant ungulates (Bradford and Hobbs
2008). The mechanistic approach involves much more
effort to analyze mechanisms, whether they be predation,
disease, food supplies, or weather. I think that we would
solve more problems and have less controversy if we
adopted the mechanistic approach with clear alternative
hypotheses, but only the future will tell if that is correct.

1.2.1 Generating and Testing Hypotheses in
Population Ecology

Many philosophers of science define science by the
hypothetico-deductive method (Popper 1963; Mentis
1988; O’Connor 2000). An alternative approach is a
completely empirical method often called the inductive
approach. Induction operates by gathering data and then
trying to decipher what they mean. Both the hypothetico-
deductive and inductive methods are further discussed in
Chapter 2. Hypotheses can be generated after all the data
are collected, and further data collection can test these
hypotheses. In a sense, all ecologists have been using
inductive methods by observing patterns in nature, and
certainly one cannot begin any study without some nat-
ural history knowledge and some idea of patterns that
you wish to investigate. But for many ecological systems
the patterns are clear but the explanations are not known.
It is at this point that the hypothetico-deductive methods
of Popper (1963), Platt (1964), and Chamberlin (1897)
become most useful.
Induction is often defended in ecology by the necessity

of having information to generate hypotheses. This

viewpoint is certainly correct. Without some data or
understanding it is impossible to generate hypotheses
to explain any ecological problem. Consequently, there
is much discussion at cross purposes in ecology about
these issues, and the simple advice is: (i) develop a
hypothesis, (ii) make some predictions, and (iii) test the
predictions. The method of multiple alternative hypoth-
eses comes into play here (Chamberlin 1897; Chapter 2).
A single hypothesis is quite useless in science and pairing
a single hypothesis with the statistical null hypothesis is
probably the most common error in ecological science
(Anderson et al. 2000). A simple example will illustrate
this problem, which appears regularly in graduate student
theses. A single hypothesis that a herbivore species is
selective in its diet could be tested against the null
hypothesis that its diet is completely nonselective. The
test would be a complete waste of time since no ecologist
on earth would question the idea that all herbivores are
selective foragers. But the basic idea could be turned into
a set of interesting questions, for example with multiple
alternative hypotheses that this species is a generalist
or a specialist, that it selects food plants high in
protein, or alternatively high in carbohydrates, or alter-
natively low in feeding deterrents, and whether the diet
varies seasonally. The second approach would be infor-
mative and predictive of how this herbivore species
operates in its foraging universe. And this simple exam-
ple illustrates how most forage ecologists now operate
(Bryant 1981).

Rule No. 2. Develop and define a series of multiple
alternative hypotheses and explicitly state what each
hypothesis predicts and what it forbids.
There are a whole set of assumptions buried in the
hypothetico-deductive framework that few ecologists
tend to discuss. A list of multiple alternative hypotheses
may not include the correct hypothesis or the best fitting
statistical model. There is no way to correct for this
problem except by having excellent natural history
information and knowing the background of studies in
your particular field. The optimistic view that ecological
science progresses in a linear way toward correct ideas is
far from reality. Progress in understanding is slow and

Sheriff in 2009 with the important addition that there was
a maternal effect of stress – stressed mothers reduced
their reproductive rate and also produced stressed off-
spring, raising the issue of how long stress effects might
be passed on from generation to generation by nonge-
netic means. The end point now is that maternal effects
are seen as a potentially critical variable in the population
ecology of many vertebrate species.

So all this research over 40 years has validated the
hypothesis that predation is the dominant mechanism
driving the changes in reproduction and mortality in the
snowshoe hare cycle. This abbreviated synopsis is
examined in more detail in the book by Krebs et al.
(2001) and the publications cited in it. The whole process
is neatly summarized in Popper (1963) – conjectures
(= hypotheses) and refutations (= testing).
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shows reverses not infrequently. The most graphic new
illustration is the technique of multimodal inference
based on information theory (AIC [Akaike’s Information
Criterion] analysis) of alternative statistical models
(Anderson et al. 2000; Chapter 2). Anderson and Burn-
ham (2002) discussed four issues that limit the utility of
this approach. The four issues include: (i) poor scientific
questions, (ii) too many models, (iii) the true model is
not in the set evaluated, and (iv) using AIC methods
as equivalent to standard statistical tests that use
p-values. If the number of models exceeds the number
of data points, more data are required. We should not
think, Anderson and Burnham (2002) argue, that we will
find the “true” model or hypothesis but rather one or
more models in a set of alternative models that best fit
the data. The most important point these authors
recognize is to think carefully about the models or
hypotheses you wish to test, and define alternative
hypotheses as precisely as possible before you gather
or analyze data (Chapter 2).
Much controversy in the past has emerged between

the view that population ecologists should do field
experiments versus the view that observational studies
are equally valid (Diamond 1986). This discussion is
of limited use, as the most important item on the
agenda is to gather the necessary data that will test a
series of hypotheses. In some cases, this can be done
only by observational methods; in other cases some
experimental manipulation can be carried out. There
are many reasons to pick one or the other approach –
financial, political, time available – but we must not lose
the critical aspect of defining the hypotheses precisely
and specifying what data will reject each particular
hypothesis.

There is also much discussion in ecology about the
value of simulation models for testing alternative hypoth-
eses (Aber 1997). Ginzburg and Jensen (2004) pointed out
that many mathematical models used in population ecol-
ogy are overfitted with too many parameters. The authors
presented a series of rules of thumb for judging ecological
models (Box 1.2). Ginzburg et al. (2007) suggest that if a
hypothesis (or a model representing that hypothesis) is so
general that data cannot be used to test it, the hypothesis
or model must be made more specific. Simulation models
should contain parameters that can be measured in the
real world, and if that restriction is widely accepted, the
value of simulation models could be greatly improved
(Chapter 10).

1.3 Generality in Population Ecology

We search for generality in ecology but are constrained by
a series of problems that are not easily resolved. Typically,
we assume in our studies some type of spatial and tempo-
ral invariance. For example, if nematode intestinal para-
sites limit density of Red Grouse (Lagopus lagopus) in
Yorkshire, they should also limit density in Scotland (cf.
Redpath et al. 2006; Moss et al. 2010). Moreover, if this
idea was correct in 1990, it will also be correct in 2020,
or 2120. Ecologists now recognize the role of climate
change in affecting populations but tend to avoid discuss-
ing all the issues associated with the assumption of spatial
and temporal invariance. Because of habitat changes due
to agricultural intensification, and habitat loss due to land
degradation, the assumption of spatial and temporal
invariance is particularly worrisome. This task is further
complicated by concerns about how natural selection will

Box 1.2 Rules of Thumb for Judging Ecological Models

(1) Compare the number of parameters with the number
of data points. When a model uses 10 parameters to fit
to a time series of 25 data points, chances are that it
can fit almost any 25 data points.

(2) Compare the complexity of the proposed model
with the complexity of the phenomenon that it seeks
to explain. Often, proposed models turn out to be
dramatically more complex than the ecological
problems that they seek to solve. If one can state the
ecological phenomenon in fewer words than it takes to
formulate the model, the theory is probably not useful.

(3) Beware of meaningless caveats confessing
oversimplification. Eager for their work to be embraced
by ecologists, theoreticians like to conclude that their

models are oversimplified. An already complex model
that “admits” that there are more mechanisms to be
taken into account (read: more parameters) betrays a
tendency toward further unjustified complexity

(4) Beware of being given what you expect. As ecologists,
we have come to expect that our data will be “messy,”
and many theoreticians will go out of their way to
meet this expectation. One way to make the curves look
“less perfect” is to simply add environmental noise
and observational error (each variance adding one
more parameter). Suspect that rhetoric is at work when
models that are fully capable of producing a perfect fit
are tweaked to show a more palatable near-perfect fit.

Source: Adapted from Ginzburg and Jensen (2004).
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affect populations in relation to climate change as well as
human land-use change (Henden et al. 2009; Conroy
et al. 2011).

Rule No. 3. Seek generality from your hypotheses and
experiments but distrust it.
For the present, we do not seem to have any recourse for
this problem but it has consequences for what population
research is to be done. Typically, ecologists do not wish to
repeat studies done in the past, which is exactly what we
ought to be doing in the face of climate and land-use
changes to test the generality of our findings. Funding
agencies stress the importance of novel research without
acknowledging the value of repetition in space, time, or
across study taxa. But in our current situation, ecologists
have more questions than we have money or person-
power to answer. The answer we have to this problem
is to design optimal monitoring programs at a large scale,
and there is much discussion of the design of these pro-
grams at a regional and national level (Stadt et al. 2006;
Lindenmayer et al. 2012). At the level of species distribu-
tions, monitoring is clearly effective in detecting spatial
and temporal changes (Fujisaki et al. 2008; Snäll et al.
2011; Sullivan et al. 2014, Chapters 12 and 15). Monitor-
ing of cryptic mammals is more difficult and can only
rarely be done by citizen groups (Harris and Yalden
2004; Sutherland 2006), although remote networks of
camera traps are providing a new approach for achieving
monitoring goals (Meek et al. 2014).
Replication is an important issue in experimental

design, but the conflict here for population studies is that
the advice of “use a larger study area” conflicts with the
recommendations of statisticians to “take many repli-
cates.” If one can take replicates of some experimental
study, it is possible to do power analyses to detect what
effect sizes can be measured at a given level of replica-
tion (Schindler 1998; Johnson 2002; Field et al. 2007),
although one must be wary of post-hoc power tests
and such assessment is best conducted prior to data col-
lection. In many cases, the ecological needs of a study
must trump the statistical needs, and hence the rule
“n = 1 is better than n = 0”. In our Kluane Lake experi-
ments (Box 1.1) we could not replicate an experimental
treatment that combined an electric fence + food addi-
tions because of the financial costs involved. And the
standard recommendations to randomize treatments
could not always be followed in our project for logistical
reasons (Krebs 2010). Replication can be done in space
as well as in time.
Meta-analyses are one possible solution to the pro-

blems of replication and limited spatial coverage
(Stewart 2010). The basic assumption of meta-analyses
is that a given hypothesis has been investigated many
times by different research groups, and by pooling

statistical results we obtain a more precise estimate of
the effect size for a given treatment. Problems arise
when individual studies utilize different methods of
measurement so that the average effect size may be a
poor estimate of the correct but unknown effect size.
Ecological studies always differ and judgment is required
about how similar they must be for pooled effects to be
meaningful. Meta-analysis may overestimate effect size
because of publication bias due to failure to publish stud-
ies with nonsignificant or negative results (Jennions and
Møller 2002), or may be biased in favor of the prevalent
paradigm (Koricheva 2003). Careful interpretation is
required to avoid spuriously precise estimates of effect
size (Slavin 1995; Whittaker 2010). Stewart (2010)
rejected these criticisms as unwarranted, but Vetter
et al. (2013) then evaluated 133 papers that used meta-
analyses in biodiversity conservation, and found that
few of them were reliable. The authors provided recom-
mendations for improving the use of meta-analyses in
ecology. Their warning is still relevant: meta-analyses
can be useful if done properly, with the caveat that both
the analyses and studies replicated in time are subject
to the types of environmental changes that are now
under way.

1.4 Final Thoughts

Ecological knowledge may be restricted to the scientific
literature and read by the academic community, but the
implications of findings are often lost when dealing with
management issues or the development of policy alter-
natives (Lawton 2007; Sutherland et al. 2010). As Lawton
(2007) has succinctly put it:

Many scientists hold to the “deficit model” of turn-
ing science into policy, the view that if only politi-
cians are told what the science reveals, “correct”
policies will automatically follow. Nothing could
be further from the truth. Politicians have all kinds
of reasons, some valid, some less valid, not to adopt
what often seem to us to be common sense policies
to protect the environment.

The litany of reasons why ecological information may not
be used in policy and management issues is unfortunately
long. Possible reasons include poor communication by
scientists, an overabundance of information, a lack of
public support for the changes required, conflicts with
other financial or political interests, and ambiguous sci-
ence. Another important issue is time scale – ecologists
wish to have years to study a problem, but politicians wish
to have an answer today so they can decide what to do.
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Ecologists should not only identify and research problems
in natural resource management, but also suggest
solutions.
At different times, national governments of Canada,

Australia, and the USA have forbidden government scien-
tists from any discussions of policy. Scientific research in
ecology, geological, andmedicine often has implicit policy
implications, and restrictions would seem to ignore sci-
ence in favor of political opinions. Fortunately, university
scientists are not bound by government rules and are usu-
ally able to speak out inmatters of science that affect pub-
lic policy. The implications of science for policy decisions
can lead ecologists into the field of social science.
A good example of the clash between ecological under-

standing and public policy occurs in the management of
wolves (Canis lupus) in North America and Europe.
Wolves are apex predators in many ecosystems (Ripple
et al. 2014), and wolf populations have increased in both
North America and Europe in recent years after more
than a hundred years of decline (Jacobs et al. 2014). In
the USA and parts of Canada, governments have con-
ducted lethal control of wolves to benefit livestock produ-
cers and to enhance populations of moose (Alces spp.),
caribou (Rangifer tarandus), and other native ungulates.
The ecological consequences of large predator reductions
are now well known but the problem has rested in public
opinion about the utility of wolf control (Bergstrom et al.
2014). Much of wolf management is strongly affected by
public opinion, and rather less by ecological information.

Rule No. 4. If your research has policy implications, read
the social science literature about how scientific informa-
tion and policy decisions interface.
Linking science to policy decisions is not easy, as illus-
trated by the global problems of dealing with climate
change, or addressing competing interests of industrial
development and landscape protection. One important
approach is to identify policies for conservation and land
management and to map the research needs relevant
to each policy option. Sutherland et al. (2010) have
completed these tasks for the United Kingdom and have
listed 25 policy areas for conservation that affect the UK
as well as many other countries in Europe. The key to suc-
cess is to increase the interactions among ecologists,
government, and business policy makers so that mutual
understanding and tolerance are well recognized. By
focusing on the twin issues of biodiversity conservation
and ecosystem services, ecologists may be able to build
public support for measures that require some realign-
ment of our current economic system. Opposition to
change will be strong, as it has been in the past
(Oreskes and Conway 2010), and consequently ecologists
should not be discouraged by a lack of immediate success.
Public education is the key.

Particular issues in land management require a bal-
anced approach that extends beyond ecological science
to social and political science. Braysher et al. (2012) iden-
tified five key principles for successful efforts in pest
management, and I have restated these broad principles
as a five-point template for conservation researchers:

1) All key stakeholders need to be actively engaged and
consulted for effective conservation plans.

2) Land-use management for biodiversity needs to
focus on the outcome, not just on effort and dollars
expended.

3) A whole ecosystem approach is required for managing
conservation programs.

4) Most conservation management occurs in ecosystems
in which our knowledge is imperfect.

5) An effective monitoring and evaluation strategy is
essential for all management interventions designed
to protect biodiversity.

Not all population ecologists will be directly concerned
with policy and management for biodiversity, since we
need to base all these policies on the best science availa-
ble. But more and more the public are asking ecologists
for information and recommendations on issues of con-
cern, whether the issues involve the protection of threa-
tened whales or the ecological consequences of climatic
warming. We need to be ready.
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Summary

Study design and data analysis in population ecology are becoming more sophisticated, rigorous, and insightful. This transition
involves development of research hypotheses that are mindful of the complexity of field data, combined with judicious eval-
uation of statistical models serving as direct measures of these hypotheses. Yet, the analytical philosophy andmethods designed
to deal with ecological complexity and data integrity are poorly covered in statistical texts and courses, often giving rise to weak
inference despite good intentions. Research hypotheses should reflect natural relationships between response and predictor
variables, which are complex and inadequately described by a simple statistical null hypothesis. Translating research hypoth-
eses to candidate statistical models is a nontrivial exercise requiring careful consideration and creative structuring. Once data
are collected, diagnostic tests should verify whether transformation, imputation, or variable reduction are required to best test
explicit predictions. Model selection via information-theoretic methods ranks models that are weighted relative to their fit and
degree of parsimony, and multimodel inference incorporates model weights in parameter and variance estimation. A similar
approach can be adopted using Bayesian statistics. An important concluding step involves model validation to confirm the
biological relevance of the findings. When properly applied, these steps promote full integration of complex field data into
a robust analytical context, providing stronger inference and evaluation of research questions than is possible using traditional
statistical methods. This is an important point as research in population ecology assumes a new level of complexity, relevance,
and immediacy in response to ongoing environmental change.

2.1 Introduction

The last decades have witnessed a remarkable shift in the
analytical philosophy and degree of sophistication used
for deriving inference from ecological research. Largely
gone are the days of blindly running a series of ANOVAs
(analysis of variances) or linear regressions in the quest
for a statistically significant result and using a rigid and
arbitrary probability value to determine whether a null
hypothesis should be rejected. Through time and plenty
of questionable findings, researchers and journal editors
now recognize that robust inference should come mainly
through data collection and analysis that considers the
variety of factors affecting natural populations; capturing
the essence of this complexity is normally beyond the
scope of traditional approaches based on frequentist tests
of a simple null hypothesis and dichotomous P-value

(Johnson and Omland 2004). Indeed, frequentist statisti-
cal methods (hereafter also referred to as “traditional”)
were developed in the first half of the twentieth century
specifically to deal with data from studies with repeated
observations where experimental design and sample ran-
domization were under the researcher’s strict control
(Stephens et al. 2007). In this context, hypothesis testing
evaluates whether a given treatment elicits a statistically
significant response, based on a specified probability
(usually α = 0.05). At the same time that traditional meth-
ods were being developed for application in experimental
research, quantitative analysis in ecology and other field-
based disciplines was in its formative stages, and distinc-
tions between analytical contexts for different research
designs and questions were not immediately obvious.
This led to widespread adoption of the null hypothesis
as the foundation for statistical analysis in field research,
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even despite earlier calls for a more pluralistic approach
(Chamberlin 1890, see also Elliott and Brook 2007).
Indeed, the observational nature of most field studies
sets the stage for examining how a set of factors may
influence a given response, rather than whether manipu-
lation of a specific factor drives a predicted response.
The former line of investigation should force consi-
deration of a broader array of predictors than is typically
entertained in experimental research (Garamszegi 2011).

2.1.1 Inductive Methods

Until recently, traditional methods served as the mainstay
of quantitative analysis in ecology, making many impor-
tant contributions to our current understanding of pat-
terns and processes governing natural systems. Given
this, new researchers logically may ask why a different
analytical philosophy is necessary, but consider the

following example: An ecologist is interested in how pol-
linating insects affect plant productivity and therefore
designs a study to document the relationship between
number and diversity of pollinators and seed production
(Box 2.1). The researcher predicts that more pollinator
visits will result in greater seed yields and thus she
might design an experiment directly manipulating the
number of pollinators that reach plants during the floral
season. Traditional statistical methods such as ANOVA
would evaluate whether differences in seed production
occur between flowers that are exposed to experimental
treatment versus unmanipulated controls (i.e. natural
visitation vs. no visitation), but the test would focus
exclusively on whether the null model was rejected irre-
spective of the particular research hypothesis conceived
by the researcher. Accordingly, the statistical test would
never directly inform the broader ecological question
being posed, that is the role of pollinator visitation rate

Box 2.1 Comparing Analytical Frameworks

Using the pollinator system described above, let us break
down how – and what type of – questions may be asked
and answered following inductive, hypothetico-deduc-
tive, information-theoretic, and Bayesian analytical
frameworks. For each framework, we outline how the
hypothesis(es) may be framed, how an experiment can
be designed to test the hypothesis(es), what statistical test
may be performed, and the conclusions that can be drawn
from the results of the experiment.

Inductive Methods:

• Hypothesis: The number of visiting pollinators affects
seed production of a flowering plant.

• Experimental Design: Manipulate number of pollinators
visiting plants and measure seed yield.

• Statistical Analysis: Likely an ANOVA

• Conclusions: The null hypothesis (that seed production
does not differ between treatments with different num-
bers of pollinators) is rejected or not.

Hypothetico-deductive Methods:

• Hypotheses: Thenumberof visitingpollinators, or the size
of the floral patch, or the distance between patches, influ-
ences seed production by a flowering plant.

• Experimental Design: Field observations of pollinator
number, patch size, distance between patches, and
the number of seeds produced by each plant.

• Statistical Analysis: Multiple or stepwise regression

• Conclusions: Pollinator number and/or patch size and/
or distance have a statistically significant relationship
with seed yield.

Information-theoretic Methods:

• Hypotheses: The number of visiting pollinators and/or
the size of the floral patch and/or the distance between
patches influences seed production by a flower-
ing plant.

• Experimental Design: Field observations of pollinator
number, patch size, distance between patches, and
the number of seeds produced by each plant.

• Statistical Analysis: Model selection and, if necessary,
model averaging, of multiple regression models

• Conclusions: The most-supported model contains
the number of visiting pollinators and/or the size
of the floral patch and/or the distance between
patches.

Bayesian Methods:

• Hypotheses: The number of visiting pollinators and/or
the size of the floral patch and/or the distance between
patches influences seed production by a flower-
ing plant.

• Experimental Design: Field observations of pollinator
number, patch size, distance between patches, and
the number of seeds produced by each plant.

• Statistical Analysis: Decide on prior distributions for
model parameters and conduct Bayesian analysis.

• Conclusions: Given what is known about this system
and the observed data, the model containing the num-
ber of visiting pollinators and/or the size of the floral
patch and/or the distance between patches has the
highest posterior probability.

2 From Research Hypothesis to Model Selection18



on seed production (Gerrodette 2011). The statistical sig-
nificance of the pollinator variable, based on the P-value
of the test, would be directly related to sample size and
thus potentially irreproducible by future researchers
attempting to corroborate the findings (Halsey et al.
2015). From a practical perspective, the coefficient
describing the magnitude of seed production difference
according to treatment would have little biological rele-
vance or predictive value because it would refer to the
unnatural (dichotomous) condition of pollination vs. no
pollination, rather than a more realistic gradient in visit-
ation and pollination rates. This study would be inductive
in the sense that over the longer term the researcher
would sequentially modify or refine the initial research
hypothesis to better fit new information, and then retest
the hypothesis using variations on the initial study design.
Eventually, the inductive approach should lead to a statis-
tically significant test of a hypothesis that is derived from
the original (Figure 2.1a).
The above approach is pervasive in ecology but it is easy

to see how it may not be best-suited for field research
(Halsey et al. 2015; Betini et al. 2017). Depending on
the study design and treatment, it could give rise to test-
ing “pet” hypotheses in an inefficient, repetitive, and,
to some extent, contrived manner. Returning to the

question of seed production and pollinator visits, the
researcher would realistically look at a variety of different
experiments and probably conduct the study over several
years before a satisfactory answer to the question could be
obtained. Indeed, apart frommanipulating the number of
pollinators, one might imagine companion experiments
on pollinator travel distance, floral density, nectar yields,
and a range of other factors, before the researcher would
have a comprehensive understanding of the mechanisms
underlying pollination. In addition, variation in the
importance of the above measures doubtless would arise
because of annual variation in temperature, precipitation,
and other factors that should not be ignored.

2.1.2 Hypothetico-deductive Methods

Alternatively, the pollination researcher may adopt a
more observational approach by relating natural insect
visitation rate to the number of seeds produced. The
study could use the model coefficient for pollinator visit-
ation rate to describe how natural seed production varies
across a realistic range of visits. This research context
differs substantially from the earlier experimental study,
and the single null hypothesis and significance test

Inductive method

Initial observation

Hypothesis

Prediction

Model

New observations

Model

If new observations
match predictions,
hypothesis receives
acceptance

If new observations
do not match
predictions,
hypothesis is
modified and re-
tested with a
different model

Hypothetico-deductive method

Initial observation

Hypothesis a Hypothesis b

Prediction a Prediction b

Model a Model b

New

observations

Model a Model b

If new observations
do not match
predictions,
hypothesis is
rejected

If new observations
match predictions,
repeat attempts to 
falsify hypothesis

(a) (b)

Figure 2.1 Flowcharts for the inductive (a) and hypothetico-deductive (b) methods. Initial observations are obtained and are used to
develop research hypotheses and their predictions, which are then tested through statistical models. Models are mathematical versions of
research hypotheses. Through induction, the cycle of hypothesis, prediction, model, and new observation is conducted repeatedly, with
ultimate acceptance of amodified hypothesis being the endpoint of the process. The hypothetico-deductivemethod involves simultaneous
evaluation of multiple research hypotheses, with emphasis on falsification rather than verification of individual hypotheses. Using the
hypothetico-deductive approach, the correct hypothesis is the one that withstands multiple attempts at falsification. Source: Adapted from
Gotelli and Ellison (2013).
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from before would be of little relevance to the more com-
prehensive investigation. Instead, the researcher would
adopt an analysis that is fully sensitive to biological com-
plexity while surely recognizing that including other
ecological factors like pollinator visits, size of the floral
patch, distance of the patch to other patches, identity
and abundance of pollinators, or nearby occurrence of
other flowering plant species, also may influence pollina-
tor behavior. The researcher may have suspected some of
these relationships at the outset of the study and could
have collected relevant data to test these ideas. However,
while inclusion of these extra variables might improve
model fit and provide a more informed understanding
of the factors influencing pollination success, a single
model including all variables could generate biased
parameter estimates depending on the strength of indi-
vidual predictors and their interactions. Even if the num-
ber of variables was reduced sequentially, as is typically
the case when using a stepwise procedure (Hegyi and Gar-
amszegi 2011), the researcher still would base variable
retention on an arbitrary P-value and without considera-
tion for the diversity of hypotheses being investigated
(Box 2.1). Because the multiple hypotheses that the
researcher has in mind probably involve different combi-
nations of the predictor variables, the stepwise model
would not be useful for testing predictor relationships
against each other (Whittingham et al. 2006). Accord-
ingly, a single model would poorly describe the complex
relationships affecting pollination rates, and a more

careful consideration of a variety of hypotheses should
provide additional insight into the biological relationship
between pollination and seed production. In fact, consid-
eration of multiple hypotheses simultaneously conforms
to a hypothetico-deductive approach (Figure 2.1b), where
evaluation relies uponmultiple hypotheses from the same
set of observations. It follows that lack-of-fit with the data
leads to rejection of one ormore hypotheses. This process
is repeated to identify the hypothesis that best withstands
repeated attempts at falsification.

2.1.3 Multimodel Inference

The recent philosophical metamorphosis in quantitative
analysis of ecological data is supported primarily by infor-
mation-theoretic (IT) methods, which are based on Kull-
back–Leibler (KL) information that identifies the model
within a set of comparable models that best approximates
reality (Burnham et al. 2011; Figure 2.2). Instead of focus-
ing on effect size and statistical precision associated with
the study design, the emphasis is on relative support for
individual candidate models across a wider set of plausi-
ble models. The IT method encourages researchers to
adopt a more nuanced approach by allowing for inclusion
of information frommultiple hypotheses when evaluating
the role of a given variable or the strength of an individual
model. Practically speaking, the shift in perspective makes
sense because while field experiments are often highly
regarded for robust inference in ecology (MacNab
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Figure 2.2 Translating Kullback-Liebler (KL) information to model selection via Akaike’s Information Criterion (AIC). (a) All plausible models
from a candidate set are different distances (d) from true reality. (b) Given that we do not know what full reality is, the model that is the
shortest distance from reality given its fit to observed data and degree of parsimony becomes the most-supported model of the candidate
set and is the model against which all other models are compared (Model 2, in this case). The distance between the most-supported model
and the other models is known as ΔAIC (ΔAICc = AIC corrected for small sample sizes). (c) For the pollinator example, the model with the
most support contains the number of visiting pollinators and distance between floral patches (“Insect, Distance”). The degree of support for
the other candidate models depends on their relative distance from the Insect, Distance model. Those within 2 ΔAICc units have strong
support and are a plausible alternative hypothesis while those within 4 and 8 ΔAICc units receive moderate and low support, respectively.
Models that are >8 ΔAICc units are generally not supported. Note that other information criteria (e.g. Bayes Information Criterion (BIC);
Schwartz Information Criterion) are functionally similar to AIC.
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1983; Carpenter et al. 1995), most natural systems are
simply too complex or difficult to study to provide relia-
ble inference from traditional, dichotomous approaches.
In fact, the loss of information associated with ignoring
hypotheses that may have partial support should concern
anyone familiar with ecological complexity and the
subtleties involved in seeking reliable knowledge from
field observations. In our example of seed production
versus pollinator visits, the array of factors potentially
affecting the response would be integrated into the
analysis through models having different combinations
of the variables, ultimately with each candidate provid-
ing a weighted measure of the predicted relationship

(Figure 2.3). Accordingly, valuable information obtained
from fitting a broader set of models would be considered
explicitly, and hypotheses having different levels of
support would be weighted according to their relative
support (Box 2.1).
In as little as 30 years, IT methods have become com-

mon in field-based ecological research and are making
significant inroads into other disciplines where multivar-
iate complexity is the norm (Johnson and Omland 2004;
Lindberg et al. 2015). However, the transition has not
been without some debate. Some researchers have voiced
calls to either stave off the current trend in IT-based anal-
ysis or to adopt a more measured transition to these new
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2.3 Multiple
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Information Theoretics

2.4 From Research
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Figure 2.3 Themethod of evaluatingmultiple research hypotheses and the relevant sections of this chapter for guidance in the completion
of this process. Initial observations obtained from background literature, modeling, or theory are used to develop hypotheses that serve as
basis for one or more unique predictions that are then evaluated when new observations are fit to models corresponding to each
hypothesis. Here, rectangle thickness represents the level of support for each model and corresponding hypothesis, from high-to-low
(Hypothesis c > Hypothesis b > Hypothesis d > Hypothesis a).
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approaches (Guthery et al. 2005; Stephens et al. 2005;
Spanos 2014; Madden et al. 2015), which may not be
completely new methods (Murtaugh 2014; de Valpine
2014). To a large extent, these arguments are based on
the perception that null hypothesis testing remains more
rigorous especially in cases of inferring causality in simple
systems or when field experiments have been conducted
(Fieberg and Johnson 2015; Betini et al. 2017). In contrast,
calls to jettison null hypothesis testing and stepwise
approaches have been similarly voiced by advocates of
the IT philosophy (Anderson et al. 2000; Lukacs et al.
2007; Burnham and Anderson 2014), leading to a high
degree of polarization among ecologists. Not surprisingly,
traditional approaches based on the null hypothesis and
P-value remain at the foundation of laboratory research
and statistical teaching in the biological sciences
(Whitlock and Schluter 2009; Zar 2010).

2.1.4 Bayesian Methods

Bayesian methods complement the suite of approaches
that are available for statistical analysis, and they have
recently received increasing attention from population
ecologists (Gotelli and Ellison 2013; Hooten and Hobbs
2015; McCarthy 2015). Bayesian methods are based on
determining the probability that particular conditions
exist, given a set of observations, and the approach con-
trasts sharply with traditional frequentist methods that
aim to determine the probability of observing the data
(or obtaining a significant P-value), given the conditions.
Bayesian methods involve development of a prior proba-
bility distribution that is based on initial knowledge;
then, given the likelihood of the observations, a posterior
probability distribution is generated and serves as the
basis for inference (Box 2.1). Bayesian methods constitute
a fundamental shift in statistical philosophy over tradi-
tional approaches, and their benefits for ecologists
include making better use of ancillary data when
designing a field study (Martínez-Abraín et al. 2014),
and the potential to consider model parameters as ran-
dom instead of fixed factors. Consideration of multiple
research hypotheses and multimodel inference are also
possible in a Bayesian context, allowing these methods
to be adapted to the complexity that is inherent in natural
systems. The downside of Bayesian methods is that they
are conceptually foreign to many ecologists and normally
require substantial computing power; to date they have
been under used across all sciences. Yet, Bayesian meth-
ods are becoming increasingly familiar and accessible,
and are now covered in some undergraduate and gradu-
ate statistics courses. Recognizing the importance of
Bayesian methods to population ecology, we highlight
several excellent guides to help users apply these
techniques in their research (Ellison 2004; King et al.

2009; Beaumont 2010; Hooten and Hobbs 2015). While
the remainder of this chapter focuses on hypothesis
development and testing, data diagnostic approaches,
and multimodel inference using IT methods, we draw
links to Bayesian methods where appropriate.

2.2 What Constitutes a Good
Research Hypothesis?

In Chapter 1, Charles Krebs provided an outline of the
development of hypotheses in ecology (see also Ford
2009); here we elaborate on the linkage between
research hypotheses and statistical models. Research
hypotheses help distill our understanding of natural
phenomena, and the development of clear and testable
hypotheses is part of the foundation of any sound scien-
tific investigation. Whereas the null hypothesis is simply
a statement implying no relationship between predictor
and explanatory variables, a research hypothesis seeks to
explain why patterns occur; developing an effective
research hypothesis can be challenging when there is
limited baseline knowledge of the study system and
the various complexities that drive its dynamics
(Box 2.2). The early science philosopher, Karl Popper,
was explicit that a hypothesis cannot be accepted or
proved, but as an individual research hypothesis with-
stands repeated attempts at falsification, it gains firmer
support. Normally, it is best to begin with a simple
research hypothesis that can be readily conjured from
available background information. For instance, return-
ing to our example of seed production and insect polli-
nation, a starting point based on prior knowledge of this
biological system (Jennersten and Nilsson 1993), com-
bined with a dose of common sense, could give rise to
the hypothesis that: Plants visited at a higher frequency
by pollinating insects have higher seed production. The
simple statement captures two ingredients that are key
to any effective research hypothesis: (i) an established
causality between the observation and response; and
(ii) testability with an indication of the necessary
data that should be collected. It should be evident that
even this simple hypothesis is clearly more informative
than the corresponding null alternative, and another
advantage is that its structure can be extended to
accommodate additional factors that may elaborate on
the hypothesized role of pollinators.
The research hypothesis assumes a greater importance

in the context of IT compared to traditional statistical
methods, and accordingly it requires careful thought
and insight into the underlying mechanisms driving the
relationship of interest. Likewise, development of the
prior probability distribution in Bayesian statistics also
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demands careful understanding of the study system
(Ellison 2004). Predictions accompany hypotheses and
serve as the direct link to the data being collected, so they
must be testable and ultimately challenge the integrity of
the hypothesis. For example, the prediction that there
is positive correlation between pollinator visits and seed
production is completely testable (and falsifiable) by an
observant researcher collecting appropriate data. It fol-
lows that although this particular prediction may seem
self-evident and somewhat trivial, in the context of the
pollination study it helps identify the expected outcome
of the investigation. Naturally, predicting the outcome
of a hypothesis test becomes increasingly challenging in
complex study systems where outcomes are dependent
on a range of factors, as may be the case especially for
research addressing ecosystem function, community
dynamics, or cumulative effects. Regardless, a sound,
explicit, and parsimonious prediction should help direct
relevant data collection in even the most complex
research situations. To the fullest extent possible, predic-
tions should be unequivocally falsifiable, leaving no
uncertainty from the collected data as to whether they
are supported or not.
Dochtermann and Jenkins (2011) provide three general

approaches for developing research hypotheses, namely:
(i) collation of previous research results through litera-
ture review; (ii) prediction derived from theory and
modeling; and (iii) exploratory analysis of existing data.
Using previous research findings or theory to generate

hypotheses and predictions is standard protocol across
the majority of ecological research. For example, Levi
and Wilmers (2012) reviewed the extensive literature
on competition among mammalian carnivores, and sur-
mised that natural restoration of wolf populations (Canis
lupus) should lead to suppression of coyotes (Canis
latrans), which in turn, would release red foxes (Vulpes
vulpes) from competition with coyotes. Using the second
approach, Fussmann et al. (2000) developed a mathemat-
ical model predicting dynamical relationships in simple
predator–prey systems and tested the model by showing
that population dynamics of rotifers (Brachyonus spp.)
and algae (Chlorella spp.) correspond to specific predic-
tions. The third approach cited by Dochtermann and Jen-
kins (2011), exploratory analysis, requires more critical
evaluation as it rarely should form the sole or primary
basis for developing research hypotheses. Here, we distin-
guish between exploratory analysis (sensu Dochtermann
and Jenkins 2011), as a separate concept from data explo-
ration where the purpose is remediation in advance of
formal statistical analysis. First, exploratory analysis sup-
ports data collection that lacks the focus usually imposed
by a hypothesis and associated prediction, and thereby
can lead to omissions or excesses in acquired informa-
tion. Rather, the hypothesis and prediction normally
should drive data collection and thus be stated a priori.
Second, data exploration with the purpose of generating
a research hypothesis promotes data dredging (also
known as data fishing or data snooping), which increases

Box 2.2 Asking the Right Questions to Answer the Right Question

Developing alternative hypotheses and translating
them into statistical models can be difficult as it requires
a thorough understanding of your study system and your
question(s) of interest. Before beginning to brainstorm
hypotheses, ask yourself the following questions about
your study system:

• What are the key players (abiotic and biotic) in your
system?

• What are the secondary players in your system (i.e. those
that may influence one or more of your key players)?

• What ecological theories are relevant to your study
system? Do they provide any additional insight into
the dynamics of your system?

• Are there gaps in our understanding of how your system
works? If so, what information or data are missing? How
might this gap influence your experiment?

• What conclusions do you want to be able to draw by the
end of your study? Can you make those conclusions (i.e.
are they feasible and are you collecting the right data)
given your current experimental design?

After you have asked yourself these questions about
your study system, try to form alternative hypotheses.
Consider the following questions during hypothesis
development:

• Which of your key players are likely to independently
and singly influence your response variable of interest?
What is the directionality of this influence (i.e. is it pos-
itive or negative)?

• Which primary and secondary players cannot logically
be paired together? That is, the pairing of which factors
does not make biological sense?

• Which factors may work in combination to influence
your response variable? Are they likely to interact or will
their effect be additive?

• Which factors are likely to interact with another factor to
influence your response variable?

• Go through each of the hypotheses you have developed
– if this hypothesis/model is the most supported at
the end of your experiment and analysis, how do you
interpret the results?
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the likelihood of identifying associations between vari-
ables through chance alone (Anderson et al. 2001). For
example, if the aforementioned plant pollination study
was conducted in the absence of an underlying hypothe-
sis, it is conceivable that data snooping could reveal cor-
relation with unrelated factors like day of the week that
seeds were counted or the color of the researcher’s t-shirt
when pollinators were observed; obviously such relation-
ships have no logical basis for driving the observed pat-
terns. The point is that spurious associations tend to be
minimized when data collection and analysis are guided
by a research hypothesis and related predictions that
are formulated a priori, which consequently promotes
broader generality and legitimacy of the analytical results.
Stepwise regression is a form of data dredging because of
the circularity in having the single best-fit model serve as
a test of one or more unspecified hypotheses (Hegyi and
Garamszegi 2011).
Notwithstanding these points, there are instances

when it is inevitable that data are collected before a
research hypothesis is developed. This situation may lead
to the temptation that data should be explored stati-
stically before the hypothesis and prediction(s) are
established, but usually there is sufficient information
available from background literature, theory, or model
systems to help maintain an independent approach to
hypothesis development. However, if in exceptional cir-
cumstances it is essential to explore data first, the
researcher should recognize this compromise and con-
duct the actual analysis using a separate and independent
dataset to reduce the likelihood that spurious associa-
tions are transferred. Note that a researcher alternatively
might divide a dataset into two subsets, one for explora-
tion and the other for analysis, but this strategy is not
ideal because it does not fully establish independence
between datasets and may aggravate sample size limita-
tions that are common in ecological studies (Quinn and
Keough 2002). Regardless, in this age of growth and mat-
uration in our understanding of ecological systems, there
should be few instances when hypotheses and predic-
tions cannot be generated prior to data collection and
analysis.

2.3 Multiple Hypotheses and
Information Theoretics

Multiple hypotheses offer the advantage of more effi-
ciently addressing complex research questions by con-
trasting several plausible alternatives simultaneously.
To illustrate this point, consider the relationship between
the occurrence of snowshoe hares (Lepus americanus)
relative to habitat features of forested landscapes of North

America. Chapter 1 provided the framework for testing
hypotheses related to the role of snowshoe hares in the
boreal forest ecosystem, and here we elaborate on the
link between local habitat features and hare occupancy.
A thorough literature review on this topic reveals several
competing ideas regarding what drives site occupancy
by hares: (i) food limitation during winter, due to the
hare’s reliance on woody browse as food (Pease et al.
1979); (ii) structural cover in the form of dense vegeta-
tion, allowing hares to avoid predator detection and cap-
ture (Wirsing et al. 2002); (iii) large patches of suitable
habitat, providing hares with their minimum spatial
needs (Ausband and Baty 2005); and (iv) linkages between
habitat patches, allowing hares to travel between suitable
areas (Griffin and Mills 2009). Other factors also influ-
ence patterns of hare occurrence on the landscape
(Murray 2003), but several of these can be excluded
because they operate at a different spatial or temporal
scale than is relevant to the study. Other hypotheses
may need to be excluded simply because they are untest-
able given the study design or other constraints.
Hares have a dynamic relationship with their natural

environment and it is unlikely that any single factor can
fully explain their habitat occupancy. To reflect real-life
complexity, additional hypotheses beyond the four uni-
variate relationships described above are added to the
candidate set (Table 2.1). Some hypotheses involve
pairs or groups of factors that, when considered together,
may provide additional insight into hare occupancy
dynamics. For example, areas that have an abundance
of both food and cover might be especially attractive to
hares (Hypothesis 5), or sites with cover may only be
occupied when connected to other patches having food
(Hypothesis 10). If we expect that the relationship
between food and cover, or between food, cover, and
patch connectivity, is consistent across the range of con-
ditions (in other words that the effect of one factor
remains proportional to the other), then developing the
corresponding multi-factor hypothesis may be straight-
forward because the factors are additive. However, if
we hypothesize that factors have inconsistent relation-
ships with the predicted outcome (that one factor varies
disproportionately relative to the other) then we can
expect multiplicative effects, as indicated by additional
terms for interactions among factors. Possible interac-
tions was the rationale underlying Hypothesis 12, as it
may be that the abundant vegetation that provides ade-
quate cover also contains high-quality food (Table 2.1).
Alternatively, we might consider that cover density and
patch size are highly correlated and thus avoid including
both together in the same model. Elsewhere, Burnham
et al. (2011) provide a helpful example concerning the
development of multiple hypotheses to explain extra-pair
copulations in birds.
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2.3.1 How Many Are Too Many Hypotheses?

Howmany research hypotheses should be developed for a
given study? There is no simple answer to this question
but researchers often consider too many hypotheses at
once, even if some have little prior biological support
(Anderson and Burnham 2002). The number of potential
hypotheses increases geometrically with the number of
variables under consideration, even when interactions
between variables are not included (Dochtermann and
Jenkins 2011), so that ultimately the number of candidate
models should be considered against the anticipated sam-
ple size of observations. Burnham et al. (2011) state that
the upper limit on the number of hypotheses should be
less than the sample size of the dataset, which in our view
seems obvious. In fact, some authors have suggested that
a statistical penalty should be imposed for each additional
hypothesis under consideration (Taper 2004; Forstmeier
and Schielzeth 2011), although this idea has yet to receive
broad support.

In our snowshoe hare example, we developed 16
hypotheses (including the null) based on the four starting
hypotheses and several more complex alternatives that
are consistent with our broader understanding of hare
ecology. However, we did not use all possible combina-
tions in developing our set of candidates. For example,
we noted earlier that cover density and patch size could
be correlated and thus avoided this redundancy. In fact,
the inclusion of all variable combinations when develop-
ing the set of candidates presents a problem that is
analogous to the aforementioned issue of data dredging
when developing hypotheses: Fitting all combinations
of variables or model dredging favors models that lack
generality and discourages the careful thinking that is
expected when developing research hypotheses. Unfortu-
nately, many software packages offer all-subsets regres-
sion as a default, which implements model dredging
and inevitably propels the researcher down a path of
uninformed, post hoc hypothesis generation which can

Table 2.1 Candidate hypotheses, predictions, and models associated with patterns of occurrence of snowshoe hares in forested landscapes.

Number Hypothesis Predicted association (direction) Model

1 Fooda Food density (+) β0 + β1X1

2 Coverb Cover density (+) β0 + β2X2

3 Patch sizec Patch size (+) β0 + β3X3

4 Patch connectivityd Nearest patch distance (−) β0 + β4X4

5 Food, Cover Food density (+); Cover density (+) β0 + β1X1 + β2X2

6 Food, Patch size Food density (+); Patch size (+) β0 + β1X1 + β3X3

7 Food, Patch connectivity Food density (+); Nearest patch distance (−) β0 + β1X1 + β4X4

8 Cover, Patch size Cover density (+); Patch size (+) β0 + β2X2 + β3X3

9 Food, Cover, Patch size Food density (+); Cover (+); Patch size (+) β0 + β1X1 + β2X2 + β3X3

10 Food, Cover, Patch connectivity Food density (+); Cover (+); Nearest patch distance (+) β0 + β1X1 + β2X2 + β4X4

11 Food, Patch size, Patch connectivity Food density (+); Patch size (+); Nearest patch distance (−) β0 + β1X1 + β3X3 + β4X4

12 Food, Cover interaction Food density (+); Cover density (+); Interaction (+) β0 + β1X1 + β2X2 + β1, 2(X1 ∗ X2)

13 Food, Patch size interaction Food density (+); Patch size (+); Interaction (+) β0 + β1X1 + β3X3 + β1, 3(X1 ∗ X3)

14 Food, Patch connectivity
interaction

Food density (+); Nearest patch distance (−);
Interaction (+)

β0 + β1X1 + β4X4 + β1, 4(X1 ∗ X4)

15 Cover, Patch connectivity
interaction

Cover density (+); Nearest patch distance (−);
Interaction (+)

β0 + β2X2 + β4X4 + β2, 4(X2 ∗ X4)

16 Constant only none β0

a Pease et al. (1979).
bWirsing et al. (2002).
cAusband and Baty (2005).
dGriffin and Mills (2009).
Researchers count the number of fecal pellets on transects, convert fecal pellet counts to binary hare occupancy (present[1] – absent[0]), and relate occupancy
to food density (vegetation consumption on transects), cover density (visual obstruction of a spherical densiometer), forest patch size (estimated size of
the forest stand), and forest patch connectivity (abundance of forest surrounding the transect; see Thornton et al. 2012). Hypotheses 1–4 were developed
through review of the literature and 5–15 reflect potential multivariate processes governing hare spatial dynamics. Predictions were developed a priori,
assuming standardized variables (see text). We include the Constant-only model as a gauge of the relevancy of the candidate set.
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lead to weak inference. Instead, hypothesis development
should rely on an understanding of how multiple vari-
ables may relate to each other, which is achieved through
careful thought and understanding of likely relationships.
Last, we need to mention that in the multiple hypoth-

esis framework there is some debate as to whether predic-
tions must be mutually exclusive (Dochtermann and
Jenkins 2011). It is important to recognize that greater
differentiation between predicted outcomes helps ensure
that weak hypotheses are unseated through the hypothe-
tico-deductive or model selection methods. In the case of
our snowshoe hare example, it should be relatively
straightforward to weigh the support for each of the dif-
ferent hypotheses relative to the differentiation spelled
out in the predictions (Table 2.1). Of course, in some
study situations it may be necessary to accept more over-
lap between hypotheses and predictions, which will make
IT statistics particularly relevant for weighing the relative
merit of each candidate model.

2.4 From Research Hypothesis
to Statistical Model

Statistical models are mathematical depictions of
research hypotheses, and developing an appropriate for-
mulation of the hypothesis requires insight into the
nature of the relationship between predictor and response
variables. This important point highlights an additional
reason why hypotheses and predictions should be stated
simply and clearly, so they can be translated to models
with relative ease and accuracy. Some research hypoth-
eses are straightforward and easily converted to mathe-
matical notation to provide a direct reflection of the
stated question. Here, the outcome of model fitting log-
ically constitutes an evaluation of the strength of support
for the prediction (Table 2.1). In other cases, translation
from hypothesis to model is more challenging, and the
researcher may grapple with proper formulation of the
hypothesis. The following sections highlight what we
consider to be important challenges faced when develop-
ing statistical models that seek to effectively and effi-
ciently reflect stated hypotheses.

2.4.1 Functional Relationships Between
Variables

Most hypotheses in ecology are adequately represented
through linear or logit (i.e. logistic) models, which ade-
quately reflect the error distribution of much ecological
data. However, sometimes the relationship between pre-
dictor and response variables are nonlinear, and substan-
tial additional information would be missed if linearity

was assumed (Anderson and Burnham 2002). We pre-
dicted a linear relationship between snowshoe hare occu-
pancy and habitat patch size (Table 2.1), but in fact the
relationship could be nonlinear given that the area
occupied by the hare represents two-dimensional space.
Instead, we could have modeled the hare occupancy vs.
patch size relationship (i.e. Model 3, Table 2.1) as: β0
+ β3X3 + β3X3

2, where X3 is the variable for area. Typi-
cally, variables that are modeled in a nonlinear context
are multidimensional units such as mass, density, or
age that should not varymonotonically with the response.
Newer methods for addressing complex nonlinearity
include multivariable fractional polynomial functions
and a range of spline techniques (Sauerbrei et al. 2007),
but there probably are few instances in population ecol-
ogy where these methods are necessary for revealing
more common nonlinear associations between variables.
Again, we emphasize that careful thinking about biolog-
ical relationships will help generate the best hypotheses,
implying that nonlinear relationships may normally arise
only once coarser linear relationships have been modeled
successfully. For instance, snowshoe hare populations
can be estimated using fecal pellet counts on fixed trans-
ects and there is often a strong linear relationship
between the two variables (Krebs et al. 1987, 2001). How-
ever, if hare or fecal pellet counts are somehow biased
according to pellet density, or if hares have differential
patterns of feeding or activity at high or low population
density, a more precise description of the pellet num-
ber–hare density relationship may involve a nonlinear
function (Murray et al. 2002). Appreciation for this alter-
native may only arise upon further reflection after the first
dataset is collected and analyzed. Alternatively, there are
cases when researchers are most interested in developing
a generalizable model that can be applied to a range of
sites or circumstances, meaning that a complex nonlinear
relationship between predictor and response variables
may be adequately represented by a more parsimonious
linear fit.

2.4.2 Interactions Between Predictor Variables

In field-based research, the role of individual predictor
variables often depends on a range of other environ-
mental factors, and codependence between variables
is an important consideration when developing models
designed to reflect real world complexity. Yet, while
interaction terms representing variable codependence
are key to traditional statistics like ANOVA, in obser-
vational studies they are often perceived more as a nui-
sance and frequently not given adequate attention
(Aiken and West 1991). In the context of multiple lin-
ear regression, an interaction between two variables
reflects that the partial slope of the regression is not
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independent of the value of other variables, implying
that ignoring such dependency as an explicit compo-
nent of statistical models can lead to imprecise param-
eter estimates and poor fit. In contrast, including
interaction terms complicates the interpretation of
main effects due to the conditionality of predictor
variables upon multiple terms in the model (Engqvist
2005). It follows that weak interaction terms lead to
parameter bias and imprecision. An important chal-
lenge associated with interactions between variables is
that to the fullest extent possible potential codepend-
ence should be recognized a priori and thus directly
incorporated as part of the hypothesis statement. In
practice, proper hypothesis development will usually
consider potential dependency between predictors.
Surprisingly, many ecological studies either do not con-

sider interactions at all, or develop an initial set of models
that is restricted to main effects only with interactions
only included in later modeling. Ignoring potential inter-
actions is clearly contrary to the IT philosophy and
reflects a quest for improved model fit without an under-
lying hypothesis. Along the same line, researchers some-
times include models having interaction terms while
excluding main predictors associated with the interac-
tion, which is counter to the principle of marginality
(Nelder 1977) and suggests both weak hypothesis
development and stepwise variable reduction. Thus, by
default researchers become “model dredgers” if they
allow themselves to deviate from conducting analysis that
is restricted to the initial set of models.
Our hypotheses of snowshoe hare occupancy include

four cases where we considered at the outset that vari-
ables may be codependent; the corresponding statistical
models include appropriate interaction terms to reflect
these possible dependencies (Table 2.1). Our interaction
terms are restricted to those with two factors, but some-
times researchers develop models consisting of three or
more interacting variables even though such complexity
can rarely be conceived a priori. When we developed our
set of hypotheses explaining snowshoe hare occupancy,
we could readily imagine how food and cover density
might be inter-related (Figure 2.4), or that food or cover
each could be dependent upon patch connectivity. On the
other hand, it was challenging to envision the outcome of
a three-way interaction between food density, cover den-
sity, and patch connectivity, despite our relative familiar-
ity with the snowshoe hare study system. Thus, barring
rare insight into the inner workings of an organism’s
interaction with its environment, it is more realistic for
ecologists to restrict interaction term complexity even
if this limits the strength of model fit. However, note that
while later we discuss IT methods as a useful means of
inference, problems arise when calculating model-
averaged parameter estimates because those that show

up in both main effects and interactions cannot be easily
weighted (Dochtermann and Jenkins 2011).

2.4.3 Number and Structure of Predictor
Variables

Ecologists often fit statistical models having too many
predictors, which inevitably leads to overly complexmod-
els that lack generality even if IT-based methods are used
to promote model parsimony. To avoid this problem,
researchers should restrict research hypotheses to a man-
ageable number of components that need to be modeled
as variables. The key point in assessing whether a partic-
ular model can be fit with reliable certainty is the
number of observations and how this affects accuracy of
the parameter estimates. As a rule of thumb, Vittinghoff
and McCullough (2006) advised that reasonable infer-
ence can be drawn from logistic regression with a single
predictor using as few as five observations, but most
researchers use a higher threshold. In a simulation exer-
cise, Peduzzi et al. (1996) showed that logistic regression
parameter estimates are biased when there are <10 obser-
vations of the least frequent outcome per variable, which
is a general rule of thumb for either continuous or dis-
crete covariates having a balanced distribution. Given
typical sample sizes in ecological studies, most models
should responsibly include no more than four to five cov-
ariates, including interaction terms. It is reasonable to
suggest that this number of covariates corresponds with
the upper limit of factors that a researcher can realistically
include in a research hypothesis.
Our final point regarding the translation from research

hypothesis to statistical model involves the actual struc-
ture of the predictor variables. Data can be collected as
continuous or categorical variables and it is generally
good practice to retain the original format for analysis.
One common practice is to dichotomize continuous vari-
ables by grouping observations into two or more cate-
gories, to allow for improved interpretability of the
fitted model (Owen and Froman 2005). However, this
approach has been heavily criticized due to information
lost when reclassifying original data and its effect on
parameter estimates and residuals (Royston et al. 2006).
An additional concern relates to the need to select arbi-
trary cutpoints when designing categories, which usually
is accomplished after some degree of data snooping to
detect appropriate thresholds. Thus, in most cases there
should be neither need nor merit in reclassifying data.
However, sometimes simplifying continuous or categori-
cal variables into dummy (binary) variables can be bene-
ficial if this relates specifically to the stated research
hypothesis (Farrington and Loeber 2000). For example,
snowshoe hares are known to require a minimum
amount of vegetative cover before they will colonize an
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area (Murray 2003, p. 155). In our field study of snowshoe
hares, we could have estimated density of plant stems in
areas that were occupied versus unoccupied by hares, and
then dichotomized the cover measurement into a binary
variable according to the known plant stem density
threshold. Alternatively, if we hypothesized that food
and cover density would affect hare occupancy only when
the baseline hare population was high and under strong
competition for food and space, we might conduct a mul-
tiyear study and code the time variable according to a hare
density threshold. In both examples, restructuring the
continuous variable could refine our evaluation of the
research hypothesis and improve model fit, although in
either case the justification to reclassify should be based
on a goal of improved inference rather than by the lure
of a simplified predictor. The point is that whether the
potentially harmful effects of dichotomizing variables
are fully realized will depend to some extent on data
structure and conversion needs, as well as the appropri-
ateness of the modification with respect to the research
hypothesis.

2.5 Exploratory Analysis and Helpful
Remedies

After hypotheses are developed and formulated into sta-
tistical models, and data are collected to parameterize
models and gauge support for predictions, researchers
can proceed to data manipulation and analysis. Before a
dataset is ready for formal statistical analysis, a prelimi-
nary assessment of its properties should identify any
underlying problems that may violate basic assumptions
or otherwise compromise the integrity of the analysis.
Data exploration is distinguished from the aforemen-
tioned “data snooping” because it serves specifically to
remedy problems rather than detect relationships that
guide post-hoc hypothesis development. Data explora-
tion is the only part of the analysis that does not need
to be hypothesis-driven, and typically should demand a
substantial portion of time, perhaps up to 50% of the total
time devoted to analysis (Zuur et al. 2010). Although
this comprises more time investment than probably is
afforded by most ecologists, proper data exploration
can have a major impact on the integrity of the statistical
analysis and thus should be conducted thoroughly.

2.5.1 Exploratory Analysis and Diagnostic Tests

During recent decades, statistical analysis in ecology
has undergone a major transformation following the
advent of powerful analytical tools allowing researchers
to address questions in ways that were previously

unimaginable. For example, new techniques based on
traditional capture-mark-recapture methodology provide
new tools for estimation of population abundance
(Chapter 5) and powerful newmethods in genetic analysis
have expanded our insights into population processes
(Chapter 11). Many newer analytical methods are acces-
sible to ecologists through the availability of free software
combined with improved computing speed and power
(Zuur et al. 2010). Yet, despite their novelty and sophis-
tication, newer methods retain the need for judicious
pre-analysis data treatment to meet statistical require-
ments. Indeed, given the broad range of structural
problems commonly plaguing ecological datasets
(Schielzeth 2010; Nakagawa and Freckleton 2011),
exploratory data analysis, and if necessary, data remedia-
tion, should form an integral component of any robust
statistical analysis. Yet, the lure of quick analytical results
using state-of-the-art statistical tools sometimes pre-
empts careful data exploration as the first step in the anal-
ysis. Further, some improvements in data exploration and
remediation are recent additions to the statistical toolbox
and therefore remain obscure. Accordingly, to help sup-
port robust inference in population ecology, exploratory
data analysis and remediation should constitute a neces-
sary component of statistical analysis.
There are two broad categories of data problems that

emerge through exploratory analysis; (i) irregularities in
the distribution or completeness of observations; and
(ii) inter-relationships between individual observations.
A variety of graphical and quantitative methods have
been designed to check and remedy the more straightfor-
ward problems with data (summarized in Table 2.2), and
more extensive coverage of each of these procedures is
available from other sources (Quinn and Keough 2002;
Zuur et al. 2010). One point, however, is that the listed
quantitative tests are largely frequentist (i.e. based on
P-values) and thus do not conform to the philosophical
shift toward statistical inference that we are advocating
in this chapter. Several procedures require examination
of model residuals, and it is inevitable that they some-
times are conducted post hoc. Nevertheless, we highlight
three important areas of remediation that have been
prioritized by the statistical community.

2.5.2 Missing Data

Ecologists often work with incomplete datasets, where
one or more predictors are not complete for all observa-
tions. Missing observations arise because data are not
properly collected during the field study or if exploratory
analysis reveals outliers or errors that are removed prior
to statistical analysis. Missing data present a general
problem with multivariate datasets and are an increasing
concern in ecology (Nakagawa and Freckleton 2008).
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Consider a dataset comprising of morphometric mea-
surements collected from live-trapped small mammals,
including body mass, body length, skull size, foot length,
and other variables. If several samples provide only partial
observations for some of the metrics of interest, it will
be difficult to establish reliable ordinal relationships
between variables. In the context of model selection
and multimodel inference, such omissions are particu-
larly worrisome because values of all models in the set
of candidates are compared together but information cri-
teria and measures of goodness-of-fit require that each
model includes the same data. We suspect that many
first-time users of IT methods may not be aware of this
important limitation, and that improper model selection
exercises due to missing data are more prevalent than
expected (Nakagawa and Freckleton 2011).
Themost common approaches for dealing withmissing

data are to either omit incomplete variables or to remove
cases with incomplete observations; these tactics are
widespread, admittedly even in papers published by
authors of this chapter. However, removing incomplete
predictors leads to information loss whereas deletion of
incomplete records lowers sample size and reduces pre-
cision. For example, if our dataset of small mammal mor-
phometrics has 10 explanatory variables each with 5% of

the cases missing, deletion of all entries with missing data
will reduce the sample size by up to 40%. Many studies in
population ecology already suffer from small sample sizes
and can ill afford unnecessary information loss. More
importantly, deleting records can result in biased param-
eter estimates if observations are not missing at random
(Little and Rubin 2002). In the case of our small mammal
example, missing observations can be especially recurrent
among animals that are more resistant to handling, or
individuals that are so small that precise measurements
are not possible. In the first case, the sample may
under-represent squirmy animals whereas the second will
favor larger individuals; in both cases data aremissing not
at random (MNAR) and parameter estimates will be
biased. As a rule of thumb in other ecological datasets,
shy individuals are poorly represented in behavioral syn-
drome datasets (Biro and Dingemanse 2009), highly
mobile individuals are undersampled in habitat selection
studies (Smith et al. 2010), and individuals with predis-
posing traits are poorly surveyed in survival estimation
work (Zens and Peart 2003). Often, it is not immediately
obvious how removing cases with missing observations
can invoke sampling bias, but as a general rule any con-
sideration of selective case deletion should be approached
carefully. In fact, we recommend that unless there is clear

Table 2.2 Summary of problems detected through exploratory analysis and possible remedies.

Problem
Variable(s)
affected Diagnostics Remedy

Outliers Response &
Predictor

Graphical: Boxplot; Cleveland dot plot
Quantitative: Grubb’s test; Peirce’s
criterion; Dixon’s Q test; Mahalanobis
distance

Data transformation or analysis based on a different
distribution. Outlier deletion is discouraged.

Homogeneity
of variance

Response Graphical: Conditional boxplot
Quantitative: Levene’s test

Data transformation or analysis based on a different
distribution. Nonparametric approaches as a last resort.

Normality Response Graphical: Probability plot
Quantitative: Shapiro-Wilks test

Data transformation or analysis based on a different
distribution. Nonparametric approaches as a last resort.

Preponderance
of zeros

Response Graphical: Frequency plot
Quantitative: Skewness test

Zero-inflated models are available for continuous or discrete
variables. Two-class models partition observations into
prevalence and frequency.

Independence Response Graphical: Autocorrelation function;
Partial-autocorrelation function
Quantitative: Durbin-Watson test

Time-series methods.

Missing data Response &
Predictor

Graphical: Frequency plot
Quantitative: Descriptive statistics
with sample sizes

Multiple imputation is generally recommended. Case
deletion is discouraged.

Collinearity Predictor Graphical: Frequency plot
Quantitative: Correlation; Variance
inflation factors

Removal of redundant variables or develop synthetic
variables through principal components analysis.

Different data
scales

Predictor Graphical: Frequency plot
Quantitative: Descriptive statistics
with mean and variance

Re-scale variables by centering on zero and dividing by
standard deviation.

Source: Adapted from Quinn and Keough (2002) and Zuur et al. (2010).
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evidence that missing observations clearly are random
with no underlying pattern determining which data are
missing, researchers should assume that selective case
deletion has occurred and will promote bias.
Understanding the source and patterns of missing data

is important when faced with situations involving incom-
plete information, and proper reporting of such problems
should be a priority. There is increasing recognition that
the appropriate remedy for treating missing data is to
substitute omissions through imputation or augmenta-
tion. Several techniques are available to do this, but the
simpler approaches like substituting blanks with mean
values or fitting a regression model to predict missing
observations ignore uncertainty in the missing data and
lead to artificially low variability. Alternatively, multiple
imputation is a simulation-based approach that allows
for sampling variability by generating multiple complete
datasets; once multiple datasets are simulated, analysis
proceeds using standard statistical techniques and then
results are pooled across datasets (Little and Rubin
2002). Proper imputation should involve a model that
is as general as possible and provides unbiased parameter
estimates and confidence intervals that achieve nominal
coverage when randomized over the imputed models;
diagnostic tests can be applied to confirm that the impu-
tation model is correctly specified (Abayomi et al. 2008).
Diagnostics can be best achieved by including as many
variables as possible (including the response) in the impu-
tation model. Ultimately, the number of imputations
should depend on the amount of missing information
as well as the analysis model itself, and may be relatively
small in most applications (i.e. 3–20; Nakagawa and
Freckleton 2011). White et al. (2011) provide guidelines
for determining the appropriate number of imputations,
and in general it is good practice to vary the number in
exploratory analyses to confirm that the imputation
model is not unduly sensitive to combinations of vari-
ables. An important point to consider is that variables
with extensive omissions will be more difficult to impute
reliably and in some cases will warrant being dropped
from the analysis. Nakagawa and Freckleton (2011) pro-
vide a useful overview of how to deal with model impu-
tation in an IT context, which poses a unique challenge
given that multiple datasets are generated and a weighted
statistic from this composite group is being sought.

2.5.3 Inter-relationships Between Predictors

Correlation between two or more predictor variables,
termed collinearity ormulticollinearity, is a common fea-
ture of many observational datasets and can be a problem
in regression-type analyses because it causes unstable
parameter estimates and inflated variance (Quinn and
Keogh 2002). Collinearity also hinders the ability to

identify separate effects among correlated variables, and
hence precludes detection of causal predictors. When
extrapolating the results of a model outside the study
area, collinearity will cause a decrease in predictive per-
formance of models because inter-relationships often
change through time and space. Considering multiple
predictors that are different manifestations of the same
underlying process is a common source of collinearity
with ecological datasets using predictors that are indi-
rectly linked to the response. Although there is no specific
way to “solve” problems of collinearity, there are ways to
minimize correlations between variables before analysis,
or to perform subsidiary analysis to gain a better under-
standing of independent and joint effects of variables.
Due cautionmust be exercised when interpreting the out-
put of models with correlated predictors, particularly
when attempting to identify causal links (Dormann
et al. 2012).
Exploratory analysis may reveal collinearity between

predictors through Pearson correlation coefficients or
nonparametric alternatives such as Spearman’s tau.
Alternatively, the variance inflation factor (VIF) is a
regression-based approach specifically quantifying
change in a variable’s coefficient owing to collinearity.
As a rule of thumb, VIF > 5 or VIF > 10 indicate that
the level of correlation warrants concern, although
increasingly there is recognition that these thresholds
are arbitrary and perhaps too conservative (O’Brien
2007). In our snowshoe hare dataset, correlation coeffi-
cients and VIFs indicated overall weak correlation
between variables (Table 2.3), allowing us to proceed with
minimal concern regarding collinearity. Indeed, the
degree of change in standard error (SE) for the coefficient
from a correlated variable is calculated as: √VIF. For the
snowshoe hare study, cover density had a VIF = 1.03,

Table 2.3 Correlation coefficients between predictor variables
used to model snowshoe hare occupancy.

Predictor
variable

Food
density

Cover
density

Patch
area

Patch
connectivity

Food density

Cover density 0.083

Patch area 0.096 0.150

Patch
connectivity

−0.052 0.009 0.060

Note the low level of correlation between variables, which is ideal for
fitting and interpreting parameter estimates. Variance inflation factors
(VIF) were low for all variables: Food density (1.01); Cover density (1.03);
Patch area (1.04); Patch connectivity (1.01). Cover density and patch area
were assumed a priori to be correlated and therefore not subject to
correlation analysis.
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meaning that the SE of the coefficient is √1.03 = 1.02
times higher than in the absence of collinearity. Another
common measure of a variable’s collinearity is its toler-
ance, which is simply: tolerance = 1 / VIF.
Once collinearity is identified, it can be addressed

either by reducing the set of variables until only an
uncorrelated set remains, or the number of predictors
can be reduced by using new synthetic variables. If
doing the former, a general rule of thumb is that pairs
of predictor variables with a correlation greater than
0.7 should not be used together. Although this cut-off
is arbitrary, model performance decreases around that
level of correlation (Dormann et al. 2012). Generally,
the predictor that is more biologically meaningful, or
that is expected to have a stronger causal link to the
response, should be the one that is retained, but it
remains important to ensure that eliminating variables
does not diminish assessment of particular research
hypotheses as they have been stated. If no decision on
variable elimination can be made a priori, use of univar-
iate tests to identify the most important predictor to
retain is recommended (Murray and Conner 2009).
Alternatively, sets of correlated predictors can be com-
bined together using Principle Components Analysis or
other clustering techniques, thereby generating uncor-
related synthetic variables that can be used. However,
potential drawbacks of this approach are that synthetic
variables may be difficult to develop a priori in the con-
text of a research hypothesis, and their interpretation
can be problematic because they represent combina-
tions of several variables that are non-repeatable and
specific to a particular dataset. Alternatively, it may be
better to select whichever original predictors best fit
the synthetic variables and exclude the remainder from
the analysis. Other possible approaches for dealing with
collinearity may be applicable to particular circum-
stances. For example, if there is good a priori reason
to expect that one of a pair of correlated predictor vari-
ables is causally linked to the response, but it is desirable
to retain both variables in the analysis, sequential regres-
sion techniques can be applied (Dormann et al. 2012).
In some cases, even after the data preparation steps out-

lined above, correlations will remain between predictors.
Therefore, caution is necessary in making interpretations
about their relative importance based on standardized
parameter estimates or information criteria, which can
perform poorly in the presence of collinearity (Murray
and Connor 2009). Recently, several techniques have
been developed to quantify the relative importance of
variables even in the presence of collinearity, such that
we can now identify the independent versus joint effects
of groups of predictors to help determine important dri-
vers of a particular response (Mac Nally 2000; Murray
and Connor 2009).

2.5.4 Interpretability of Model Output

Before going through the model selection and fitting
process, the predictor variables may need to be standar-
dized to facilitate comparison of the relative influence of
individual predictors, provide meaningful estimates of
main effects in models with interaction terms, or avoid
problems of collinearity in models containing polynomial
terms (Schielzeth 2010). Standardization involves two
steps: centering and scaling. Centering a variable subtracts
the sample mean from each individual value of the vari-
able, and scaling divides each value by the sample stand-
ard deviation. A continuous predictor variable that has
been standardized therefore has a mean of zero and a
standard deviation of one.
Althoughnot always necessary, standardization is partic-

ularly helpful when comparing the relative influence of
predictors, especially when they aremeasured onmarkedly
different scales. As an example, suppose we model the
influence of patch area and surrounding food availability
on snowshoe hare population density: Patch area might
vary between 50 and 300 ha, and food availability could
range from 0.40 to 0.60 of the landscape. We obtain the
following model: hare density = 0.2 + 0.004X1 + 1.2X2,
where X1 andX2 represent patch area and food availability,
respectively. Parameter estimates from a fitted model with
unstandardized variables indicate the change in hare den-
sity given a one-unit change in the predictor. But how does
one compare the influence of a one-unit change in patch
area (0.004) to that of a one-unit change in tree cover
(1.2) when they are measured on such different scales?
Standardization allows a direct comparison of the relative
influence of predictors. The same model of hare density
fitted with standardized predictors gives the following:
hare density = 1.49 + 0.31X1 + 0.074X2. The parameter
estimates from this model (0.31 and 0.074) indicate the
increase in hare density given a one standard deviation
change in patch area or food availability, respectively.
We conclude from this hypothetical example that patch
area has a greater influence on hare density than surround-
ing food availability, but this relationship is most easily dis-
cerned when the analysis involves standardized variables.
However, for graphical purposes standardized variables
should be back-transformed to their original value to
improve interpretability.
Although researchers typically standardize continuous

variables, similar procedures are available for categorical
variables, although their influence on continuous vari-
ables can be problematic. Scaling continuous predictors
by dividing by two standard deviations may more accu-
rately compare the influence of standardized categorical
and continuous predictors (Schielzeth 2010). Notably,
standardized parameter estimates may be biased when
there is a high degree of correlation among predictor

2.5 Exploratory Analysis and Helpful Remedies 31



variables. In such cases, other techniques for estimating
relative influence may be preferred (Murray and Conner
2009).
Standardizing or centering predictor variables before

model fitting also allows easier interpretation of main
effects of parameter estimates from models with interac-
tion terms. In a model with two-way interactions, main
effects indicate the influence of each variable on the
response, when the value of the other predictors involved
in the interaction is zero. This is problematic when using
unstandardized predictors because many ecological vari-
ables cannot have a zero value, or if zero lies outside of
the range in sample data. For example, if we fit a model
of snowshoe hare density with an interaction term
between patch area and food availability, the main effect
estimate for food availability indicates its influence on
hare density when patch area is zero. However, this is
a meaningless estimate because patch area can never
be zero, indicating that parameter estimates of main
effects and associated tests of statistical significance from
models with unstandardized predictors are often unin-
formative. Use of standardized predictors solves this
problem, and in a model with standardized values of
patch area and food availability, the parameter estimate
for the main effect of food indicates the influence of a
one standard deviation change in food availability when
patch area is at its average value (which is equal to 0, for
a standardized variable). Thus, main effects become
meaningful, and given the parameter estimate of the
interaction term, we can easily determine the influence
of food availability on hare density when patch area is
at its average, high, and low value.
Standardization also can be helpful in mitigating pro-

blems of collinearity between predictors and polynomial
terms. The squared and nonsquared version of unstan-
dardized predictor variables, particularly all-negative or
all-positive predictors, will be highly correlated with each
other (Schielzeth 2010), and such correlations result in
large SE estimates and problems in interpretation of inde-
pendent effects (Section 2.5.3). Standardization (or more
accurately, centering) of a variable before the creation of
polynomial terms eliminates this collinearity and there-
fore allows accurate estimation and interpretation of
the independent effects of the squared and nonsquared
versions of the variable of interest.
In summary, there are a number of exploratory tests

and remedies that should be applied to observational
datasets in order to mitigate sampling bias, ensure
independence between variables, and improve model
interpretation. Ultimately, improving the structure
and functionality of statistical models will allow resear-
chers to conduct more rigorous tests of their research
hypotheses.

2.6 Model Ranking and Evaluation

2.6.1 Model Selection

Once exploratory analysis has been used to check for the
various data integrity and structure issues, and after
appropriate data remediation measures have been con-
ducted, the researcher can proceed to evaluate how the
set of candidate models fits the data. The maximized
log-likelihood [log(L)], a fundamental quantity in mathe-
matical statistics, uses KL information to express the dif-
ference between each candidate model versus full reality
(Burnham and Anderson 2002). Notably, while KL infor-
mation identifies the model that is closest to full reality, a
common misconception regarding the application of IT
methods is that the correct model should be part of the
candidate set. The relationship between KL information
and full reality across a set of models is such that the best
model has least distance but does not necessarily (or
likely) achieve full reality. In the absence of full reality,
the best model receives the strongest support and
serves as basis for comparison with other candidates
(Figure 2.2). The maximized log-likelihood is the starting
point for determining the distance between the best ver-
sus other candidate models, and is converted to one of
several information criteria for calculating relative dis-
tance. The asymptotic bias in maximum log-likelihood
is corrected for large samples by the total number of esti-
mable parameters in the model (K); log(L)−K, which leads
to the well-known Akaike Information Criterion (AIC) as
a measure of distance between two models:

AIC = −2 log L + 2K 2 1

AIC allows us to compute the distance of a model relative
to other candidate models and thereby provides a meas-
ure of intermodel deviance (Box 2.3). Of particular note
is the inclusion of 2 K in the AIC calculation, which
increases the AIC score according to the number of para-
meters in the model and essentially serves as a penalty
against models that are overfit with uninformative para-
meters. Overfit models are problematic for a variety of
reasons, not the least of which is that they lack precision
when sample size is low. For example, for every additional
parameter in the model, the information remaining to fit
the next parameter is proportionally less. Overfit models
tend to match the noise in a given dataset and thus are
prone to instability and spurious association, and there-
fore have poor performance when applied to a different
study. Thus, AIC and other information criteria balance
model bias from including too many parameters against
the variance of the fitted model parameters and the
undesirable situation of having too much unexplained
variance. However, we note that AIC is not an actual
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Box 2.3 AIC Calculation and Model Selection

A researcher generates a set of linear models evaluating
seed production for a hypothetical plant species. Thirty
sites are monitored (n = 30) and the number of seeds
produced (Success) is compared relative to insect visit-
ation rate (Insect) as well as other variables like size of
the floral patch (Area) and distance of the floral patch
to other floral patches (Distance). The dataset is pro-
vided below.

Record Success Insect Area Distance

1 19 8 10 11

2 32 15 22 74

3 35 19 32 42

4 17 6 17 39

5 21 11 11 21

6 7 3 11 19

7 57 11 54 91

8 27 11 44 62

9 87 32 50 91

10 45 49 45 57

11 31 43 40 43

12 28 10 51 34

13 35 15 31 65

14 74 33 18 22

15 22 15 3 34

16 11 5 32 17

17 7 2 3 11

18 7 17 16 50

19 86 19 22 91

20 34 14 41 54

21 45 22 40 31

22 75 29 33 65

23 64 33 16 32

24 54 17 27 93

25 29 12 36 32

26 60 24 34 17

27 43 34 51 78

28 56 22 44 97

29 88 41 52 143

30 27 15 11 46

There are five hypotheses under consideration (related
principally to the role of insect visitation), including a
constant-only model. Models include main effects only.
The RSS for the model with Insect is: 9783.518, and the
number of estimated parameters (K) in the model is 3

(Insect, Constant, model error). The Akaike’s Information
Criterion for the model is:

AIC= n Loge RSS n + 2 K

= 30 Loge 9783 519 30 + 2 3 = 179 618

Because AIC is biased when the sample size is <40, we
apply a correction factor to calculate unbiased model
distance:

AICc =AIC + 2K K + 1 n–K – 1

= 179 618 + 2 3 3+ 1 30– 3– 1 = 180 541

Using the RSS and K specific to eachmodel, we calculate
AIC and AICc for each candidate in the set:

Model K RSS AIC AICc

Insect 3 9783.519 179.618 180.541

Insect, Distance 4 6976.855 171.475 173.075

Insect, Area 4 9261.158 179.972 181.572

Insect, Area, Distance 5 6971.622 173.452 175.952

Constant only 2 16 786.702 193.814 194.259

We see that although the Insect, Area, Distance model
has lowest log-likelihood, it has the second-lowest AIC
score, owing to the penalty due to its larger number of
parameters.

Next, we determine the difference in AICc scores
between the best versus alternate models. We reorder
models from low-to-high AICc and calculate Δi such that
the best model (lowest AICc) is the base model. Because
AICc is lowest for the Insect, Distance model, it serves as
reference. Thus, for the Insect, Distance model, we obtain:
Δi = 173.075 – 173.075 = 0. The next best model, which
includes Insect, Area, and Distance, has: Δi = 175.952–
173.075 = 2.877. The same distance measure is calculated
for all models in the set:

Model AICc Δi

Insect, Distance 173.075 0

Insect, Area, Distance 175.952 2.877

Insect 180.541 7.466

Insect, Area 181.572 8.497

Constant 194.259 21.184

Δi is useful for evaluating the level of support for a given
model relative to the best model in the set of i models.
Δi also is necessary for determining the relative weight
of each model. To obtain model weights, first we calculate
the relative likelihood of each model, which is simply:
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exp (−1 / 2Δi). For the Insect, Distance model, we get exp
(−1 / 2 ∙ 0) = 1; for the Insect, Area, Distance model, we get
exp (−1 / 2 ∙ 2.877) = 0.237. We complete the calculations
for the entire set of models.

Model Δi

Relative
Likelihood wi

Insect, Distance 0 1 0.784

Insect, Area, Distance 2.877 0.237 0.186

Insect 7.466 0.024 0.019

Insect, Area 8.497 0.014 0.011

Constant 21.184 0.000 0.000

= 1.275

The proportion of the relative likelihood for individual
models against the sum of relative likelihood for the
entire set (1.275) is the model weight. For the Insect,
Distance model, wi = 1 / 1.275 = 0.784. The appropriate
interpretation of wi is that on a scale of 0–1, it provides
the proportion of evidence for a given model. The
weight of evidence is 0.784 (from 0 to 1) that the Insect,
Distance model is the best approximating model, given
the data and set of candidates. There is considerably
less weight of evidence that either the Insect, Area,
Distance (wi = 0.186), the Insect (wi = 0.019), or the
Insect, Area (wi = 0.011) models are the best in the
set (Figure B2.3.1).
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Figure B2.3.1 Plot of the relationship between
ΔAICc vs. generalized R2 (a) and AICc weight (b)
for the sample pollinator dataset. Note that some
models that have little support through model
selection (>8 ΔAICc units; e.g. the model
containing visiting number of pollinating insects
and patch area – “Insect, Area”) may still fit the
data fairly well.
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measure of model fit and the “best” model from a set of
candidates may have low AIC but still suffer from large
distance from full reality (Figure 2.2).
The log-likelihood and its derivatives are a product of

logistic regression and hazard models, and we need a dif-
ferent measure of model distance to calculate AIC for
least squares models:

AIC = n loge RSS n + 2K 2 2

where RSS is the residual sum of squares (RSS) from
the fitted model (Anderson et al. 2000). Therefore,
using either of the two AIC expressions (Eqs. 2.1 and
2.2) depending on the nature of the analysis, we can
determine the distance among candidate models across
a broad range of statistical analyses. The special case
of overdispersion in the response variable requires
calculation of a modified unit, QAIC (Burnham and
Anderson 2002).
Ecological studies often are beset with small sample

sizes, which can pose problems when using AIC and other
information criteria. A correction factor is applied (AICc)
to adjust for sample size (n):

AICc =AIC+ 2K K + 1 n–K – 1 2 3

Note that AICc andAIC converge when n / K≈ 40, but for
simplicity many researchers determine model distance
using the more conservative AICc irrespective of sample
size. Because the AIC units themselves are meaningless
and relative differences between models are preserved
whether AIC or AICc is used, there is no harm in consist-
ently using AICc as the unit of model distance.
To interpret values from AIC units they must be com-

pared to units from competing models. The AIC differ-
ence (Δi) is the difference between the AIC value for a
given model against the value for the best model (i.e. low-
est AICc) in the set of imodels; Δi values are on a contin-
uous scale and provide an actual measure of the distance
of each candidate from the best model in the set. For
example, we show that for snowshoe hares, Model
12 (Food, Cover interaction) has the lowest overall dis-
tance (i.e. lowest AICc), and Δi ranges from 2.16 for
Model 5 (Food, Cover availability) to 82.01 for Model 4
(Patch connectivity) (Table 2.4).
What Δi constitutes strong support for a model? The

specific thresholds for qualifying model fit may vary
depending on a number of factors, but generally models
with Δi < 2 are considered to have strong support, those
with 2 <Δi < 4 have moderate support, and those with

Table 2.4 Model selection results from an analysis of food density, cover density, patch size, and patch connectivity influences on snowshoe
hare occupancy.

Number Covariates K Log-Likelihood AICc Δi wi Generalized R2 AUC

12 Food, Cover interaction 4 −194.95 398.01 0.00 0.59 0.29 0.78

5 Food, Cover 3 −197.05 400.17 2.16 0.20 0.28 0.78

9 Food, Cover, Patch size 4 −196.53 401.16 3.15 0.12 0.28 0.78

10 Food, Cover, Patch connectivity 4 −196.77 401.64 3.63 0.10 0.28 0.78

6 Food, Patch size 3 −207.75 421.58 23.57 0.00 0.21 0.75

1 Food 2 −209.32 422.67 24.66 0.00 0.20 0.71

11 Food, Patch size, Patch connectivity 4 −207.55 423.21 25.20 0.00 0.21 0.75

14 Food, Patch connectivity interaction 4 −207.74 423.60 25.59 0.00 0.21 0.71

13 Food, Patch size interaction 4 −207.75 423.61 25.60 0.00 0.21 0.75

7 Food, Patch connectivity 3 −209.18 424.43 26.42 0.00 0.20 0.71

8 Cover, Patch size 3 −222.70 451.47 53.46 0.00 0.11 0.67

2 Cover 2 −223.92 451.87 53.86 0.00 0.10 0.65

15 Cover, Patch connectivity interaction 4 −223.69 455.48 57.48 0.00 0.10 0.65

3 Patch size 2 −235.46 474.96 76.95 0.00 0.02 0.60

16 Constant only 1 −238.12 478.25 80.24 0.00 0 0.50

4 Patch connectivity 2 −237.99 480.02 82.01 0.00 0 0.51

Number corresponds to model number from Table 2.1, K represents the number of parameters in the model, log-likelihood is a measure of the
probability of the observed outcome, AICc is the Akaike Information Criterion corrected for small sample size,Δi is the model difference from the best
model, and wi is the probability of the model, given the data. Generalized R2 and area under the curve (AUC) are measures of goodness-of-fit
(Table 2.6).
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4 <Δi < 8 have low support. Models with Δi > 9–11 are
widely recognized as having little support and often are
not considered further (Burnham and Anderson 2002).
These thresholds have been justifiably criticized as being
arbitrary (Murtaugh 2014). For snowshoe hares, the
respective Δi values indicate that Model 12 (Food, Cover
interaction) has strongest support, Models 5 (Food,
Cover availability), 9 (Food, Cover, Patch Size), and
10 (Food, Cover, Patch connectivity) have moderate sup-
port, and the remaining models have virtually no support
(Table 2.4).
Notably, our decision as to whether individual models

had support was based not only onΔi but also frommodel
weights and evidence ratios. Themodel weight, wi, repre-
senting the probability of each model i, given the data, is:

wi =
exp −

1
2
Δi

R

r = 1
exp −

1
2
Δr

2 4

where R is the full set of models, r = 1, 2,…R. Note that
model weights reveal the proportional support for indi-
vidual models and are normalized to one (Table 2.4).
Model weights are necessary for calculating evidence
ratios, which correspond to the magnitude of difference
in support between two models. For example, from
Table 2.4 we see that the weight of evidence supporting
the best-fitting model (Model 12) is 0.59 compared to
the model with food and density alone (Model 5 : 0.20).
In other words, the weight of evidence in support for
Model 12 is almost three times stronger than for the next
best model in the set (Burnham et al. 2011).
We can also calculate the sum of weights formodels that

include a common variable. The collective weight of evi-
dence for either the Food or Cover variable is: 0.59 + 0.20
+ 0.12 + 0.10 = 1.0, whereas the collective weight of evi-
dence for the Patch size and Patch connectivity variables
is 0.12 and 0.10, respectively. Note, however, that there is
emerging evidence that the sum of weights may not be
particularly reliable as an indicator of predictor variable
importance and thus should be used cautiously
(Galipaud et al. 2014, but see Giam and Olden 2016).
The confidence set of candidate models, which is analo-
gous to a confidence interval for a mean estimate,
includes models with AIC weights that are >10% of the
highest wi, which in the case of Table 2.4 includes Models
12 and 5.
Collectively, model likelihoods, evidence ratios, and

model weights provide a sound basis for comparing statis-
tical models in a manner that is superior to traditional sta-
tistics involving probabilities and single candidate models.
Notably, Bayesian methods also can be used for similar
purposes (Ellison 2004; Hooten and Hobbs 2015), and

on a side note, in some instances Bayes Information
Criterion (BIC) performs better than AIC (Aho et al.
2014, 2017). However, as we pointed out earlier, it is
important to recognize that the units derived from KL
information never actually reveal howwell amodel actually
fits the data and the “best” in a set of candidates can still have
large distance from full reality. Therefore, it is important to
provide an additionalmetric ofmodel fit, which can beR2 in
the case of linear regression and analogous units for logit
functions (Dochtermann and Jenkins 2011; Table 2.4;
Figure B2.3.1). The generalized R2 is a measure of model
fit which is corrected for number of parameters, and
therefore is philosophically consistent with AIC.

2.6.2 Multimodel Inference

The above methods offer a superior approach for obtain-
ing more judicious inference from observational studies
compared to traditional statistical methods. In popula-
tion ecology, the goal of a study is often to obtain param-
eter estimates that will serve in risk analysis or numerical
projection, so it is important that such estimates be unbi-
ased.Multimodel inference uses information from a set of
weighted models to provide estimates with high accuracy
and precision. Sometimes, there is a single viable con-
tender in the set (i.e.wi = 1.0; all otherswi = 0) and param-
eter estimates can be calculated directly from the best
model. More likely, several models provide varying levels
of support, and estimates for the same predictors will dif-
fer between models. To make full use of the information
available from the full set of models we should derive
model-weighted estimates (Buckland et al. 1997)
(Box 2.4). Model-averaged estimates Y can be com-
puted as a sum of the estimates obtained for each model
(Yi), weighted by the mean weight for that model (wi),

Y =
R

i= 1

wiY i 2 5

Note that model-averaged estimates also can be calcu-
lated across only the set of models containing the param-
eter of interest, but to do this one must recalculate wi

using only the candidates that include that parameter.
Of course, this basic approach assumes that model-
averaged estimates also should include an estimate of
uncertainty that corrects for dependency of the estimated
model variance on the model itself, and that weighs the
estimated error according to the weight of each model.
Model-averaged variance is usually reported as the
unconditional standard error (Box 2.4).
Research studies should report the appropriate output

from model selection exercises, including log-likelihood
value [log(L)] for logit models or RSS for least squares,
number of estimable parameters (K), value for the
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Box 2.4 Model-averaged Parameter Estimation and Uncertainty

To make full use of the benefits of model-based
approaches, we can compute parameter estimates and
corresponding uncertainty that is weighted by the set
of candidate models rather than simply from the best-fit
model. Using the example of seed production developed
in Box 2.3, the fitted models for the set of five candidates
provides the following parameter estimates (± SE):

Model Constant Insect Area Distance

Insect,
Distance

5.505
(6.482)

0.918
(0.267)

– 0.338
(0.103)

Insect, Area,
Distance

5.904
(7.193)

0.930
(0.283)

−0.034
(0.244)

0.346
(0.118)

Insect 16.214
(6.523)

1.272
(0.284)

– –

Insect, Area 10.530
(7.936)

1.102
(0.313)

0.301
(0.244)

–

Constant 41.102
(4.393)

– – –

To obtain weighted parameter estimates, we return to
Δi values for each model and calculate adjusted relative
likelihoods and weights; in this particular case we chose
to sum using only the models containing the parameter
of interest. For the Area parameter estimate we calculate
the relative likelihood for the Insect, Area, Distance
model (exp (−1 / 2 ∙ 2.877) = 0.237) and the Insect, Area
model (exp (−1 / 2 ∙ 8.497) = 0.014), as well as the total for
the two models (0.237 + 0.014 = 0.251). The relative like-
lihood for the individual model divided by the new sum
is the adjusted model weight, such that for Insect, Area,
Distance the weight is: 0.237 / 0.251 = 0.944 and for
Insect, Area the weight is: 0.014 / 0.251 = 0.056. For
the entire model set, the adjusted relative likelihood
and model weights are:

Adjusted relative likelihood and model weight

Constant Insect Area Distance

Model Δi rel L wi rel L wi rel L wi rel L wi

Insect, Distance 0 1.000 0.784 1.000 0.784 – – 1.000 0.808

Insect, Area, Distance 2.877 0.237 0.186 0.237 0.186 0.237 0.944 0.237 0.192

Insect 7.466 0.024 0.019 0.024 0.019 – – – –

Insect, Area 8.497 0.014 0.011 0.014 0.011 0.014 0.056 – –

Constant 21.184 0.000 0.000 – – – – – –

= 1.275 1.275 0.251 1.237

The next step involves multiplying parameter estimates
by the new model weight, and summing the values to
provide a model-averaged estimate. For the Area variable,
we get: (−0.034 ∙ 0.944) + (0.301 ∙ 0.056) = −0.015 as a
model-averaged estimate. The model-averaged estimates
for all variables are:

Variable Estimate

Insect 0.929

Area −0.015

Distance 0.340

Constant 5.837

Thus, the composite model for seed production is:

Y = 5 837 + 0 929 X1 – 0 015 X2

+ 0 340 X3 + error

where estimates for the predictors are: X1 = insect,
X2 = area, and X3 = distance.

The model-averaged parameter estimates should be
presented with estimates of uncertainty, but the SE
obtained from the fitted models are conditional on the
candidate model so they must also include an additional
source of variance. Model selection variance (MSV) is
obtained from the difference between the model-
averaged parameter estimate and the raw parameter esti-
mate from the fitted model:

MSV= model-averaged estimate–

rawparameter estimate 2
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information criterion used, differences in information
criterion (Δi), model weights (wi), and a measure of
goodness-of-fit (Table 2.4). Proper reporting also
should include parameter estimates resulting from the
model-fitting exercise; note that in the snowshoe hare
example there is variability in the estimates provided
for Food and Cover between the best versus remaining
models (Table 2.5). On the other hand, the Food, Cover
interaction in Model 12 (Figure 2.4) clearly shows that
the two factors have multiplicative effects on hare occu-
pancy and thus the interaction term should be consid-
ered. Table 2.5 does not include parameter estimates
that have been weighted through model averaging
because interaction terms preclude our ability to derive
parameter estimates that are not conditioned by such
terms. This issue is problematic because, as we stated
earlier, complexity is par for the course in field research
and ecologists should embrace this fact by explicitly
modeling interacting factors where appropriate; our
inability to reconcile model complexity with unbiased
parameter estimates currently represents an important
challenge in the application of IT methods in popula-
tion ecology.
To conclude this section, we would be remiss if we

failed to mention some ongoing concerns related to

multimodel inference. Consideration of multiple models
should not be necessary when dealing with fixed states
such as sampling design optimization or when the true
model is known (Ver Hoef and Boveng 2015). Likewise,
in the quest to infer causality between predictor and
response variables, multimodel inferencing should not
trump robust estimation of effect sizes (Fieberg and John-
son 2015). In terms of the multimodel inferencing proc-
ess itself, parameter estimates may not hold equivalent
interpretations across all models that include a given pre-
dictor, highlighting the need to conduct model develop-
ment with an eye to interactions between variables
(Banner and Higgs 2017). Indeed, Cade (2015) warns that
multimodel inferencing does not yield valid estimates
when there is multicollinearity between predictors
because correlated variables do not have common scales
across different models. It follows that averaging models
with correlated variables can lead to flawed statistical
interpretation, and variable scaling is not sufficient in
addressing this concern. Although it is currently unclear
exactly how much correlation between predictors is tol-
erable in multimodel inferencing, we remind of the cru-
cial need to assess multicollinearity and other aspects of
exploratory analysis (Section 2.5.3) prior to conducting
model selection and multimodel inferencing.

For the Insect variable in the Insect, Distance model,
we calculate: MSV = (0.929–0.918) 2 = 0.00012. We
repeat the calculation for each combination of variable
and model:

Model selection variance (MSV)

Model Constant Insect Area Distance

Insect, Distance 0.110 0.000 – 0.000

Insect, Area, Distance 0.004 0.000 0.000 0.000

Insect 107.682 0.118 – –

Insect, Area 22.024 0.030 0.100 –

Constant 1243.620 – – –

To calculate the unconditional SEs, we combine MSV
and the conditional variance (SE2). Then, we take the
square root of this sum and weight it according to the
adjusted wi. The sum of these values is the unconditional
SE for the parameter. The variance for the Distance vari-
able in the Insect, Distance model is 0.1032 = 0.011, so we
get √(0.000 + 0.011) = 0.103 as the new SE and (0.103 ∙

0.808) = 0.083 as the weighted SE. For the Insect, Area,
Distance model the new SE is √(0.000 + 0.1182) = 0.118
and the weighted SE is (0.118 ∙ 0. 092) = 0.011. Therefore,
we can sum these two values to get the unconditional

SE for parameter Distance: (0.083 + 0.011) = 0.094. By
repeating the calculation for each parameter and sum-
ming, we obtain error estimates for each parameter:

Unconditional SE

Model Constant Insect Area Distance

Insect, Distance 5.089 0.210 – 0.083

Insect, Area,
Distance

1.338 0.053 0.230 0.023

Insect 0.233 0.009 – –

Insect, Area 0.101 0.004 0.023

Constant 0.000 – – –

= 6.761 0.275 0.253 0.106

Therefore, we conclude that the model-averaged com-
posite, with unconditional SEs, is:

Y = 5 837 6 761 + 0 929 0 275 X1

– 0 015 0 253 X2 + 0 340 0 106 X3 + error

where estimates for the predictors are: X1 = Insect,
X2 = Area, and X3 = Distance.
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2.7 Model Validation

Model selection techniques identify the best model
among a set of candidates, but if the best model fails to
provide a good fit, biological processes of interest may
be inadequately explained. A best-fitting model that does
a poor job explaining variation in the response may be
caused by predictors that are not strongly correlated with
the response, or generally “noisy” datasets. It is good prac-
tice to evaluate goodness-of-fit or predictive performance
of models, and a variety of methods are available for com-
paring fitted versus predicted values in a model
(Table 2.6). Model validation seems to be an often-
overlooked concluding step in model selection, and when
conducted model validation tends to focus on the best
model rather than on the suite of weighted candidates
obtained through model selection.

Three general approaches exist for evaluating the pre-
dictive performance of a best-fitting model. For small
datasets, it may be most appropriate to calibrate the
model and estimate parameters, and then test predictive
accuracy using the same set of observations (Guisan and
Zimmermann 2000). Calibration is perhaps the most
common approach in ecology, likely due to the prepon-
derance of small datasets. For larger sample sizes, it is
possible to partition observations into training and test
data, where training data serve to calibrate the models
and test data evaluate predictive performance (Hastie
et al. 2009; Heikkinen et al. 2012). An approach based
on partitioning of datasets provides a more conservative
and accurate estimate of the model’s predictive abilities.
Training and test data can be split randomly into two
samples, typically using a 50/50 split, although other
splits may be more appropriate based on sample size

Table 2.5 Logit parameter estimates (± SE) from models relating snowshoe hare occupancy to food density, cover density, patch size, and
patch connectivity.

Number Covariates Inter Food Cover PS PC
Cover �
Food

Food
� PS

Food �
PC

Cover
� PC

12 Food, Cover interaction 1.05 1.67 (0.33) 0.77 (0.15) 0.51
(0.23)

5 Food, Cover 0.94 1.45 (0.28) 0.58 (0.12)

9 Food, Cover, Patch size 0.95 1.44 (0.28) 0.56 (0.12) 0.13 (0.13)

10 Food, Cover, Patch
connectivity

0.95 1.45 (0.28) 0.59 (0.12) −0.09 (0.12)

6 Food, Patch size 0.93 1.46 (0.28) 0.22 (0.13)

1 Food 0.92 1.46 (0.27)

11 Food, Patch size, Patch
connectivity

0.94 1.46 (0.28) 0.23 (0.13) −0.08 (0.12)

14 Food, Patch connectivity
interaction

1.02 1.65 (0.32) −0.30 (0.20) −0.57
(0.35)

13 Food, Patch size
interaction

0.93 1.46 (0.27) 0.20 (0.19) −0.04
(0.31)

7 Food, Patch connectivity 0.92 1.47 (0.27) −0.06 (0.11)

8 Cover, Patch size 0.63 0.57 (0.12) 0.20 (0.13)

2 Cover 0.63 0.59 (0.12)

15 Cover, Patch connectivity
interaction

0.63 0.59 (0.12) −0.06 (0.12) 0.05
(0.13)

3 Patch size 0.61 0.28 (0.03)

16 Constant only 0.60

4 Patch connectivity 0.60 −0.06 (0.11)

PS: Patch size; PC: Patch connectivity; Inter: Intercept.
Models are ordered according to their weight (higher weighted models at top) from model selection (see Table 2.4). Model averaging could not be
employed due to the presence of interaction terms. Predictors were standardized prior to analysis to improve interpretability of the coefficients.
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and the number of parameters in the model (see Fielding
and Bell 1997). A trade-off exists between retaining
enough training data to calibrate the model properly,
and enough test data to get an accurate assessment of
model performance (Guisan and Zimmermann 2000).
However, we should note that splitting data for training
and testing purposes is subject to the same concerns as
those expressed when developing and evaluating robust
hypotheses using the same dataset (Section 2.2). Indeed,
the choice of data used for training versus testing is
mostly arbitrary and ad hoc, and to date there lacks a
standardized approach.
Recently, repeated subsampling procedures have

becomemore common for dividing a dataset into training
and test samples, including cross-validation and boot-
strapping. In cross-validation procedures, the dataset is
divided into k subsets (typically 5 or 10 subsets, called
“folds”) with model fitting and validation repeated k times
with all of the folds minus one being used to calibrate the
model and the held-out fold serving as a test for model
validation (Hastie et al. 2009). Each distinct fold is used
exactly once as the test data. In this manner, the entire
dataset is used for testing the model, and because of
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Figure 2.4 Plot of the interaction between food and cover on
snowshoe hare occupancy. Food level is binned into low, medium,
and high depending on the intensity of browsing on woody twigs,
and cover ranges from low to high based on the visual obstruction
of a spherical densitometer. The fitted lines represent the predicted
relationship between food and cover based on Model #12.
Coefficients and confidence intervals are omitted for clarity.

Table 2.6 Some commonly used metrics for testing the predictive performance of models.

Metric Description

Continuous response variables
Correlation coefficients Measures correlation between predicted and observed values; Pearson correlations can be used

for normally distributed variables, nonparametric correlations such as Kendall’s tau are used for
non-normally distributed variables

Root mean squared error Measures the mean squared difference between predicted and observed values for normally
distributed variables

Continuous, count, or binary variables
Generalized R2 (coefficient of
determination)

For continuous response variables, the generalized R2 is equivalent to traditional R2 and
indicates the amount of explained variation. Although the generalized R2 also can be applied to
count and binary data, care in analysis and interpretation is necessary

Pearson goodness-of-fit statistic Indicates whether the model provides a good fit to the data. Large test statistics and small
P-values indicate poor fit

Binary response variables
Biserial correlation coefficient Measures the correlation between predicted probabilities and observed binary response

Sensitivity Measures the probability that the model will correctly classify a positive response (e.g. presence
of a species at a location). Requires that predicted probabilities from the model are converted to
a 1/0 binary response using a user-defined threshold.

Specificity Measures the probability that the model will correctly classify a negative response (e.g. absence
of a species at a location). Requires that predicted probabilities from the model are converted to
a 1/0 binary response using a user-defined threshold.

Cohen’s Kappa Measures the overall accuracy of model predictions, corrected for the accuracy expected to
occur by chance. Requires that predicted probabilities from the model are converted to a 1/0
binary response using a user-defined threshold.

AUC (area-under-the-curve) Measures the discriminative ability of a model and is especially useful for models fit to binary
data. It is a non-threshold-dependent measure of a model’s predictive ability with values
ranging from 0.5 to 1.0.

See Fielding and Bell (1997) and Guisan and Zimmerman (2000) for additional details.
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the repeated assessment of performance, average values
and measures of variability (e.g. R2) can be calculated.
N-fold cross-validation is a modification where n is the
sample size and a single datapoint is used as the test data
(equivalent to a jackknife procedure; Steyerberg et al.
2001). Bootstrapping procedures are similar to cross-
validation but the test data are randomly selected with
replacement from the training data, and the sample size
of the test and training data are equivalent (Hastie
et al. 2009).
If the goal of model validation is to identify a general

model that can predict responses in different places or
times, the data splitting approach for generating training
and testing data is flawed and a better estimate of predic-
tive performance is derived from a completely independ-
ent set of observations taken at a different place and time
(Wenger and Olden 2012). For example, we could
develop a best-fit model for snowshoe hare occupancy
in a fragmented landscape of Idaho, and test the predic-
tive performance of that model on a dataset of hare occu-
pancy from a fragmented landscape in Minnesota.
A model may perform well when predicting “in-sample”
test data, where training and test data come from
the same overall dataset, but perform poorly on
“out-of-sample” test data from a completely independent
dataset. The decline in predictive ability may correspond
to overfitting in the original dataset, as the best perform-
ing models for predicting in-sample test data tend to be
more complex and thus less transferable to other land-
scapes or times. Heterogeneity in relationships between
predictors and response variables across space or time
is another possible reason why model performance on
completely independent datasets often declines, as we
might expect to be the case in terms of snowshoe hare
occupancy patterns across the vastly different landscape
features in Idaho versus Minnesota.
The exact way in which amodel should be validated will

depend on sample size and the question that is being
addressed, and requires decisions regarding using the
same dataset for calibration and evaluation, splitting a
single dataset randomly into test and training samples
versus testing the model on a completely independent
dataset. Regardless, some form of model validation
should be presented as a final complement to the model
selection process. This validation gives us confidence that
our models are indeed useful for explaining patterns in
the distribution, abundance, or population dynamics of
species.

2.8 Software Tools

Most statistical programs have functions in their default
installation for exploratory analyses, including the

production of figures for diagnostics such as scatterplots
and pairwise correlations. Default installations also gen-
erally offer functions for general statistical tests. The out-
put of these functions often include diagnostics tests
regarding whether the assumptions of the model are
respected or not. More advanced functions are some-
times provided in additional packages, for example, a
function to calculate the VIF is available in the package
car in R. An additional package, bbmle, has an ICtab
function that computes information criteria for a series of
models, optionally giving information about Δi, wi and
other relevant metrics. The package speeds up the model
selection process but the calculations are black-boxed,
which is not helpful for those first learning model selec-
tion approaches.
Log-likelihood, AIC, and other information criteria are

frequently provided in the output of regression models,
but can also be extracted using specific functions such
as the logLik and AIC functions in R. Model selection
can be performed manually once the log-likelihood or
information criteria are extracted, but thankfully, this
process is made easier in R with packages such as AICc-
modavg and MuMIn. Both packages offer similar outputs
in term of model selection, but MuMIn is more flexible in
how models included in the selection process are speci-
fied. Both packages can also calculate model-averaged
coefficients with unconditional confidence intervals
across a candidate set of multiple models.

2.9 Online Exercises

The online exercises are designed to reinforce concepts
presented in this chapter and to provide the user with
an understanding of the steps toward robust analysis in
population ecology. Exercise 1 uses a study on snowshoe
hares to develop a model assessing factors affecting body
condition of individual hares. Exercise 2 uses a related
dataset to assess the fit of multiple models predicting hare
cause of death relative to body condition and environ-
mental factors. Last, Exercise 3 extends this approach
by using the snowshoe hare dataset described in this
chapter to conduct a model selection and multimodel
inferencing exercise.

2.10 Future Directions

A scientific approach that has become strongly estab-
lished in population ecology consists of three elements:
(i) developing multiple research hypotheses and predic-
tions at the outset of a study; (ii) testing hypo-
theses through corresponding statistical models; and
(iii) applying IT (or Bayesian) methods and multimodel
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weighting to evaluate the strength of inference. Further,
mindful data exploration and remediation, as well as
model validation, are increasingly recognized as impor-
tant complements to model-based inference. We think
that these procedures will continue to lead to improved
inference about population ecology, although frequen-
tist statistical methods should retain a place in the
ecologist’s statistical toolbox especially when conduct-
ing experiments or developing sampling protocols or
adaptive management strategies. The advantages of
the IT approach in an observational research context
are resoundingly clear, and similar arguments can be
made for Bayesian methods especially when robust prior
information is available.
There are key areas that need work to facilitate the fur-

ther integration of multimodel approaches into the eco-
logical toolbox.Wementioned previously the challenges
of multiple imputation in the context of model selection,
as well as the current uncertainty concerning multimo-
del inferencing with models having interaction terms
or multicollinearity. We also illustrated difficulties with
model validation when predictive data are not truly
independent or when the focus of validation is a single
best-fit model rather than the weighted suite of candi-
dates. Likewise, model selection for integrated popula-
tion models (IPM) remains a challenge, even though
IPM have become increasingly popular in population
ecology (Chapter 9).
From a more philosophical perspective, there remains

the thorny issue of mixing modeling paradigms and
whether it is even appropriate to combine IT with fre-
quentist approaches in the same research framework.
To this point we offer that researchers should keep an
openmind and entertain the full set of tools that are avail-
able for robust inference, as it may be that the research
questions are served using a variety of techniques. Indeed,
as with all new or transformational approaches in science,
we should not be surprised by resistance or caution in the
widespread adoption of model-based methods, and more
thorough coverage in undergraduate statistics courses
and ecological texts will help raise their profile.
More broadly, we underscore that while students can be

trained in the proper use of new statistical tools and soft-
ware to conduct robust inference, ultimately a greater
appreciation for the development of research hypotheses
and predictions that reflect real-world relationships
between variables, as well as a more explicit understanding
of the direct link between hypotheses, predictions, and
models in a philosophical as well as statistical context, is
crucial. Such advances will help ensure that population
ecologists are in position to rigorously and effectively
address the analytical challenges that doubtless will arise
in response to forthcoming environmental changes.
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Summary

When it comes to collecting field data, “you can’t always get what you want” in population ecology. We are often interested in
understanding the vital rates that drive population dynamics, such as fecundity or survival, but the realities of fieldwork under
logistical and financial constraints often preclude us from collecting the data we would most like to have. Despite these chal-
lenges, there are plenty of ways to “get what you need” and make meaningful inferences about population status, trends, and
habitat associations using relatively simple and inexpensive field sampling methods. Here, we focus on the estimation of abun-
dance and species occurrence from unmarked population data. We provide an overview of common sampling and analysis
methods for squeezing the most information out of unmarked population data while accounting for imperfect detection
and other obstacles. These unmarked population methods include plot sampling, distance sampling, spatially replicated
counts, removal sampling, and presence/absence sampling.

3.1 Introduction

From the perspective of an applied population ecologist,
an ideal study population would consist of individually
identifiable or “marked” organisms that could be observed
at any time and for as long as we wish without disturbing
them. Whether for a long-term investigation about the
effects of global climate change or the shorter-term stud-
ies typical of graduate student projects, reliable inference
about population patterns and dynamics from observa-
tions of a population ofmarked individualswould be con-
siderably easier than observations of a study population
consisting of indistinguishable and difficult-to-observe
(or to manually mark) individuals. Some wildlife species
possess easily distinguishable marks, including natural
pelage coloration of some felids or acquired scars in some
cetaceans, but otherwise this ideal study population rarely
exists outside the artificial constructs of a well-designed
field experiment. Instead, we must often contend with
the reality that our study population may contain rela-
tively few to no marked individuals, and that these indi-
viduals may be difficult to observe when conducting
data collection surveys. This chapter focuses on using
data from populations of unmarked individuals to

estimate two quantities fundamental to understanding
population dynamics and species distributions: popula-
tion abundance and species occurrence.

3.1.1 Why Collect Data from Unmarked
Populations?

Unmarked populations are not as informative for estima-
tion of demographic parameters, such as survival, com-
pared to marked populations. However, status, trends,
and habitat associations can be inferred from unmarked
populations, and there are entire books devoted to use of
data from unmarked individuals for estimation of popu-
lation abundance (Buckland et al. 2001, 2004, 2015) and
species occurrence (MacKenzie et al. 2006). In deciding
whether to collect and analyze data from an unmarked
population, there are many issues to consider. When
scientific hypotheses concern the role of demographic
rates (i.e. recruitment, survival) and movements (i.e.
immigration, emigration) as drivers of changes in
abundance, then investment in capture-recapture meth-
ods for marked populations may be necessary (Chapters 7
and 9). However, a key advantage of unmarked popula-
tion studies is that time and money need not be invested
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in capturing and marking animals or, in the case of non-
invasive genetic sampling, the collection and analysis of
DNA samples (Lukacs and Burnham 2005, Bravington
et al. 2016; Fewster et al. 2016; Chapter 5). Thus, limited
resources can be invested in other aspects of the study
design, thereby enabling a broader geographic or
temporal scale of monitoring. Not only can capturing
and marking animals be expensive in time and money,
but it is also typically stressful and potentially harmful
to wild animals. For species of conservation concern,
unmarked population studies may be necessary because
the capturing and marking of individuals is not politically
or socially acceptable. Despite the limited information
contained in unmarked data, in this chapter we will
demonstrate how meaningful inferences about popula-
tion abundance and species occurrence probability can
be obtained using relatively simple and inexpensive field
sampling methods for unmarked populations. A guide to
this material is provided in Figure 3.1.

3.1.2 Relative Indices and Detection Probability

3.1.2.1 Population Abundance
Suppose one is interested in the size of an endangered
population after protective management policies have
been initiated. If a population of animals is endangered,
physical capture of individuals for marking or genetic

sampling procedures may be prohibited. Inconveniently,
many populations of individuals are not distinguishable
from natural markings. As part of a monitoring plan, sur-
veys of unmarked individuals are conducted throughout
the study area each year. Whenever an individual is
encountered during a survey, this datum is recorded.
If these surveys had perfect detection and all individuals

in the population were encountered each year, raw counts
of individuals would constitute annual estimates of pop-
ulation size or abundance (N). This example of a sam-
pling scenario is often referred to as a population
census. Population censuses are rare in wild animal popu-
lations because study areas are often too large (or inacces-
sible) to sample completely, and individuals present in the
portion of the study area subject to sampling often go
undetected. However, some populations are regularly
censused with high success, such as nesting penguins.
Typically, species that can be readily surveyed with com-
plete detection are those where individuals are highly vis-
ible, occupy a discrete location, and can be distinguished
by the observer. However, for the majority of populations
where a population census is not possible, it may seem
natural to assume that the number of individuals seen
each year still reflects the underlying population size. In
other words, if more individuals are seen each year, one
may be inclined to conclude that the population increased
during the study period. Under this assumption, the raw

Data for Unmarked Animals
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Figure 3.1 Decision tree for Chapter 3. Some of the most important considerations for the design and analysis of unmarked population
studies include the item of ecological interest and detection probability (p).
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counts (C) constitute an index of relative abundance for
each year. However, this index is in fact a product of the
true abundance (N) and the probability of detection (p):

E C =Np, 3 1

where E(C) is the expected value for C. For example, sup-
pose the rate of change in abundance (h) from year i to
year i + 1 is h = Ni + 1/Ni. From Eq. 3.1, we have:

E h =
E Ci+ 1

E Ci
=
Ni+1pi+ 1

Nipi
= h

pi+1
pi

3 2

Reliable inferences about changes in abundance from
relative indices therefore depend on the critical assump-
tion that detection probability is constant across surveys
(i.e. pi = pi + 1). It is now widely acknowledged that a con-
stant probability of detection is generally an unrealistic
assumption (Anderson 2001; Mazerolle et al. 2007; John-
son 2008; Archaux et al. 2012). The probability of detec-
tion during any given survey can depend on observer
ability, environmental variables such as time of day, sea-
son, precipitation, habitat type, wind speed, and human
disturbance, as well as species characteristics such as
behavior, group size, or calling intensity. For example,
Archaux et al. (2012) demonstrated by simulation that
a detection probability difference between count surveys
as small as 4–8% can lead to a 50–90% risk of a type I error
with false rejection of the null hypothesis under sampling
conditions that are commonplace in ecological studies. In
a seven-year study of four species of forest birds in Utah,
USA, Norvell et al. (2003) showed that the assumption
of constant proportionality was violated and lead to
differences in estimated trends for relative abundance
compared to population size.
When individuals in a population are marked, it is pos-

sible to estimate p andmake inferences aboutN and other
demographic parameters using capture-recapture meth-
ods (Chapters 5 and 7). When the object of interest is
unmarked and immobile, such as individual plants, nests,
or sessile animals, spatial location can take the place of
the mark in providing an identification, and detection
probability can be estimated with capture-recapture
protocols based on repeated sampling or multiple
observers (Nichols et al. 2000). Things are not so easy
for unmarked, mobile populations. However, with appro-
priate data collection and analysis, one can also estimate
detection probability and reliably estimate N (or h) using
a variety of different methods (Seber 1982; Borchers et al.
2002; Williams et al. 2002; Nichols et al. 2009).

3.1.2.2 Species Occurrence
Instead of abundance, suppose that one is interested in
the spatial patterns and dynamics of species occurrence.
In this case, so-called presence/absence surveys can be

used to make inferences about the spatial distributions
of species, and thesemethods do not require marked indi-
viduals. The sample units in presence/absence surveys are
individual sites within a larger study region of interest.
Surveys consist of visits to each site, where the species
of interest is either encountered or not encountered,
and the number of individuals encountered at each site
may or may not be recorded. Assuming species occur-
rence is detected perfectly at each site, the probability
of species occurrence for the study area may be estimated
as x/n, where x is the number of sites where the species
was detected and n is the total number of sites. Assuming
perfect detection, one may infer patterns and dynamics in
the species’ distribution using presence-only or presence/
absence modeling, such as incidence functions and
related approaches (Hanski 1992, 1999; He and Gaston
2003; Phillips et al. 2006; Yackulic et al. 2012a). However,
it is now widely recognized that presence/absence data
are also subject to imperfect detection, and presence/
absence data are perhaps more appropriately described
as detection/nondetection data (MacKenzie et al. 2002;
He and Gaston 2003; Tyre et al. 2003; MacKenzie 2005).
Similar to using raw counts to infer abundance,

problems arise when attempting to make inferences
about species occurrence under imperfect detection.
The issue is that the number of sites with detections
x is a function of both the probability of site
occupancy (ψ) and the probability of detection for
the species at a site (p):

E x = pnψ 3 3

Failing to account for p < 1 will therefore result in
underestimation of species occurrence. Now suppose
the finite rate of change in occupancy from year i to year
i + 1 is h = ψ i + 1/ψ i. From Eq. 3.3, we have:

E h =
E xi+ 1

E xi
=
ψ i+ 1pi+1
ψ ipi

= h
pi+ 1

pi
3 4

Attempting to infer changes in occupancy from an
index of relative occupancy therefore depends on the
assumption that p is constant across surveys. If one is
willing to assume a constant detection probability, then
the relative patterns and dynamics of species distribution
can be investigated using presence-only and presence/
absence modeling without explicitly accounting for
detection probability (Phillips et al. 2006; Royle et al.
2012; Yackulic et al. 2012a). However, for many animals,
and even plants (Kéry and Gregg 2004; Chen et al. 2012),
it will more often be the case that detection is imperfect
(i.e. p < 1) and is not constant among observers, sampling
occasions, or sites. By using repeated sampling, one can
use detection/nondetection data to estimate both site-
level probabilities of detection and occurrence, as well
as local extinction and colonization rates.
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3.1.3 Hierarchy of Sampling Methods
for Unmarked Individuals

A complete population census represents the most infor-
mative sampling method for an unmarked population.
More commonly, study areas are too large to sample
completely but individuals that are exposed to sampling
are perfectly detected, allowing the use of uncorrected
counts from sampled portions of the study area to esti-
mate regional abundance (or density). Such plot sampling
methods include quadrats (square plots), strip transects
(rectangular plots), and point counts (circular plots, Seber
1982; Buckland et al. 2001; Borchers et al. 2002; Williams
et al. 2002).
Given R plots each of size a, randomly selected from

within a study area of size A, and containing c individuals,
then abundance N may be estimated as

N =
c
Ra

A 3 5

and density D as

D=
N
A

=
c
Ra

3 6

A simulated strip transect example is shown in Figure 3.2.
Strip transects are often used for aerial surveys of
conspicuous, common animals. For strip transects, we
can modify the above formulae to accommodate the
area sampled by each strip. In the example, R = 10 strips
of half-width w = 150 m and length li = 20 km (i = 1,…, R)
were placed according to a systematic random design in a
study area of size A = 560 km2. Hence, we now have

N =
c

2wL
A, 3 7

and

D=
N
A

=
c

2wL
, 3 8

where L= R
i= 1li. Assuming all c = 40 individuals in the

strips were counted, we obtain N = 373 and D= 0 67
individuals km−2, and because the analysis is based on a
simulation, we know the true values were 345 and 0.62,
respectively. Variance is calculated treating transect as
the sampling unit; methods for systematic random
designs such as this are discussed in Fewster et al.
(2009). Applying the “O2” estimator of Fewster et al.,
the coefficient of variation (CV – standard error divided
by estimate) on the above estimates is 0.23. Systematic
random survey designs are generally more efficient than
completely random designs, in the sense that they produce
lower variance for the same survey effort.
When detection in the areas exposed to sampling is not

perfect, one must account for p < 1 to reliably estimate
abundance or species occurrence. Detection probability
is often considered a “nuisance” parameter that is of little
interest from an ecological perspective. However, because
the detection process must be properly accounted for to
make reliable inferences about underlying ecological pro-
cesses, detection probability shall be the central theme of
our chapter. Fortunately, numerous study designs facili-
tate simultaneous estimation of detection probability
and ecological parameters of interest from unmarked
populations. If distances to detected individuals can be
measured, then distance sampling methods can be used
to simultaneously estimate detection probability and
abundance. However, if it is not possible to estimate dis-
tances to detected individuals, but surveys are spatially or
temporally replicated, then repeated counts can be used
to estimate detection probability and abundance.
Some animal populations are not immediately amenable

to the above approaches, but nevertheless may reliably be
surveyed usingmodifications of themethods. For example,
cottontop tamarin monkeys (Saguinus oedipus) are
endemic to Colombian forests, but are not suitable for
standard count-based methods, being highly cryptic and
showing strong avoidance of observers. However,monkeys
can be induced to approach observers with playbacks of
conspecific vocalizations; exploiting this behaviour led to
the development of a lure strip transect by Savage et al.
(2010) to derive the first range-wide population estimate.
Similarly, Buckland et al. (2006) used acoustic lures in a
point-based sampling scheme to derive an estimate of
detection probability of Scottish Crossbills (Loxia scotica).
One option that is often useful when the animals them-

selves are hard to survey is to survey animal signs such as
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Figure 3.2 A simulated example strip transect survey that was
created using the wisp package in R; the population comes from
the seal.pop dataset. The surveyed strips are shown in gray with
dashed lines indicating the tracklines taken during the survey.
Animal locations occur within the simulated landscape (white
circles), and all animals within the surveyed strips are assumed to
be detected (black circles).
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whale surface blows, carnivore tracks, songbird calls, pri-
mate nests, or hare pellets. The density of these alterna-
tive, easier to measure, objects (often called “cues”) can
then be linked to animal density by using one or more
multipliers or conversion factors, which usually require
separate estimation using secondary surveys. For
example, Laing et al. (2003) discuss methods for estimat-
ing deer dung deposition and decomposition rates, for
estimation of deer density using deer dung collected
along transect surveys. Some species that are hard to
detect visually make frequent, loud vocalizations that
can be transmitted for long distances through the envi-
ronment (e.g. many cetacean species, forest elephants).
Passive acoustic density estimation is a rapidly expanding
field for monitoring of secretive species (Marques
et al. 2013).
Multipliers are also useful when some proportion of

the population can be surveyed using a standard
method, and this proportion can be estimated. For
example, aerial strip transect surveys have become more
widely used now that it is possible to replace a human
observer on the vehicle with a high-definition camera
or video system (Buckland et al. 2012; Conn et al.
2014). For marine mammals, some proportion of
animals will be underwater when the survey vehicle
passes over, but if this proportion can be estimated from
auxiliary information, such as a sample of tagged
animals, then correction factors can be included as
multipliers in the denominator of the standard strip
transect formula (Eq. 3.7).
In the absence of counts of detected individuals, pres-

ence/absence surveys represent the least-informative
sampling method for unmarked populations. These data
represent a coarse summary of population structure and
dynamics that is also subject to potential biases induced
by imperfect detection at the site level. However, using
repeated sampling, detection/nondetection data can be
used to investigate complex hypotheses about the
patterns and dynamics of species occurrence, while still
accounting for imperfect detection. As we shall see,
there is a fundamental relationship between abundance
and species occurrence, and under certain conditions,
one may even be able to estimate abundance from
detection/nondetection data.
In the rest of this chapter, we focus on developing a

conceptual understanding of the various methods used
in abundance and occupancy estimation for unmarked
animals (Figure 3.1); we limit our treatment of issues
associated with survey design and field methods. How-
ever, good design and execution are key to the success
of all of these methods. Anyone planning on putting these
methods into practice would be well advised to consider
these issues carefully, and undertake pilot surveys and
pilot analyses before starting in earnest. Poor analyses

can typically be redone at low cost; the same is not true
if a repeat collection of field data is required!

3.2 Estimating Abundance (or
Density) from Unmarked Individuals

3.2.1 Distance Sampling

Distance sampling methods were originally developed to
estimate abundance (or density) for unmarked popula-
tions where p < 1. A comprehensive review of the history
and methods of distance sampling, as well as practical
considerations for the design and implementation of
these studies, is provided by Buckland et al. (2001,
2004, 2015). A large and growing literature describes
the extension or modification of these methods for nearly
all imaginable sampling situations, but only a fraction of
these can be covered here. We focus on the fundamentals
of estimating abundance with distance sampling data col-
lected from line and point transects. We do not cover the
practicalities of survey design and field methods,
although getting these right is absolutely key to obtaining
reliable results – the reader is referred to chapters 2 and 4
in Buckland et al. (2015), chapter 7 in Buckland et al.
(2001), or chapter 7 in Buckland et al. (2004).
We first describe design-based (or classical) distance

sampling analysis methods (Buckland et al. 2001;
Buckland et al. 2015, Chapter 5). We then consider recent
model-based distance sampling analysis methods (Hedley
and Buckland 2004; Royle et al. 2004; Buckland et al.
2015, chapters 7 and 8 of Kéry and Royle 2015; see review
by Miller et al. 2013a). The two terms are convenient for
distinguishing different approaches to distance sampling,
but design-based distance sampling is a bit of a misno-
mer. Both approaches use model-based methods for
describing variation in detection probability within the
sampled areas. The key difference is that design-based
distance sampling methods use assumptions about ran-
dom transect placement to extrapolate from estimated
abundance in the sampled area to abundance over the
entire survey region, whereas model-based distance sam-
pling methods use a spatial model of animal distribution
for extrapolation. The key advantage of design-based
methods is that we can ensure the assumptions are met
through good survey design, whereas for model-based
methods we cannot be sure that the required assumptions
about animal distribution are correct. On the other hand,
model-based methods have relaxed requirements for the
sampling design, and may therefore be better able to
accommodate nonrandom sampling designs such as
opportunistic sampling. However, flexibility does not
mean that model-based approaches can salvage a poorly
designed study. Relative to the desired level of inference,
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reliable use of model-based approaches will necessarily
depend on both the appropriateness of the model and
on the quality of available data, which in turn depends
on the sampling design. For a detailed discussion of
model-based versus design-based inference in the context
of distance sampling and animal abundance estimation in
general, see Borchers et al. (2002).

3.2.1.1 Classical Distance Sampling
3.2.1.1.1 Line and Point Transects
Consider the strip transect scenario described in
Section 3.1.3 and shown in Figure 3.2. To meet the
assumption that all individuals in the strip are detected
(i.e. p = 1), the strips have to be very narrow, so that they
can be searched thoroughly as the observer moves down
the trackline. Detecting all animals out to the boundary of
the strip implies that there will be many animals just
outside the strip that are also detected, but cannot be
counted. Hence strip transect (and other plot sampling)
methods are inefficient in the sense that they do not
use all of the data potentially available. The survey design
is fine for animals that occur at high density, where a
reasonable sample can be obtained even using small plots,
but it is not optimal for animals that occur at lower
density, or are harder to detect, so that the plots must
be prohibitively small to ensure p = 1. Distance sampling
methods relax the assumption that all individuals must be
detected, thereby allowing a larger area to be included
in the sample, and hence more data to be collected
(compare Figures 3.2 and 3.3a). The penalty for this is
that we must now account for the animals missed. From
Eqs. 3.1, 3.5, and 3.6, we can estimate abundance (N) and
density (D) corrected for imperfect detection (p < 1):

N =
c

2wLp
A, 3 9

and

D=
N
A

=
c

2wLp
3 10

Hence, to reliably estimate abundance (or density) when
p < 1, one must be able to reliably estimate p.
Line transect surveys are the distance sampling equiva-

lent of a strip transect (Figure 3.3a). Observers travel
along randomly placed lines within the study area, and
whenever an individual is detected, the perpendicular dis-
tance from the line to the individual is measured and
recorded. Alternatively, the radial distance and sighting
angle can be recorded in the field and then used to calcu-
late the perpendicular distance. The other common type
of distance sampling survey is a point transect (also called
a variable circle plot), which is an extension of the point
count plot sampling method. In point transect surveys,
observers visit randomly placed points within the study
area and record the radial distance from the point to
any detected individuals (Figure 3.3b).
Distance sampling theory allows for individuals in

the sampled areas to go undetected by exploiting the
tendency for detectability to decrease with increasing
distance from the line or point. Buckland et al. (2001,
chapters 4 and 6) discuss some of the relative advantages
of line and point transects, but where feasible, line tran-
sect distance sampling methods are generally considered
more efficient, accurate, and robust (Bollinger et al. 1988).
However, sampling techniques are often linked to habitat
structure. For example, line transects are typically easier
to implement in open habitats like grasslands or ocean,
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Figure 3.3 Examples of (a) line transect and (b) point transect sampling. Detected and undetected animals are shown as black and
white circles, respectively. Note that compared with the strip transect survey of Figure 3.2, the line transect covers a larger area, but
some individuals within the covered area are missed. Individuals closer to the line or point are more likely to be detected.
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whereas point transects are more often used in closed or
rugged habitats such as forests or mountains.
In cases where animals occur in distinct clusters

(groups, flocks, herds, etc.), it is often easier to treat the
cluster as the object that is sampled, recording the
distance to the center of the cluster and, separately, the
cluster size. Eqs. 3.9 and 3.10 then give the abundance
and density of clusters; to convert to abundance and
density of individuals one needs to include an additional
term for population mean cluster size. In some cases, this
can be reliably estimated by the mean of the observed
cluster sizes. More often, however, cluster size is only
recorded accurately at short distances; various methods
are available to correct for any size bias for observations
of clusters at longer distances (see Buckland et al. 2001,
Section 3.5).
The density estimators using line or point transects are

necessarily different because the geometry of the
sampling frame differs, but both approaches have three
key assumptions in common: (i) all individuals located
on the line or point are detected; (ii) animal movements
are negligible; and (iii) all distances (and angles, if
necessary) are measured accurately. A fourth assumption
is that detections are independent, but the classical
methods are robust to violations of this assumption.
Based on the observed distances x = (x1, x2,… , xc) to c

detected individuals from line or point transect surveys,
the basic strategy underlying classic distance sampling
methods is a combination of design- and model-based
approaches. Model-based methods are used to describe
the detection process as a decreasing function of distance,
and, given a model for the detection process, design-
based methods are used to make inferences about density
(or abundance). The detection function, g(x θ), is a model
for the detection process that generated the observed
distance data (x) as a function of (unknown) detection
process parameter(s), θ. Specifically, g(x θ) is the
probability of detecting an object at distance x from
the line or point, conditional on the model parameters
θ. Hence, g(0 θ) = 1 based on assumption 1. Careful
specification of g(x θ) is paramount to reliable
estimation of θ and D (or N) from the observed distances
x. Regardless of the exact form of the model, we can
estimate the average detection probability, p, from the
fitted detection function for line transects:

p=

w

0
g x θ dx

w
, 3 11

or the detection function for point transects:

p=
2

w

0
xg x θ dx

w2
3 12

(for full derivations of these estimators, see chapter 2 of
Buckland et al. 2001). Here, w is the truncation distance,
or the distance beyond which detections are ignored in
the estimation of density; proper truncation of outliers
can greatly aid in the modeling of the detection function
(see Buckland et al. 2001, pp. 15–17). The estimates of
p can then be used to obtain estimates of density (or
abundance) from Eqs. 3.9 and 3.10 (or the equivalent
for point transects). Fortunately, given a specified form
for the detection function g(x θ), free software tools
are available for estimating θ and therefore N or D
(Section 3.4), thereby precluding the need for us to dust
off our undergraduate calculus texts.

3.2.1.1.2 Specification of the Detection Function g(x θ)
Histograms of distance sampling data can help provide
some initial insights about the purpose of the detection
function. Figure 3.4a shows the distance to detected indi-
viduals from the example in Figure 3.3a, in 50 m intervals.
Note the tendency for fewer individuals to be detected at
greater distances from the line. We have described the
detection function as a mathematical model for detection
probability as a function of the measured distances to
individuals detected from line or point transect surveys.
There are many different models that could be used for
this purpose, but decades of research have converged
on a relatively small, but flexible, set of models to choose
from.
Buckland (1992) synthesized much previous work and

developed a unified formulation for specifying a suite of
detection functions that are commonly used by practi-
tioners. The strategy is to select a few models for g(x θ)
that tend to exhibit desirable qualities, such as generality,
flexibility, and efficiency. In terms of shape, it is desirable
for detection functions to be monotonically decreasing
with a “shoulder” near the line or point. The width of
the shoulder indicates the distance from the line or point
to which detection remains nearly certain – this is
something that is typically, at least partly, under the con-
trol of the observers; a wider shoulder leads to more
robust inference. Truncation is often used to remove
outlier observations recorded at unusually large
distances, further improving inference (Buckland et al.
2001, pp. 15–17).
Many models for the detection function g(x θ) could

exhibit these qualities, but Buckland (1992) proposed
detection functions using the following conceptual form:

g x θ key x θk 1 + series x θs ,

where key(x θk) is a key function that serves as baseline for
the model, and series(x θs) is a series expansion used to
adjust the key function. The key function alone can often
suffice, but a series expansion can help improve the fit of
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the key function to the distance data. Buckland et al.
(2001) recommend three key functions and three mth-
order series expansions (Table 3.1). Figure 3.4b and c
show detection functions for the half-normal and haz-
ard-rate models without series expansions, fit to example
data from Figure 3.4a. Standard likelihood-based analysis
methods can be used to fit models and estimate

parameters of the detection function, and selection among
candidate models can be accomplished using likelihood-
basedmodel selection procedures (Chapter 2). Additional
model structures explaining variation in detection proba-
bility, such as observer, environmental, or species covari-
ates, can also be incorporated into this framework
(Marques and Buckland 2004; Marques et al. 2007).
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Figure 3.4 (a) Histogram of observed distances to detected individuals in the line transect example from Figure 3.3a. (b) and (c) Detection
functions fitted to these data using half-normal (b) and hazard-rate (c) models without series expansions. Histograms of the distances
are also shown in (b) and (c), scaled so that the area of the histogram is the same as the area under the fitted functions. The half-normal
model has a lower AIC value and so is the preferred model, although both AIC values and estimated average detection probability, p,
are similar (see text).

Table 3.1 Recommended models for detection functions of the form g(x θ) = key(x θk)[1 + series(x θs)], where x is distance from the line,
θk are the key function parameters, θs are the series expansion parameters, and w is the truncation point (i.e. distances exceeding w
are either not recorded or removed before analysis). The series expansion terms depend on a scaled value of x, xs = x/w or xs = x/σ.

Series expansion

Key function θk Cosine Simple polynomial Hermite polynomial θs

Uniform, 1/w m
j=1ajcos jπxs m

j= 1aj xs
2j aj

Half-normal, exp(−x2/2σ2 ) σ m
j=2ajcos jπxs

m
j= 2ajH2j xs aj

Hazard-rate, 1 − exp(−(x/σ)−b ) σ, b m
j=2ajcos jπxs m

j= 2aj xs
2j aj

Source: Adapted from Buckland et al. (2001, p. 47).
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Estimating variance of N and D involves combining
estimated variances from the random components that
make up the abundance and density estimates: number
of observations (c), detection probability (p), and where
applicable, population mean cluster size. Details of these
procedures and calculation of related quantities such as
coefficient of variation and confidence intervals, are given
in Buckland et al. (2001, Section 3.6), although the stand-
ardmethod of calculating variance in c has changed based
on recommendations of Fewster et al. (2009).
For the example line transect data, p is 0.56 (SE 0.05) for

the half-normal and 0.62 (SE 0.07) for the hazard rate
models; AIC (Akaike’s Information Criterion) is
−121.53 and −119.13 respectively, and so the half-normal
model would be selected based on lowest AIC. Given this
model, and using Eqs. 3.9 and 3.10 with c = 72 individuals
and w = 0.5 km, we estimate that N = 360 and D= 0 64
individuals km−2, which are close to the true values of
345 and 0.62 respectively. It is instructive to compare
the estimates of uncertainty from the strip and line
transect surveys: the former had a CV of 0.23 while the
latter was somewhat more precise, with a CV of 0.20.
Hence, even though line transect analysis requires
estimating the detection function as an additional
quantity, the additional uncertainty that this generates
in the final estimate was more than compensated for by
the reduction in uncertainty from being able to survey
a larger area by having a longer truncation distance (w).
We were also rather generous in assuming all

individuals in the strips were detected for the strip
transect survey, given that the estimated detection
probability at the strip transect boundary of 150m was
estimated, from the line transect data, to be 0.8. Hence,
even when undertaking a strip transect survey, it is worth-
while to record the perpendicular distance to detected
individuals, as a way to check the assumption that all
animals are detected (see Buckland et al. 2001, pp. 335
for another example).
The above example is somewhat artificial, being based

on simulated data. Numerous real-world worked exam-
ples exist, including seven case studies in chapter 8 of
Buckland et al. (2001), many of which have accompanying
data available as sample datasets in Program Distance.
Three other examples in order of increasing complexity
include: Williams and Thomas (2007), Marques et al.
(2007) and Durant et al. (2011). A simplified version of
an analysis from the latter paper is given in Box 3.1. Last,
Buckland et al. (2015) provide numerous examples, with
data and R code on an associated website.
Much of the modern research in classic distance sam-

pling seeks to eliminate, relax, or better cope with various
assumptions about the detection process. Extended mod-
els include multiple-observer or mark-recapture distance

sampling to allow for g(0 θ) < 1 (Laake and Borchers
2004; Borchers et al. 2006; Buckland et al. 2010), animals
moving in response to observers (Fewster et al. 2008),
transect placement that is not fully random (Marques
et al. 2010), and measurement error in detection distance
(Marques 2004; Borchers et al. 2010). Avoidance of the
observer is more common in point transects than line
transects, and the issue often requires left-truncation of
the distance data, thereby creating a point “donut.” Gen-
eral recommendations for point transect surveys were
reviewed by Sólymos et al. (2013) and Matsuoka
et al. (2014).

3.2.1.2 Model-Based Distance Sampling
Classic distance sampling methods have strict require-
ments about the design of sampling surveys, thereby avoid-
ing assumptions about spatial distribution of individuals
within the study area. It is not required that individuals
be randomly distributed within the study area (e.g. Pois-
son), instead that transects are randomly placed within
the study area. This requirement ensures the individual-
to-transect distances are random, from a known distribu-
tion (e.g. uniform in the case of a line transect), and hence
allows the distance to observed individuals to be used to
draw inferences about detectability. Randomly placed lines
or points also ensure that the estimated density from the
sampled area also applies to the entire study area.
In contrast, model-based distance sampling methods

do not require these key assumptions about the sampling
design. Model-based methods instead rely on assump-
tions about the spatial distribution of individuals within
the sampled region. By including a model for local abun-
dance, covariates for habitat type, region, or other factors
may be used to explain variability in both abundance and
detection in sampled areas, as well as make predictions
about abundance in unsampled areas. Model-based
methods are therefore better suited for opportunistic
sampling. Another potential advantage is that the model
may explain spatial variation in density through use of
appropriate covariates, in contrast to design-based meth-
ods where spatial variability within strata contributes to
estimator variance. Hence model-based methods may
produce more precise estimates. One strong disadvan-
tage, however, is that model-based methods rely on a
model for animal distribution within the study area – if
this model is incorrect (and remember that all models
are wrong) then estimates may be biased, and variances
may be wrong. We do not usually control the animal dis-
tribution, so we cannot know completely whether our
models are right, or nearly so. By contrast, in classic,
design-based methods, the assumptions are about the
design, and we are in control of that.
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Box 3.1 Estimating Density from a Line Transect Survey Using Classical Methods

Durant et al. (2011) estimated the seasonal and habitat-
specific density, as well as temporal trends, of seven carni-
vore species using line transects surveys performed within
a 3000 km2 section of Serengeti National Park, Tanzania.
Here,we focus onone species, the spottedhyaena (Crocuta
crocuta). Our analysis is a simplified version of the one by
Durant et al. using the four surveys performed in the wet
and dry season in 2002–3 (hereafter 2002) and the wet
and dry season of 2005 (see paper for complications that
are inherent in use of earlier survey data). Approximately
30 transects, placed according to a systematic random
design with 2 km transect spacing and totaling approxi-
mately 1200 km, were surveyed on each occasion, where
the exact number varied by occasion depending on ran-
dom start point and orientation. Sightings were of clusters
(or groups) of individuals, and for each sighting the species
and cluster size was recorded, as well as the estimated dis-
tance from the center of the cluster to transect, in one of
nine intervals: 0–10, 10–50, 50–100, 100–150, 150–200,
200–300, 300–400, 400–500, and >500 m.

For spotted hyaenas, 494 groups were sighted. We fol-
low Durant et al., in truncating the data at 200 m, leaving
389 groups sighted within this distance. We fit the detec-
tion function models given in Table B3.1.1, allowing up to
two series expansion terms. Themodel would be sufficient
if our interest were only in an overall density estimate,
however, a goal of the analysis was to estimate density
for two habitat strata within the surveys (long grass plains,
LGP, and short grass plains, SGP), and it is possible that
hyaena detectability varied by habitat or survey. Hence,
we also fit multiple covariate models with habitat, year,
and season as factor covariates (see Marques et al. 2007
for an accessible introduction to multiple covariate dis-
tance sampling). Last, we tried models that included clus-
ter size as a continuous covariate, in case larger clusters
were easier to spot. The AIC-best models (ΔAIC < 2) were
as follows (HR means hazard rate and HN half-normal;
cos(2) means cosine series expansion of order 2):

We observe that the AIC-best model is the HR with no
series expansion terms, but that all of the other models
that are close in terms of AIC, and have similar estimated

average detection probabilities p . These results are typ-
ical for “good” distance sampling data with a wide shoul-
der of high detectability at short distances. Goodness-of-
fit for the selected model can be assessed by comparing
the fitted detection function to a scaled histogram of the
distances (see plot) as well as via a χ2-test (other tests are
available for data not collected in intervals). The fit of the
hazard-rate model is good (χ2 = 0.34 with 2 d.f.; p = 0.84,
Figure B3.1.1). Durant et al. looked for evidence of varia-
tion in cluster size between habitats or surveys and found
no differences, so we follow the authors in estimating
population mean cluster size as the mean of the observed
cluster sizes (1.91; CV 0.05).
Density estimates were calculated by habitat and survey

using Eq. 3.10, with an additionalmultiplier formean cluster
size. Variances and confidence intervals were derived using
the standard methods described by Buckland et al. (2001,
Section 3.6), except that when calculating variance in
counts, c, a variance estimator was used that accounts
for the systematic random design (estimator O2 of Fewster
et al. 2009). The results are shown below (Figure B3.1.2). The
results clearly demonstrate that density in the wet season is
higher than the dry in the SGP habitat but not in the LGP.
The findings are consistent with a “commuter” system,
where Serengeti hyaenas have been observed to commute
long distances from their clan territory to areas, like SGP in
thewet season, where the density ofmigratory prey is high.
Analyses reported here were performed in the Dis-

tance software but almost identical results were
obtained using the Distance package in R, which was
also used to produce the plots.

Table B3.1.1 Model selection for detection functions for counts
of spotted hyaenas.

No. of
parameters AIC ΔAIC p CV p

HR (no series
expansion)

2 1142.83 0.0 0.48 0.10

HN cos(2) 2 1142.93 0.10 0.46 0.07

HN cos(2) + cluster
size

3 1143.98 1.15 0.46 0.04

HN cos(2) + season 3 1144.40 1.57 0.46 0.04

HN cos(2) + habitat 3 1144.47 1.64 0.46 0.04

HN cos(2) + year 3 1144.53 1.70 0.46 0.04

HR + cluster size 3 1144.72 1.89 0.50 0.04
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Figure B3.1.1 Fit of the hazard-rate model to detections at
50 m intervals to groups of spotted hyenas.
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Relative to classic methods, development of model-
based distance sampling methods is still at an early stage.
As such, there remains room for much theoretical and
practical development. Here, we will briefly describe
some of the notable developments in model-based
distance sampling.
Hedley and Buckland (2004) and Royle et al. (2004)

were among the earlier developments in model-based
distance sampling methods, and both seek to account
for imperfect detection while incorporating environ-
mental covariates that explain local variation in abun-
dance within the study region of interest. Hedley and
Buckland (2004) approached the problem from a classic
distance sampling perspective and proposed a model
conditioned on detection: the conditional distribution
of x given that the observation appeared in the sample
c. However, they found it simpler in practice to attack
the problem in a two-stage approach: first to fit a
detection function model to the distance data, and then
conditional on this model, to fit a spatial density
surface model to the corrected count data. Two-stage
approaches are analytically more tractable than direct
modeling of both density and observation processes.
Because the transects are usually narrow compared to
the size of the study area, there is also little to be learned
about the large-scale spatial distribution of animals from
the distances of observed animals from the transects –
this provides further justification for a two-stage
approach. One disadvantage of such an approach,
however, is that it is not straightforward to propagate
uncertainty from the first stage based on detection
function modeling through to the second stage of
density surface modeling. A review of model-based
methods, with an emphasis on practical two-stage
approaches, is given by Miller et al. (2013a), who also
provide an example application with accompanying
computer code. For the remainder of this section, we
focus mainly on one-stage approaches.
Royle et al. (2004) approached the problem from a

hierarchical modeling perspective and used an uncon-
ditional model that is the joint distribution of x and c.
The approach groups the distance data for each of R
transects into J distance classes, such that the distance
data for sample unit (or site) i are xi = (xi1, xi2,… , xiJ)
for i = 1,… , R, with distance group end points (e0, e1),
(e1, e2), …, (eJ-1, eJ). Typically, e0 = 0 and eJ = w. For
these grouped distance data, the probability that an
individual is present at site i and detected in distance
class j is calculated by the following function for line
transects:

πij =

ej

ej−1

g x θ dx

ej−ej−1
, 3 13

and by a similar function for point transects:

πij =

2π
ej

ej−1

xg x θ dx

π e2J
3 14

Similar to classic distance sampling, the detection
function g(x θ) can incorporate site-level covariates to
explain variability in πij.
It is then assumed that the xi follow a multinomial

distribution with an unknown index Ni, the local
population size at site i. A simple model for Ni is:

Ni Poisson λai , 3 15

where we assume the xi are derived from an underlying
(homogeneous) Poisson point process for the distribution
of individuals in the study area, and the intensity param-
eter λ is the expected local density of individuals in each
site (of area ai). For line transects of length li, ai = 2eJli, and
for point transects, ai = πe2J . After integrating the multi-
nomial likelihood for xi over the random effects distribu-
tion for Ni, the resulting likelihood for xi is

L λ,θ xi =
J

j= 1

Poisson xij; λaij πij , 3 16

where aij = 2li(ej − ej − 1) for line transects, and aij = πe2J for
point transects. Density (and its variance) can then be
estimated for each of the R sites using standard likeli-
hood-based analysis methods.
From an ecological perspective, this formulation is

quite interesting because it allows local abundances to
be related to site-specific covariates such as habitat.
The underlying distribution of animals in the study area
need not be the same across sites, and Eqs. 3.15 and 3.16
can be relatively easily extended to an inhomogeneous
point process that is a function of the covariates believed
to influence local abundance (Box 3.2). Here, “inhomoge-
neous” refers to distributions that are not spatially uni-
form. For example, the degree of habitat fragmentation
within a site may be related to lower local densities.
The relationship can be investigated using the log link
function:

log λi = α+ fiβ, 3 17

where fi is some measure of fragmentation for site i, β is a
slope parameter describing the relationship between fi
and local abundance, and α is an intercept parameter.
In this manner, if measurable covariates can adequately
explain variability in local densities, and these covariates
can be measured in areas not exposed to distance sam-
pling (e.g. from GIS records), it is possible to make pre-
dictions about local densities in unsampled areas. Conn
et al. (2014) provide an example where aerial transect
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surveys were used in conjunction with spatial covariates
for sea surface ice, temperature, and other factors to esti-
mate local densities for three species of seals that are asso-
ciated with sea ice in the Bering Sea – a study area the size
of Texas!
The Ni were integrated out of the likelihood (Eq. 3.16),

and estimates for Ni cannot be obtained directly from
the likelihood. However, Ni can be estimated as a derived
parameter conditional on πi and λi using an empirical
Bayes procedure1:

Pr Ni = k xi,λi,πi =
Pr xi Ni = k,πi Pr Ni = k λi
∞
j=0Pr xi Ni = j,πi Pr Ni = j λi ,

3 21

which, for the Poisson local population model, provides
the basis for the so-called best unbiased predictor of
Ni (Royle et al. 2004):

E Ni xi =
J

j= 1

xij + λiai 1−
J

j= 1

πij 3 22

For simplicity, we have focused on an inhomogeneous
Poisson point process model for explaining variability in
local abundance, but there are many alternative models
available for Ni that allow even greater flexibility in
specifying various forms of spatial variation (Royle and
Dorazio 2006; Royle et al. 2007; chapter 24 of Kéry and
Royle 2015). However, it should be noted that although
model-based approaches do not require strict random
placement of line or point transects with respect to the
distribution of individuals within the study area, reliable
inferences to unsampled areas still require that the distri-
bution of individuals in the sampled areas is representa-
tive of that in the unsampled areas. Careful study design
is therefore still a requisite for reliable predictions
about local abundance in unsampled areas when using
model-based distance sampling methods.
Example datasets and R code utilizing these methods

can be found in Royle et al. (2004) and extensions
(Chandler et al. 2011; Chelgren et al. 2011; Sillett et al.
2012). Sillett et al. (2012) estimated local and total popu-
lation densities for Island Scrub-Jays (Aphelocoma insu-
laris) as a function of habitat-level covariates, finding
higher jay densities in low-elevation chaparral habitat.
Johnson et al. (2010) generalized the approach of Hedley
and Buckland (2004) by implementing a full likelihood-
based approach for the simultaneous estimation of detec-
tion probability and an (in)homogeneous spatial point

Box 3.2 Covariates and Link Functions

Ecological hypotheses about factors that influence detec-
tion probability, abundance, or species distribution can
be investigated through the use of link functions
(Table B3.2.1) that relate the parameter of interest (θ) to
measurable covariates (X). When θ is a probability (i. e.
0 ≤ θ ≤ 1), a common link function is the logit link:

θ =
exp Xβ

1+ exp Xβ
3 18

or, equivalently,

logit θ = log
θ

1−θ
=Xβ, 3 19

where

Xβ=
r

j= 1

xjβj 3 20

The parameter vector β therefore describes the
relationship(s) between θ and r measurable covariates xj
(j = 1,… , r). Note that it is common for β1 to be designated

as an intercept term by setting x1 = 1. When θ is non-
negative (i. e. θ ≥ 0), the log link function is often used:

θ = exp Xβ

or, equivalently,

log θ =Xβ

1 This is based on the famous conditional probability theorem
attributed to the Rev. Thomas Bayes

(1701–1761), Pr A B =
Pr B A Pr A

Pr B

Table B3.2.1 Common link functions and covariates relevant to
models of abundance or species occurrence under imperfect
detection.

Parameter
Link
function Example covariates (x)

Detection probability (p) logit observer, weather
conditions, habitat,
effort

Mean density (λ) log habitat, elevation, region

Occupancy probability
(ψ)

logit habitat, elevation, region
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process, and Conn et al. (2012, 2013) developed other
promising model-based extensions for multiple-observer
distance sampling surveys that can accommodate species
misidentification.

3.2.2 Replicated Counts of Unmarked
Individuals

In distance sampling, the detection distances supply the
information needed to estimate detection probability
from (typically unreplicated) counts of unmarked indivi-
duals. The collection of distance sampling data is not
always feasible or appropriate, and logistics often depend
on the specific species of interest and sampling conditions
in the field. For example, even with modern laser range-
finders, estimating distances to all individuals seen or
heard during surveys can be difficult, and both accuracy
and precision may depend on whether the cue for initial
detection is visual or auditory. Auditory cues can be
especially challenging for distance sampling because both
distance and location must usually be estimated.
However, when count surveys are temporally replicated,
repeated surveys allow detection probability and there-
fore abundance to be estimated from unmarked counts
without any need for distance data. Examples of study
designs include spatially replicated counts (Royle
2004a) and removal models (Farnsworth et al. 2002; Royle
2004b). Many of these methods share similarities with
model-based distance sampling approaches.

3.2.2.1 Spatially Replicated Counts
In the case of spatially replicated counts, we consider
counts of unmarked individuals detected during T visits
to R sample units (or sites). Let yit denote the number
of distinct individuals counted at site i (i = 1,… , R) on
sampling occasion t (t = 1,… , Ti). Note that the number
of sampling occasions, Ti, is allowed to vary among sites.
The model has three assumptions: (i) the local population
in each site is closed to birth, death, immigration, and
emigration during the sampling period; (ii) counts at each
site are independent; and (iii) individuals are not double-
counted within a single sampling occasion.
Utilizing information about detection probability and

local abundance afforded by repeated sampling, it is
natural to assume that the counts for each site,
yi = yi1,yi2,…,yiTi for yit {0, 1, 2,… , Ni}, are binomial
random variables with an unknown index Ni, the local
population size at each site, and detection probability p:

L Ni,p yi =
Ti

t = 1

Ni

yit
pyit 1−p Ni−yit 3 23

Even with a constant detection probability, this likelihood
is notoriously unstable and sensitive to small perturba-
tions in the data. Instability is exacerbated by a tendency

for repeated count data to be sparse, with some sites hav-
ing few or no detections (Box 3.3). In fact, until recently,
this repeated count sampling protocol was not widely
used. Royle (2004a) proposed a hierarchical modeling
solution to the problem by specifying amodel for the local
abundance at each site (Ni). There are many options for
these so-called N-mixture models, but a natural choice
in this case is the Poisson distribution:

Ni Poisson λ , 3 24

with local abundance rate parameter λ, defined as the
density per site or mean local abundance. Maximum like-
lihood analysis may then proceed using the integrated
likelihood:

L p,λ y1,y2,…,yR

=
R

i= 1

∞

Ni =max yi

Ti

t = 1

Binomial yit ;Ni,p Poisson Ni;λ

3 25

Note that a similar integrated likelihood approach was
used to derive Eq. 3.16, but in this case the integrated
likelihood is not of a standard form (e.g. Poisson). Given
a maximum likelihood estimate (MLE) for λ, an estimate
of total abundance across the R sites in the sampled area is

N =Rλ, 3 26

with variance approximated by the delta method:

var N =R2var λ 3 27

Similar to distance sampling (Eq. 3.21), the Ni are inte-
grated out of the likelihood (Eq. 3.25), and estimates for
Ni are not obtained from the likelihood. However, these
again can be estimated (conditional on p and λ) using
an empirical Bayes procedure:

Pr Ni = k yi,λ,p =
Pr yi Ni = k,p Pr Ni = k λ
∞
j= 0Pr yi Ni = j,p Pr Ni = j λ

3 28

Conveniently, this expression also allows estimation of
the probability of species occurrence for sites with no
detections:

ψ i = 1−Pr Ni = 0 yi,λ,p 3 29

(Royle et al. 2005). We will return to this relationship
between local abundance and site occupancy in
Section 3.3.
One of the advantages of the modeling approach above

is an ability to incorporate covariate information about
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Box 3.3 Estimating Abundance from Spatially Replicated Counts

Kéry et al. (2005) estimated abundances for eight species of
bird in Switzerland using the spatially replicated count
model of Royle (2004a). Here, we demonstrate this model-
ing approach using data from one of these species, Mal-
lards (Anas platyrhynchos). Survey data were collected in
2002 during T = 2 or 3 visits to 235 sites throughout Switz-
erland. Mallards were detected at 40 sites, but counts
tended to be quite low, with 87% of visits detecting noMal-
lards and 8% of visits detecting a single individual. In addi-
tion to counts, several temporal and site-level covariates
that were believed to influence detection probability or
local abundance were recorded. The covariates included
date, elevation, and percent forest cover. Kéry et al.
(2005) suspected detection probability might vary with
date and elevation because activity associated with breed-
ing was expected to decline during the study, but less so at
higher elevations due to later breeding at higher altitudes.
Based on the natural history of Mallards, they also sus-
pected Mallards would have higher densities at lower ele-
vations and in areaswith less percent forest cover. Based on
AIC, they found the best-supported models included

logit pit = α0 + date itα1 + date 2
itα2 + date it elev iα3

+ date 2
it elev iα4

for detection probability at site i during visit t, and

log λi = β0 + elev iβ1 + forest iβ2

for mean local abundance at site i.
Estimates of the coefficients were based on standar-

dized values for the set of covariates (Table B3.3.1). The
estimates indicate that surveys occurring later in the
season and at higher elevations tended to have lower
detection probabilities. Perhaps more interesting from
an ecological perspective, the estimates for β1 and β2
supported the hypothesis that sites at higher elevations

(Figure B3.3.1) or with more forest cover (Figure B3.3.2)
tended to have lower densities of Mallards. Across all sites,
Kéry et al. (2005) estimated the total population size as

N =104 (95% CI: 67–152), with a mean estimated density
of 0.43 (95% CI: 0.28–0.64) Mallards per 1 km2.

Table B3.3.1 Estimates of slope coefficients for the effects of
standardized covariates on abundance of Mallards.

Parameter Estimate SE

α0 0.01 0.27

α1 −0.37 0.25

α2 −0.33 0.17

α3 −0.14 0.25

α4 −0.38 0.17

β0 −1.47 0.30

β1 −0.92 0.30

β2 −0.81 0.22
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Figure B3.3.1 Estimates of density for Mallards (per km2) as a
function of scaled elevation. 95% confidence intervals are shaded.
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Figure B3.3.2 Estimates of density for Mallards (per km2) as a
function of scaled forest cover. 95% confidence intervals are
shaded.
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detection and local abundance. Either objective can be
easily achieved using standard link functions:

log λi = α+
r

j= 1

xijβj, 3 30

or

logit pit = α+
r

j=1

xijβj +
q

k = 1

ztkδk , 3 31

where xij (j = 1,… , r) are rmeasurable covariates for site i,
and ztk (k = 1,… , q) are qmeasurable covariates for sam-
pling occasion t (Box 3.3). Note that spatial variation in
local abundance that is not explained by the measurable
covariates can be incorporated using additional distribu-
tional assumptions. For example, Royle and Dorazio
(2006) accounted for substantial spatial heterogeneity
when estimating local abundance for a species of stream
fish, the Okaloosa darter (Etheostoma okaloosae), by
assuming log(λi) is a normally distributed random varia-
ble with unknown mean (μi) and variance (σ2). When
there is spatial variation in local abundance, an estimate
of total abundance for the sampled area is N = R

i= 1λi.
Assuming the r covariates can be measured over a larger
region, including unsampled sites with no count data, a
total population estimate can be obtained by summing
all λi = α+

r
j= 1xijβj over the entire region of interest.

Spatially replicated countmethods have been applied to
many vertebrate species, including amphibians (Dodd
and Dorazio 2004; Mazerolle et al. 2007), birds (Royle
2004a; Kéry and Royle 2010; Riddle et al. 2010), andmam-
mals (Zellweger-Fischer et al. 2011). These count meth-
ods have also been extended to open populations,
thereby relaxing the closure assumption (Kéry et al.
2009; Chandler et al. 2011; Dail and Madsen 2011; Zipkin
et al. 2014). When double counting occurs within sam-
pling occasions, for example because of animal move-
ments, Chandler and Royle (2013) use a design-induced
spatial dependence among counts to estimate density,
although, in practice, this approach is best suited to
studies with at least some marked individuals in the
population.
Although spatially replicated count methods have

received a great deal of attention in recent years, a major
problem with these methods is that unless detection
probability is constant across sites, then a correct model
for detectability must be specified.When the factors driv-
ing detectability can be identified and reliably measured,
then some limited modeling of detectability is possible
(Eq. 3.31). However, if there is any correlation between
detection-related covariates and density-related covari-
ates, then reliable inference is not possible because the
two sets of parameters are confounded. In our opinion,

these methods should therefore be relied upon more as
a last resort because other survey methods based on dis-
tance sampling or capture-recapture allow detectability
to be estimated independently of density. There is no free
lunch in population ecology, and repeated count methods
require strong and largely untestable assumptions about
detectability (Barker et al. 2018, Link et al. 2018).

3.2.2.2 Removal Sampling
A popular technique for estimating the size of exploited
populations such as fisheries, removal sampling methods
also involve counts of unmarked individuals that are
detected during T visits to R sample units (or sites). As
the name implies, removal methods were originally
developed to estimate abundance when individuals are
trapped and removed from the population (Hilborn and
Walters 1992). However, if captured individuals can be
temporally removed and then released after sampling is
completed (Jung et al. 2005), applications of removal
samplingmethods need not be limited to harvested popu-
lations. In fact, if one can keep track of individuals after
they are initially detected, then no physical removal is
required (Farnsworth et al. 2002).
There are numerous models for estimating abundance

using counts arising from removal sampling protocols
(Zippin 1958; Otis et al. 1978; Farnsworth et al. 2002;
Williams et al. 2002, pp. 320–325; Royle 2004b), but each
uses the decline in numbers of individuals detected for
the first time across the T sampling occasion to inform
the estimation of detection probability. All of these
removal approaches make two assumptions: (i) the
population in each site is closed to birth, mortality, and
movement during the sampling period of interest; and
(ii) there is no double-counting of individuals across
the T sampling occasions.
The general removal design under consideration

involves counts for the number of individuals first
detected during each sampling occasion, yi = (yi1, yi2,
… , yiT), for site i = 1,… , R. For illustration, if we assume
T = 2, yi1 > yi2 and a constant detection probability, a
simple removal estimator is:

Ni =
y2i1

yi1−yi2
3 32

(Zippin 1958). This model has been generalized for
T > 2 with time variation in detection probability (Otis
et al. 1978; White et al. 1982), as well as for T > 3 with
individual heterogeneity in detection probability
(Pledger 2000). The familiar closed population capture-
recapture models (e.g. models “Mb,” “Mtb,” “Mbh,” and
“Mtbh”) are discussed elsewhere in Chapter 5. As with
capture-recapture models for marked animals, removal
models for unmarked animals that do not account for
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individual heterogeneity or other sources of variability
in detection probability can yield biased estimates of
abundance.
Motivated by avian point counts, Farnsworth et al.

(2002) developed a practical removal sampling protocol
for unmarked populations that allows modeling of
individual heterogeneity in detection probability when
T = 3. The authors proposed partitioning a single visit
(of duration K minutes) to R points within the study area
into T = 3 intervals of length kt, such that

3
t = 1kt =K . For

each point, the yi = (yi1, yi2, yi3) then consists of the
number of individuals first detected in each of the inter-
vals. Individual heterogeneity in detection probability is
characterized by partitioning N into two groups; group
1 consists of individuals that are easily detected (with
probability of detection during the first interval equal
to 1), and group 2 includes those that are more difficult
to detect (with probability of detection within one
minute p). All individuals in group 1 (and some indivi-
duals from group 2) are therefore detected in the first
interval (of length k1). Defining c as the expected propor-
tion of the population in group 2, q = 1 − p, y t =

R
i=1yit ,

and y = 3
t =1y t , the model likelihood is multinomial:

L c,p y1,y2,…yR

=
y

y 1 y 2 y 3

1−cqk1

1−cqK

y 1 cqk1 1−qk2

1−cqK

y 2 cqk1 + k2 1−qk3

1−cqK

y 3

3 33

Abundance for the sampled area can then be estimated as:

N =
y
p

3 34

When the size of the sampled area is known (e.g.
from fixed-radius point counts), then density can be
estimated as:

D=
N
A

3 35

with variance calculated as:

var D =
y2var p

A2p4
+
y 1−p

A2p2
, 3 36

whereA is the total area sampled (e.g. the sum of the areas
within each fixed-radius point).
Farnsworth et al. (2002) used this approach to demon-

strate strong differences in detectability for 15 bird spe-
cies in Great Smoky Mountains National Park, USA,
that could be attributed to variation in call intensity, time
of day, and observer ability. From a practical perspective,
the design can be useful because physical removal is not
required. However, one must be able to distinguish newly
detected individuals from those previously detected,
which can be difficult for mobile or nonterritorial species.

We also note that for T > 3, the removal models allowing
individual heterogeneity proposed by Norris and Pollock
(1996) and Pledger (2000) may be preferable because
these models do not assume that any group has detection
probability equal to 1.
Using a similar integrated likelihood approach to that

already described for model-based distance sampling
(Eq. 3.16) and spatially replicated counts (Eq. 3.25), Royle
(2004b) proposed a model of local abundance for removal
data that assumes the yi (i = 1,… , R) from each site are
multinomial random variables with local population
indexNi and cell probabilities πi = πi1,πi2,…,πiT i , where

πit = pit 1−pit
t−1, 3 37

and pit is the probability of detection for site i on sampling
occasion t. Therefore, πit is the probability that an individ-
ual in site i is detected for the first time and removed
during the tth sampling occasion (t = 1,… , Ti). The
number of sampling occasions, Ti, is allowed to vary
among sites. As before, a natural model for local
abundance is

Ni Poisson λi , 3 38

which yields a now familiar integrated likelihood:

L λi,pi yi =
Ti

t = 1

Poisson yit ; λiπit 3 39

Both λi and pit may be modeled using site-level (i) and
temporal (t) covariates as in Eqs. 3.30 and 3.31. As
before, the local abundances (conditional on πi and λi)
can be estimated using an empirical Bayes procedure
(Eq. 3.21) which, for the Poisson local population model,
yields the best unbiased predictor of Ni:

E Ni yi =
Ti

t = 1

yit + λi 1−
Ti

t = 1

πit 3 40

The removal sampling methodology of Royle (2004b) has
been applied to a diverse range of wildlife species, includ-
ing fish (Royle and Dorazio 2006), amphibians (Royle and
Dorazio 2008, pp. 291–294), and birds (Royle 2004b).

3.3 Estimating Species Occurrence
under Imperfect Detection

Despite its relative infancy, the past two decades have seen
an explosion in the development and application of meth-
ods for estimating species occurrence under imperfect
detection. Prior to these developments, presence/absence
data were typically used to infer patterns and dynamics in
occupancy through incidence functions (Hanski 1992) or
other methods that do not account for detection
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probability (He and Gaston 2003). In some situations, it
maybeperfectly reasonable to assume species are detected
without error, which is analogous to a complete popula-
tion census as described previously. For example, if rela-
tively small sample units or sites within a study area are
visited to determine the presence or absence of a
particular species of vascular plant, then it may be unlikely
that the species would go undetected in any site that is
occupied (but then again, see Kéry and Gregg 2004; Chen
et al. 2012). Unfortunately, this scenario does not apply to
most animals, and species that are relatively small, or have
cryptic or elusive behaviour, are especially problematic.
Even potential proxies for species presence, such as tracks,
scats, or nests, can be difficult to detect. Much recent
research has therefore focused on the estimation of pat-
terns and dynamics in site occupancy when species detec-
tion is not perfect (i.e. p < 1).
Recent reviews of the history and methods of

occupancy models, as well as practical considerations
for the design of these studies, are provided byMacKenzie
et al. (2006), Royle and Dorazio (2008), Bailey et al. (2014),
and Guillera-Arroita (2016). Here, we focus on the basics
of occupancy estimation for a single species when p < 1, as
well as some exciting recent developments. All of these
methods use repeated sampling protocols to inform the
detection process, thereby allowing inferences about
species occurrence from detection/nondetection data.

3.3.1 Single-Season Occupancy Models

We begin with the single-season occupancy model origi-
nally presented by MacKenzie et al. (2002), which pro-
vides a foundation for extensions that follow. The
sampling scenario under consideration involves surveys
for a species at R distinct sample units (or sites), and each
site is surveyed on T sampling occasions. We assume the
occupancy status of each site is closed, such that there is
no site colonization or extinction during the sampling
period. The species is either detected or not detected
during each of the T surveys at each of the R sites. We
assume the species is never falsely detected when the
species is absent from a site, i.e., there are no false positive
species detections. When the species is present at a site,
the species may be detected (with probability p) or may
not be detected (with probability 1 − p). We also assume
that the detection of the species at one site is
independent of detecting the species at any other site.
Similar to capture-recapture methods for marked ani-

mals (Chapters 5 and 7), we can summarize the detection
data for each site using an encounter history. For illustra-
tion, consider an occupancy study of a calling anuran spe-
cies with T = 3 sampling occasions at each of R = 30
ponds. If the species is heard during the tth visit at the
ith site, we shall denote this with a “1”. If the species is

not detected, we denote this with a “0”. The encounter
history for each of the ponds is then a vector of 1s and
0s (Table 3.2). For example, the encounter history
“101” indicates the species was detected at a site on the
first and third sampling occasions, but was not detected
on the second. In a closed population, a site with an
encounter history containing at least one detection is
occupied by the species. If ψ denotes the probability of
species occurrence across the R sites, and pt is the prob-
ability of detecting the species at an occupied site on
occasion t, we observe the encounter history hi = (hi1,
hi2, hi3) = 101 at site i with probability

Pr hi = 101 =ψp1 1−p2 p3 3 41

Things are a bit more tricky when a site has the detection
history hi = 000. In this case, we do not know if the species
was truly absent from the site (with probability 1 − ψ ), or
if the species was indeed present (with probability ψ) but
observers failed to detect the species on all three sampling
occasions [with probability (1 − pt)

3]:

Pr hi = 000 = ψ
T

t =1

1−pt + 1−ψ 3 42

The formulation allows the specification of a general
model likelihood for ψ and p = (p1, p2,… , pT) given
the encounter histories summarizing the Ti (i = 1,… ,
R) sampling occasions for all R sites:

L ψ ,p h1,h2,…,hR

=
R

i= 1

ψ
Ti

t = 1

phitt 1−pt
1−hit + 1−ψ I

Ti

t = 1

hit = 0 ,

3 43

where I Ti
t = 1hit = 0 is an indicator function taking the

value 1 when Ti
t = 1hit = 0 (i.e. the species was never

Table 3.2 The 2T = 8 possible encounter histories (hi) and their
respective probabilities, Pr(hi ψ , pi), for a single-season occupancy
study with T = 3 sampling occasions. Here we allow the conditional
(on presence) probability of detection (pit) to vary by both site (i)
and occasion (t).

hi Pr(hi ψ , pi)

000 ψ T
t = 1 1−pit + 1−ψ

100 ψpi1(1 − pi2)(1 − pi3)

010 ψ(1 − pi1)pi2(1 − pi3)

110 ψpi1pi2(1 − pi3)

001 ψ(1 − pi1)(1 − pi2)pi3

101 ψpi1(1 − pi2)pi3

011 ψ(1 − pi1)pi2pi3

111 ψpi1pi2pi3
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detected at site i), and 0 otherwise. Likelihood-based
methods may therefore be used to simultaneously esti-
mate occupancy and detection probability.
One of the advantages of this occupancy modeling

approach is its ability to incorporate covariates that
may help explain site occupancy or detection probability
(Box 3.4). Using the logit link function, covariate model-
ing of ψ enables a broad range of ecological hypotheses to
be investigated:

logit ψ i = α+
r

j=1

xijβj, 3 44

where xi = (xi1, xi2,… , xir) is a collection of r measurable
covariates that are believed to influence the probability of
occupancy at site i (ψ i), α is an intercept parameter, and
the βj are slope parameters describing the relationship
between xij and site occupancy. As in Eq. 3.31, covariates
may also be used for modeling detection probability:

logit pit = α+
r

j= 1

xijβj +
q

k =1

zikδk 3 45

Similar to repeated count methods (Section 3.2.2.1), if
there is correlation between species occupancy and
detectability, then the two become confounded. There
are therefore limitations as to what relationships can be
properly accounted for, and careful consideration of these
limitations is important in the design and analysis of
occupancy studies (see MacKenzie et al., 2006).

3.3.2 Multiple-Season Occupancy Models

Single-season occupancy models are useful for examining
occupancy during the snapshot of time spanning the
T sampling occasions. However, we are often interested
in patterns and dynamics of species occurrence over time.
Suppose that instead of a single sampling period of
T occasions where we assume that sites are closed to
changes in occupancy status, we conduct M sampling
periods of Tm(m = 1,… , M) occasions. We will still
assume that the sites are closed to changes in occupancy
within each of the M sampling periods, but not between
these periods. A multiseason occupancy model allows
us to investigate changes in site occupancy through time,
as previously unoccupied sites become occupied and
previously occupied sites become unoccupied.
To investigate species occurrence dynamics under

imperfect detection, some additional parameters are
required. In addition to ψm and pmt for m = 1,… , M
and t = 1,… , Tm, multiseason occupancy models also
estimate the probabilities of local colonization and local
extinction. The probability of local colonization (γm) is
the probability that a site unoccupied during sampling
period m is occupied during period m + 1. The

probability of local extinction (ϵm) is the probability that
a site occupied during sampling period m is unoccupied
during period m + 1. With these additional occupancy
dynamics parameters, probabilistic arguments may still
be used to model encounter histories and estimate ψ ,
p, γ, and ϵ for multiple seasons (MacKenzie et al. 2003).
Consider the case for M = 2, T1 = T2 = 3, and the

complete encounter history hi = (hi1, hi2) = 010 000.
The probability of observing the detection history
hi1 = (hi11, hi12, hi13) = 010 during the first sampling
period is:

Pr hi1 = 010 =ψ1 1−p11 p12 1−p13 3 46

In this case, site i was clearly occupied during the first
period of sampling. For the second period of sampling,
the site could have remained occupied (with probability
1 − ϵ1) or become unoccupied (with probability ϵ1). The
probability of observing hi2 = (hi21, hi22, hi23) = 000 for
the second sampling period is therefore:

Pr hi2 = 000 = 1−ϵ1
3

t = 1

1−p2t + ϵ1 3 47

Hence, the probability of observing the complete detec-
tion history, Pr(hi = 010 000), is simply the product of
Eqs. 3.46 and 3.47.
A more complicated case arises when hi = 000 000.

Here, the occupancy status of site i is never known with
certainty, and all combinations of occupancy, local
extinction, and local colonization are possible: (i) the
site was occupied during both sampling periods, but
not detected, with probability ψ1

3
t = 1 1−p1t 1−ϵ1

3
t = 1 1−p2t ; (ii) the site was occupied, but not detected,

during the first sampling period and unoccupied during
the second period, with probability ψ1

3
t = 1 1−p1t ϵ1;

(iii) the site was unoccupied during the first sampling
period and occupied, but not detected, during the second
sampling period, with probability 1−ψ1 γ1

3
t = 1 1−p2t ;

or (iv) the site was unoccupied during both sampling
periods, with probability (1 − ψ1)(1 − γ1). Hence, the
expression must combine all four possible scenarios:

Pr hi = 000 000 ψ1,ϵ1,γ1,p

=ψ1

3

t = 1

1−p1t 1−ϵ1
3

t = 1

1−p2t + ϵ1

+ 1−ψ1 γ1

3

t = 1

1−p2t + 1−γ1

3 48

Occupancy for the second sampling period may then be
derived as ψ2 = ψ1(1 − ϵ1) + (1 − ψ1)γ1. Clearly, the prob-
ability statements for large M can become complicated
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Box 3.4 A Single-Season Occupancy Analysis

Returning to the Mallard data of Kéry et al. (2005) that was
described in Box 3.3, we will now use these data to esti-
mate the probability of species occurrence using the
standard single-season occupancy model of MacKenzie
et al. (2002). During T = 2 or 3 visits to R = 235 sites
throughout Switzerland, Mallards were detected at
40 sites. If only a single visit had been made to each site,
then the x = 31 sites where Mallards were detected on the
first visit would yield the naive estimate of occurrence

probability ψ =
x
R
=

31
235

= 0 13. Using the single-season

occupancy model that accounts for imperfect detection,
we can model both the probability of occurrence and
detection probability as a function of covariates using
the logit link function. Here are AIC rankings for a candi-
date model set including elevation (elev), percent forest
cover (forest), or intercept-only (.) effects on ψ , as well
as date, elevation, and intercept-only effects on detection
probability (p) (Table B3.4.1).
We see there is some evidence of a seasonal effect on

detection probability, but based on the AIC weights, this
evidence is not overwhelming. Consistent with the origi-
nal analysis of Kéry et al. (2005), both elevation and forest
cover were found to affect the probability of species
occurrence. Unconditional on elevation or forest cover,
the mean estimate for ψ from model ψ (.)p(date) was
0.20 (95% CI: 0.14–0.26), which is significantly higher than
the naive estimate of 0.13. The mean estimate for p from
model ψ (elev + forest)p(.) was 0.67 (95% CI: 0.57–0.76),
indicating that on average there was a 67% chance that
a Mallard would be detected during a survey of an occu-
pied site. When plotting site occupancy as a function of
elevation or forest cover, the estimated probability of a

site being occupied declines with increasing elevation
(Figure B3.4.1) or increasing percent forest cover
(Figure B3.4.2).

Table B3.4.1 Model selection for the effects of standardized
covariations on the probability of occupancy for Mallards.

Model
No. of
parameters AIC ΔAIC

AIC
weight

ψ (elev + forest)p
(date)

5 314.4 0.0 0.59

ψ (elev + forest)p(.) 4 315.1 0.8 0.40

ψ (elev)p(date) 4 323.8 9.5 0.01

ψ (elev)p(.) 3 324.4 10.1 0.00

ψ (forest)p(date) 4 341.6 27.3 0.00

ψ (forest)p(.) 3 350.7 36.4 0.00

ψ (.)p(date) 3 355.5 41.2 0.00

ψ (.)p(.) 2 360.3 45.9 0.00
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Figure B3.4.1 Estimates of the probability of occupancy for
Mallards as a function of scaled elevation. 95% confidence
intervals are shaded.
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Figure B3.4.2 Estimates of the probability of occupancy for
Mallards as a function of scaled forest cover. 95% confidence
intervals are shaded.
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and tedious, but matrix notation makes the problem trac-
table (MacKenzie et al. 2003, 2006).
For general M, the multiple-season occupancy model

likelihood is:

L ψ1,γ,ϵ,p h1,h2,…,hR =
R

i= 1
Pr hi 3 49

Likelihood-based analysis methods may be used to
estimate parameters and derive the probability of occu-
pancy during sampling period m using the recursive
relationship

ψm =ψm−1 1−ϵm−1 + 1−ψm−1 γm−1 3 50

Similar to the single-season occupancy model, site-level
or temporal covariates for probabilities of site occupancy
(ψ im), local colonization (γim), local extinction (ϵim), and
detection (pimt) can be incorporated into the model
parameters using logit link functions (Box 3.2).

3.3.3 Other Developments in Occupancy
Estimation

The basic single- and multiseason occupancy models
described above have been extended to accommodate
more complicated hypotheses about species occurrence
and the species detection process. The methodological
explosion cannot be covered in its entirety here, but many
of these developments are covered in MacKenzie et al.
(2006), Royle and Dorazio (2008), and Bailey et al.
(2014). Here, we briefly review a few of these extensions.

3.3.3.1 Site Heterogeneity in Detection Probability
Similar to other methods described in this chapter,
heterogeneity in detection probability among sites can
bias estimators of species occurrence (McClintock et al.
2010a; Miller et al. 2015). One of the earliest extensions
of occupancy estimation methods sought to accommo-
date site heterogeneity in detection probability beyond
that explained by measurable covariates believed to influ-
ence detection. These “generic” individual heterogeneity
models are often needed for reliable inference about spe-
cies occurrence when it may not be possible to identify,
measure, or control for all important sources of variation
in detection probability through study design. Occupancy
models allowing heterogeneity in detection assume that
the probability of detection probability at each site (pi)
is a random variable from some distribution, usually
referred to as a mixture distribution (Royle 2005).

3.3.3.2 Occupancy and Abundance Relationships
In Section 3.2.2.1, we touched on a fundamental relation-
ship between local abundance and the probability of site
occupancy:

ψ i = 1−Pr Ni = 0 3 51

Occupancy probability is therefore the probability that
there is at least one individual present at a site. It is also
seems reasonable to suspect there may be a positive rela-
tionship between the probability of detecting a species
and local abundance. In other words, sites with higher
local densities may be more likely to be detected as occu-
pied simply because there are more individuals available
for detection. One may describe heterogeneity in detec-
tion probability that is induced by variability in abun-
dance among sites by placing a mixture distribution on
the unknown abundance at each site. Under certain con-
ditions, use of mixtures may allow inference about abun-
dance (or density) from detection/nondetection data.
Royle and Nichols (2003) proposed that the detection
probability for site i at sampling occasion t (pit) is deter-
mined by its local population size (Ni) and the detection
probability of an individual in the population (rit):

pit = 1− 1−rit
Ni 3 52

In other words, the probability of detection for site i is the
probability that at least one of the Ni individuals is
detected.
Similar to models of local abundance described in

Section 3.2, a model for Ni must also be specified, such
as Poisson or negative binomial. The model for Ni pro-
vides an estimate of mean density (λi) of animals for
equal-sized plots under the following four assumptions:
(i) every individual in the population has the same prob-
ability of detection; (ii) individual detections must be
independent; (iii) each local population is closed and Ni

must be constant across all surveys of a plot; and
(iv) any other sources of variability in detection can be
adequately explained by measurable covariates.
In practice, these strong and largely untestable assump-

tions are unlikely to be valid, and violation of any of these
assumptions may lead to questionable inferences about
abundance (or density). For discussions on the interpret-
ability of local abundance parameters using this
approach, see Royle and Nichols (2003), MacKenzie
et al. (2006, pp. 140–141), and Royle and Dorazio
(2008, pp.139–140). Regardless, this formulation can still
be a useful model for generic site-level heterogeneity in
detection probability (Royle 2006).

3.3.3.3 Multistate and Multiscale Occupancy Models
In previous sections, we focused on two states of species
occurrence, whether the site is occupied or not occupied,
and at a single spatial scale of the site. However, exten-
sions of the single- and multiple-season occupancy mod-
els can accommodate additional states and scales of
occupancy. Multistate occupancy models allow occupied
sites to be characterized by additional attributes (or
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categories of occupancy), such as occupied sites where
reproduction occurred (Nichols et al. 2007; MacKenzie
et al. 2009), or occupied sites containing diseased or para-
sitized individuals (Kendall 2009; McClintock et al.
2010c). For example, suppose that anurans were repeat-
edly sampled at ponds and swabbed for a pathogenic fun-
gus suspected in recent global amphibian declines. Each
visit to a pond could fall under one of three possible
states: (i) unoccupied by the host anuran species;
(ii) occupied by the host with no infected individuals;
or (iii) occupied by the host with infected individuals. If
we assume no false positive host or pathogen detections,
then there is no uncertainty about the state of a site when
an infected individual is detected. However, due to non-
detection, there remains uncertainty about the disease
state of occupied ponds if the pathogen was not detected,
and also about the occupancy state of ponds if the host
was not detected.
Royle and Link (2005) and Nichols et al. (2007) pro-

posed a multiple-state extension of the single-season
occupancy model for this type of situation. These models
may be considered a special case of species co-occurrence
models (not covered here; see MacKenzie et al. 2006,
pp. 225–247; Richmond et al. 2010). As with standard
occupancy estimators, these approaches allow the estima-
tion of occupancy and detection probability, but they also
provide a means to estimate the probability that an
occupied site has particular attributes such as infected
or not infected, while still accounting for imperfect detec-
tion of such attributes such as infected but not detected.
MacKenzie et al. (2009) further extended these methods
tomultiple-seasonmodels, thereby allowing investigation
of species occurrence dynamics with multiple states.
Many interesting ecological hypotheses about the pat-
terns and dynamics of species occurrence may therefore
be addressed using multistate occupancy modeling. For
example, MacKenzie et al. (2009) showed that California
Spotted Owls (Strix occidentalis occidentalis) did not
tend to colonize a new territory and successfully
reproduce within the same season.
Multistate models can also be used to investigate rela-

tionships among local abundance, occupancy, and detec-
tion probability. For example, it can be difficult to count
individuals during calling anuran surveys, but calling inten-
sity is often used as an index of breeding population size. In
their analysis of calling survey data for green frogs (Rana
clamitans), Royle and Link (2005) used a multistate occu-
pancy model with four types of observations that were
imperfectly detected: nondetection (hit = 0), nonoverlap-
ping calls (hit = 1), discrete overlapping calls (hit = 2),
and a full chorus of continuous overlapping calls (hit = 3).
Each site was assumed to have amaximumpotential calling
index that could be observed given the underlying (latent)
breeding population size. They authors found that ca. 47%

of sites were unoccupied, 33% were capable of generating
nonoverlapping calls (corresponding to the lowest abun-
dance level), 15% were capable of generating discrete over-
lapping calls (intermediate abundance level), and only 4% of
sites had abundance levels capable of generating a full cho-
rus of continuous overlapping calls. In an investigation of
an assemblage of threatened stream fishes, Falke et al.
(2010) used a similar approach that incorporated two rela-
tive abundance states (high or low), and modeled detection
probability as a function of time, relative abundance, and
depth of spawning habitat. They found spawning habitat
area, depth, or type were important predictors of occu-
pancy, with spawning habitat size being an important pre-
dictor of both larval occurrence and relative abundance.
By incorporating additional levels of repeated sampling,

occupancy models can also be extended to multiple
spatial scales (Nichols et al. 2008; Kendall 2009). For
example, suppose interest is in occupancy across M
geographic regions of interest, and each of these regions
contains Ri sites for i = 1,… , M. Nichols et al. (2008)
developed a model for this scenario that allows
occupancy estimation at both the region and site level
while accounting for imperfect detection. Motivated by
large-scale wildlife disease monitoring, McClintock
et al. (2010c) extended the multi-state, multiple-season
model of MacKenzie et al. (2009) to accommodate mul-
tiple spatial scales, and the model awaits further testing
with empirical data.

3.3.3.4 Metapopulation Occupancy Models
The occupancy models described thus far have not
explicitly accounted for the relative spatial locations of
sites. However, the relative locations of sites could be
an important factor driving patterns and dynamics of site
occupancy. For example, one might expect similarity in
the occupancy status of neighboring sites as a function
of distance or connectivity; dispersal from an occupied
site could lead to the colonization of neighboring sites,
or the spread of a disease could lead to local extinction
in neighboring sites. Less mechanistic approaches could
utilize spatially correlated random effects (Magoun
et al. 2007), but spatial models for binary response data
or autologistic models (Besag 1972) can be used to model
correlations in the occupancy status of neighboring sites.
Sargeant et al. (2005) used an autologistic model to

estimate the spatial distribution of swift foxes (Vulpes
velox) under imperfect detection. By dividing the study
area into a spatial lattice of Q sites (R of which were
surveyed for foxes), each site was assigned a set of si
neighboring sites (Gi) that shared a boundary with
site i. The occupancy status of each site, zi, was then
assumed to have a conditional Bernoulli distribution

zi z− i Bernoulli ψ i , 3 53
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where z−i is a vector indicating the occupancy status
(1 = occupied, 0 = unoccupied) of all sites except site i.
Inclusion of spatial structure allowed site occupancy to
be modeled as a function of the number of occupied
neighbors for site i:

logit ψ i = α+ xiβ, 3 54

where the auto-covariate

xi =
1
si j Gi

zj 3 55

Hoeting et al. (2000) and Royle and Dorazio (2008,
pp. 314–321) describe some alternative autologistic for-
mulations under imperfect detection. McClintock et al.
(2010c) describe the use of autologistic methods in
multi-state occupancy models to explain correlations in
the disease infection state of neighboring sites. Bled
et al. (2011) and Yackulic et al. (2012b) extended the
multiple-season occupancy model to accommodate spa-
tiotemporal autologistic models. Using a different
approach, Sutherland et al. (2014) extended classical
stochastic patch occupancy models (Hanski 1999) to
investigate metapopulation dynamics and persistence of
water voles (Arvicola amphibius), while accounting for
imperfect detection and missing data.

3.3.3.5 False Positive Occupancy Models
It is nowwidely acknowledged that false negatives or non-
detections are an important source of observation error
that must be accounted for when making inferences
about occupancy from detection/nondetection data.
The false negative detection process can be adequately
explained using the occupancy models described thus
far, and the assumption of no false positive detections,
that unoccupied sites are never falsely detected as occu-
pied, is likely reasonable in many cases. For example, it
seems reasonable to assume that studies relying on the
physical capture of individuals for species identification
would have low false positive error rates. However, stud-
ies relying on visual or auditory detections for species
identification may be more susceptible to false positive
errorswhere misidentification can lead to apparent detec-
tion of a species that is actually absent (Simons et al. 2007;
McClintock et al. 2010b; Miller et al. 2012b; McClintock
et al. 2015). Until recently, little attention has been
focused on accounting for false positive errors in the esti-
mation of species occurrence (but see Royle and Link
2006). If not accounted for, false positive detections can
lead to overestimation of occupancy probability (Royle
and Link 2006) and subsequently bias estimators for both
local extinction and local colonization (McClintock et al.
2010a). Even when false positive detections are thought to
be relatively rare, they are an important issue to consider.

For example, McClintock et al. (2010a) demonstrated
that false positive errors constituting ≤1% of all detections
in calling anuran surveys can cause severe overestimation
of site occupancy, colonization, and extinction
probabilities.
Miller et al. (2011) extended occupancy models to

accommodate both false negative and false positive detec-
tions by utilizing additional information about the false
positive detection process. The approach relies on study
designs that enable occupancy status of some sites to be
determined with certainty. Some species detections are
known to be true positive detections, but all other (less
certain) detections are susceptible to false positive errors.
One way this can be accomplished is by adopting
sampling protocols where observers categorize species
detections as certain or uncertain. For example, calling
intensities of anurans are often recorded during auditory
surveys, and it may be reasonable to assume that detec-
tions of many calling individuals in a “chorus” at a site
may be more reliable than a single individual detection.
Another study design that can inform the false positive
detection process utilizes two detection methods at each
site. One sampling method may be intensive and not sus-
ceptible to false positive errors such as physical capture of
individuals, whereas the second sampling method may be
less intensive, but susceptible to false positive errors, such
as auditory or visual surveys. Using either study design,
the true underlying state for each site is either occupied
or not occupied, but the observations can fall under three
categories: (i) species not detected; (ii) species detected,
but not with certainty; and (iii) species detected with cer-
tainty. The approach of Miller et al. (2011) uses these
three types of observations to simultaneously estimate
occupancy, false negative detection, and false positive
detection probabilities.
Sutherland et al. (2013) extended the approach of Royle

and Link (2006) to accommodate multiple seasons and
transients moving through the study area. In this case,
false positives were attributed to transient movements
through otherwise unoccupied sites. Based on detections
of highly distinctive latrines used to mark territories of
established colonies, Sutherland et al. (2013) used their
approach to separate true occupancy of residents from
apparent occupancy of transients in a highly dispersive
population of water voles (Arvicola amphibious).

3.4 Software Tools

A growing number of software tools are available for
implementing the methods described in this chapter.
One of the most useful and versatile is the R package
unmarked (Fiske and Chandler, 2011). For abundance
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and related demographic parameters, unmarked
includes the distance sampling models of Royle et al.
(2004) and Chandler et al. (2011), replicated count mod-
els of local abundance and open population extensions
(Royle 2004a; Kéry et al. 2005; Chandler et al. 2011; Dail
and Madsen 2011), and removal (or multiple-observer)
sampling models (Royle 2004b). For species occurrence,
the unmarked package includes the single- and multi-
ple-season models of MacKenzie et al. (2002, 2003), the
Royle-Nichols model relating detection probability and
abundance (Royle and Nichols 2003), and single-season
models accounting for both false negative and false pos-
itive detections (Royle and Link 2006; Miller et al. 2011).
Kéry and Royle (2015) include examples of the use of
unmarked as well as equivalent Bayesian models imple-
mented in the BUGS language.
Program Distance (Thomas et al. 2009) is the most

popular and comprehensive stand-alone software for
the design and analysis of distance sampling data, includ-
ing a built-in GIS for survey design, the classical analysis
methods described above, and themodel-based two-stage
approach of Hedley and Buckland (2004). There are also
R packages dedicated to distance sampling analyses,
including Distance (Miller 2013), mrds (Laake et al.
2012), and dsm (Miller et al. 2013a). The dsm package
implements the two-stage model-based approach of Hed-
ley and Buckland (2004), with some extensions. Johnson
et al. (2010) implemented a one-stage approach in the R
package DSpat (Johnson et al. 2014). Conn et al. (2012,
2013) developed other promising model-based exten-
sions for multiple-observer distance sampling surveys
that can accommodate species misidentification and are
available in the R package hierarchicalDS (Conn
2014). An R-based simulation package, wisp, is also
available (www.ruwpa.st-and.ac.uk/estimating.abun-
dance/WiSP), and was designed primarily as a teaching
aid to accompany the text of Borchers et al. (2002), but
covers many methods other than distance sampling.
However, wisp is no longer under active development;
instead we recommend the R-package DSsim for simula-
tion studies to examine optimal survey design, test the
effect of assumption violations, and so forth.
Programs PRESENCE (MacKenzie et al. 2006) and

MARK (White and Burnham 1999) are popular stand-
alone software for detection/nondetection and replicated
count data. Both PRESENCE and MARK include local
abundance models for spatially replicated counts (Royle
2004a), single- and multiple-season occupancy models
(MacKenzie et al. 2002, 2003) and multiple-state exten-
sions (Royle and Link 2005; Nichols et al. 2007; MacKen-
zie et al. 2009), finite mixture occupancy models for site
heterogeneity in detection probability (Royle 2005), the
Royle-Nichols occupancy model relating detection prob-
ability and abundance (Royle and Nichols 2003), the

multiscale occupancy model of Nichols et al. (2008), sin-
gle-and multiple-season occupancy models accounting
for both false negatives and false positives (Miller et al.
2011, 2013b), and single-season species co-occurrence
models (MacKenzie et al., 2006). PRESENCE also
includes the autologistic occupancy model of Yackulic
et al. (2012b), and several other species occurrence mod-
els not described here. Program MARK also includes
removal models (White et al. 1982; Pledger 2000), multi-
ple-season species co-occurrence models (Richmond
et al. 2010; Miller et al. 2012a), and many different cap-
ture-recapture models (Chapters 5 and 7). We note that
R users can implement most of the models featured in
Program MARK using the package RMark (Laake 2013).
Most of the approaches described in this chapter are

implemented in some form in stand-alone software or
R packages. However, the objectives underlying the
design and analysis of unmarked population studies often
necessitate custom computer code or model-fitting algo-
rithms. Loaded with fully worked examples and custom
code, Royle and Dorazio (2008) and Kéry and Royle
(2015) provide an excellent foundation for motivated
ecologists whose analysis needs are not covered by exist-
ing software.

3.5 Online Exercises

The online R exercises for chapter 3 include four exer-
cises intended to acquaint the reader with several differ-
ent types of analyses using unmarked population data.
Exercises 1 and 2 utilize the dolphin data from Miller
et al. (2013a) to provide comparative examples of classical
and model-based distance sampling analyses, respec-
tively. The goal of Exercise 3 is to recreate the analysis
of spatially replicated counts of Mallards from Kéry
et al. (2005) as described in Box 3.3. Exercise 4 uses the
same dataset from Mallards to fit the single-season occu-
pancy models as described in Box 3.4.

3.6 Future Directions

Over the past two decades, we have witnessed an explo-
sion of new methods for the analysis of unmarked popu-
lation data to make inferences about population
abundance and species occurrence under imperfect
detection. Classical distance sampling methods continue
to be extended, and the more recent model-based dis-
tance sampling methods continue to be refined. Spatially
replicated count and removal methods have been devel-
oped further and are regularly applied by population ecol-
ogists. Fortunately, user-friendly software is helping to
facilitate increased use of these abundance estimation
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methods by practitioners (Section 3.5). A recent review by
Dénes et al. (2015) covers some of the recent “bleeding
edge” developments in the estimation of abundance from
unmarked individuals that we were unable to cover in
detail here, including open population and spatially
explicit models.
Classical distance sampling is partly model-based with

detection function modeling, and partly design-based by
using design properties to extrapolate beyond the sur-
veyed area. Recent developments in detection function
modeling have been aimed at increasing robustness
through using different classes of flexible models
(Miller and Thomas 2015) or relaxing assumptions such
as perfect detectability (Borchers and Cox 2016) or no
animal movements (Glennie et al. 2015). One particularly
interesting development has been a move to unify
distance sampling and capture-recapture in a common
conceptual framework (Borchers et al. 2015). For
model-based distance sampling, one ongoing research
thrust is to embed detection function estimation within
the well-established framework of point process model-
ing (Yuan et al. 2017), thereby leveraging that extensive
literature. Another development has been to include
distance sampling within the general framework of
hierarchical modeling (chapters 7–8 of Kèry and Royle
2015; chapter 24 of Kèry and Royle 2016).
Developments in occupancy estimation are appearing

so regularly that it can sometimes be difficult to keep
up. Bailey et al. (2014) provide a review of recent advances
in occupancy estimation, including many approaches not
covered here. As with abundance estimation, the contin-
ued development of freely available occupancy estimation
software is helping practitioners track and apply these
developments as they become available. Metapopulation
occupancy modeling approaches have not yet received a
great deal of attention, but we anticipate the use and
development of autologistic and related spatial models
to rapidly increase in the future (Bled et al. 2011; Yackulic
et al. 2012b; Sutherland et al. 2014). Most occupancy
models are for a single species, but species co-occurrence
models (MacKenzie et al. 2006; Richmond et al. 2010)
have the potential to accommodate a variety of different
trophic interactions and may have broad utility for ques-
tions in ecology. Species richness and community com-
position can also be investigated using data collected
from unmarked populations in ways that are similar to
the occupancy models described above. MacKenzie
et al. (2006, pp. 249–264) and Royle and Dorazio (2008,
pp. 379–400) provide accessible introductions to these
methods, and community-level occupancy modeling is
becoming more commonplace (Zipkin et al. 2009; Dora-
zio et al. 2010). Further development and application of
methods for inferring species richness, interactions, and

community dynamics from unmarked population data
remains a very promising avenue for future research.
Despite mostly separate treatment of the topics in this

chapter, there are clear relationships between abundance
and species occurrence. We touched on some of these
relationships in Sections 3.2.2.1 and 3.3.3.2. In an inter-
esting “marriage” of the two concepts, Wenger and Free-
man (2008) combined the spatially replicated count
model of Royle (2004a) with the occupancy model of
MacKenzie et al. (2002) for the simultaneous estimation
of occupancy probability and abundance while account-
ing for imperfect detection. We anticipate the joint mod-
eling of abundance and species occurrence will continue
to be a focus of much future research (Royle et al. 2005).
Much of the material we have covered attempts to

account for imperfect detection. One source of variability
in detection probability is attributable to differences
among individual animals due to behavior or appearance,
and among sites due to size or habitat characteristics. Dis-
tance sampling methods are typically robust to such het-
erogeneity, a property of the estimators that is generally
referred to as pooling robustness (Section 11.12 of Buck-
land et al. 2004). However, accommodating additional
covariates that affect detectability can sometimes be
useful (Section 3.2.1). By contrast, many of the other
methods covered in this chapter are highly nonrobust
to unmodelled heterogeneity. If not properly accounted
for, individual heterogeneity can result in biased estima-
tors of abundance because only the “most detectable”
individuals are encountered. Unmarked population data
contain little, if any information about individual hetero-
geneity in detection probability. We recommend using
capture-recapture methods or other approaches for
estimating abundance (Chapter 5), when individual
heterogeneity is non-negligible and distance sampling
methods cannot be used.
Similarly, unmarked population data contain little

information about the vital rates driving population
dynamics. If interest lies in estimation of demographic
parameters such as fecundity, survival, or movement,
then one should consider using capture-recapture or
other methods that can directly examine these processes
(Chapters 5, 7, and 9). If more informative methods based
on marked individuals are not an option, Dail and
Madsen (2011) and Zipkin et al. (2014) describe open
population models for estimating demographic para-
meters from data on unmarked individuals. Although this
may seem like squeezing juice from a turnip, these new
and relatively untested approaches could be reasonable
under certain conditions (but see Knape and Korner-Nie-
vergelt 2016), particularly when used in an integrated
population model. Integrated population models perhaps
hold the most promise for extracting more reliable
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inferences from unmarked population data (Chapter 9),
and we anticipate much development in this area in the
coming years (Chandler and Clark 2014).
Besides individual heterogeneity in detection probabil-

ity, other issues can make reliable inference about abun-
dance difficult to obtain from unmarked populations.
Distance sampling methods are not always feasible when
a species of interest is highly mobile or when it is difficult
to obtain accurate distance measurements to detected
individuals. Spatially replicated counts or removal meth-
ods that do not involve physical capture are not always
feasible with highly mobile species because it can be dif-
ficult to avoid double counting of previously detected
individuals. Similarly, removal methods involving physi-
cal removal are not always feasible for large animals or
species of concern. In these circumstances, capture-
recapture, or less-invasive methods, may be necessary
to reliably estimate abundance (Chapter 5).
When the abundance estimation methods described in

this chapter are not feasible or satisfactory, mark-
recapture distance sampling (Borchers et al. 1998) and
mark-resight models (White and Shenk 2001) are two
examples of methodologies that can often be less
expensive and less invasive alternatives to conventional
capture-recapture (Chapters 5 and 7). Mark-recapture
distance sampling can be particularly useful when detec-
tion at distance zero is not perfect, and mark-resight can
be useful when individual heterogeneity or other sources
of variability in detection probability make it difficult to
reliably estimate abundance based solely on counts of
unmarked individuals. By utilizing encounter data from
both marked and unmarked individuals, mark-recapture
distance sampling and mark-resight constitute hybridiza-
tions of capture-recapture and the unmarked population
abundance estimation methods described in this chapter.
Borchers et al. (1998) and Laake and Borchers (2004)
describe mark-recapture distance sampling, and these
methods have seen increased use since their implementa-
tion in Program Distance (Thomas et al. 2009) and the
R package mrds (Laake et al. 2012). White and Shenk
(2001) reviewmark-resight methods for estimating abun-
dance, and McClintock and White (2012) describe some
more recent approaches to estimating abundance and
other demographic parameters from mark-resight data
that are implemented in Program MARK (White and
Burnham 1999). Chandler and Royle (2013) and Soll-
mann et al. (2013) have developed spatial models of abun-
dance that accommodate this hybrid study design. In our
chapter, we have focused on estimation of occupancy and
abundance from unmarked individuals, and other book
chapters address estimation of abundance and related
demographic parameters from data consisting entirely
of marked individual encounter (Chapters 5–7). In the

future, we predict more development of hybrid models
that can exploit the potentially advantageous trade-off
between “inexpensive” unmarked versus “expensive”
marked population data.
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Summary

The quest to understand if, how, and why the abundance of a wildlife population varies over time, and how it is likely to change
in the future, is central to population ecology. To address these questions requires information on population abundance over
time, yielding sequential time series data that pose particular statistical challenges because the population size at any given time
is not independent of that at previous times.Whereas traditional statistical approaches to time series analysis were developed for
data-rich research fields such as econometrics and focused on forecasting, ecological time series are typically short for statistical
purposes and aremore often used to explore population-level processes than for prediction. Time series for wildlife populations
are also “noisy” in that they can be considered to result from the combined effects of a deterministic population dynamics
process along with “process error” (including components from demographic and environmental stochasticity) and “measure-
ment error” (including imperfect detection probabilities). The range of time series analysis techniques available to ecologists
make different assumptions about what is process and what is noise, and the ability to tease apart these components depends
critically on the length and temporal resolution of the time series and the availability of covariate information. In this chapter, we
explore a range of techniques for analyzing population time series that might exhibit trends or cycling and be affected by intrin-
sic and extrinsic factors. First, we consider classical statistical approaches based on autoregressive linear models that assume
population size is a linear function of one or more lagged values of itself, and then generalize these techniques to nonlinear
responses and non-Gaussian error structures. Second, we explore phenomenological models that directly model variation
in a population growth rate that results from hidden birth and death processes, and illustrate methods for incorporating density
dependence and environmental drivers. Whereas these model classes assume that all noise in the data is due either to obser-
vation or process error, we go on to illustrate the application of state-space models to population time series, which formally
partition process and observation error components. Throughout, we provide advice on how to negotiate the myriad methods
available and to tailor time series analysis to particular research needs and the characteristics of the ecological data available.

4.1 Introduction

One of the most absorbing challenges in ecology is to
understand how and why the abundance of wildlife
populations varies over time. In some cases, the primary
motivation might simply be to detect trends in popula-
tion size or density (Gerrodette 1987). On the other
hand, more complex analyses might ask what is causing
those changes (Bjornstad and Grenfell 2001; Knape and
de Valpine 2011; Boggs and Inouye 2012), whether the
population exhibits cycling or density dependence
(Turchin 1990; Stenseth 1999; Louca and Doebeli
2015), or seek to determine what harvesting effort could
be sustained by a managed stock (Jacobson and Maccall
1995). The raw materials we need to address such

questions are time series data that consist of sequential
abundance observations for a population. Within a time
series, observations that are closer together in time are
more likely to be related and such autocorrelation vio-
lates one of the core assumptions of classical statistical
tests such as linear regression – that the data are inde-
pendent. Special techniques are therefore required to
account for the fact that a population size at time t is
some function of the population size at previous times.
The quest to understand how present abundance relates
to past abundance and other biotic and abiotic variables
is central to time series analysis in ecology, but
this task is far from trivial (Kendall et al. 1999; Bjornstad
and Grenfell 2001; Turchin 2003; Knape and de
Valpine 2012a).
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When confronted with ecological time series for the first
time, one cannot escape the overriding impression that
they bounce around a lot. There are many reasons why
time series might be variable, but these can be split use-
fully into process and noise components (de Valpine and
Hastings 2002; Clark and Bjornstad 2004). The process
reflects the way in which the average fertility and survival
rates, or vital rates, of the population change over time as
a function of intrinsic or extrinsic factors, and thereby
determine the population growth rate. Process-driven
variation in population size could result from a range
of mechanisms such as density dependence or a relation-
ship between a time-varying environmental variable and a
vital rate. In general, the goal of time series analysis is to
characterize this process, but in the ecological context
this can be difficult because our data are typically “noisy”
(Ellner and Turchin 1995; Reuman et al. 2008; Lindén
et al. 2013).
Traditional time series analysis assumes that temporal

variation in a response variable is governed by a deter-
ministic process, and that all noise is due to observation
error (Lundberg et al. 2000; de Valpine and Hastings
2002). In truth, however, even if all observation error
were eliminated, then time series for wildlife populations
would still be “noisy” due to process error that includes
contributions from both demographic and environmen-
tal stochasticity (Bartlett 1960; May 1973; Shaffer 1981;
Bjornstad and Grenfell 2001). Demographic stochasticity
refers to variation in realized survival and fertility rates
because a population is composed of a finite number of
individuals, so that even if the per-individual survival rate
is constant over time, the actual proportion of individuals
surviving will vary from year to year. Environmental
stochasticity means variation in the vital rates due to
extrinsic factors that are not included in the analysis such
as the density of predators or competitors and climatic
variables. Modern time series methods can estimate the
contributions of both observation and process error pro-
vided there is sufficient data to do so (de Valpine andHas-
tings 2002; Clark and Bjornstad 2004; Knape 2008).
Although noise can obscure the processes behind

population dynamics (Dennis et al. 2006), disturbance
from perturbations are crucial to developing a full under-
standing of population-level responses (Lundberg et al.
2000). For example, time series data for a population that
remains close to carrying capacity yield little information
about density-dependent processes. In contrast, time
series data for another population that has been affected
by harvesting, extreme climatic variation, or other
disturbances, and has been reduced to low density will
often offer much more information about intrinsic and
extrinsic drivers of population growth (Polansky et al.
2009; Clark et al. 2010). In many cases, it is only through
disturbing a population and observing its growth

response at different abundances that the underlying
dynamics are revealed (Lundberg et al. 2000).
As we shall see, there are many decisions to make when

choosing an appropriate model for time series data. In
this respect, time series modeling in ecology is something
of an “art” in that there seldom exists a single best
approach to modeling any given dataset (Ziebarth et al.
2010). Rather, the possible approaches will be to some
extent determined by the length and temporal resolution
of the time series, the goal of the analysis, and the
attitudes of the individual researcher as to what should
be treated as process and what as noise. In our chapter,
we focus on these different approaches and decisions,
by considering time series methods for analyzing
abundance data for animal populations.

4.1.1 Principal Approaches to Time Series
Analysis in Ecology

The two primary aims of any time series analysis are: (i) to
identify the process underlying the sequential observa-
tions; and (ii) to predict future values of the variable of
interest, which is also termed forecasting (Hyndman
and Athanasopoulos 2013). In our chapter, we focus on
the first goal because, with the possible exception of
threatened species research, time series for wildlife
populations are usually used to explore the population
dynamics process rather than to develop future
predictions (Sibly et al. 2005; Ziebarth et al. 2010).
Ecological theory suggests that many intrinsic and extrin-
sic processes could cause populations to fluctuate in size
over time, but the challenge lies in confronting these data
with models (Lundberg et al. 2000).
To illustrate this point, Figure 4.1 presents real time

series data for four example populations. In the first
two cases, a single population count or index has been
recorded each year (Figure 4.1a and b) yet the time series
produced are clearly quite different. The first example
illustrates the population size of beavers (Castor cana-
densis) in the USA and Canada between 1931 and 1981
(NERC Centre for Population Biology, Imperial College
2010) (Figure 4.1a). The population size and variance
grow through time, and although we might estimate
the average rate of increase, little information about car-
rying capacity is included in the data for beavers in this
environment. The second example illustrates the growth
of a population of Tasmanian sheep (Ovis aries) between
1818 and 1836 (Davidson 1938) (Figure 4.1b). The sheep
population grew initially before appearing to stabilize
from the mid-1850s, largely because pasture availability
became a limiting factor, although economic factors also
played a role (Renshaw 1991). In contrast to the beaver
example, one could assume a density-dependent model
for these data and estimate the maximum annual rate
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of increase for sheep as the annual rate of population
growth when sheep density is low, and also the carrying
capacity of the environment.
The third example shows the annual numbers of Can-

ada lynx (Lynx canadensis) trapped in Canada between
1821 and 1934 (Campbell and Walker 1977; Brockwell
and Davis 1991) (Figure 4.1c). Assuming we are prepared
to use trap counts as an index of abundance, it is clear that
the lynx population cycles through time, and so we might
want to estimate the amplitude and periodicity of the
cycles and explore the mechanisms driving this pattern.
The final example presents more detailed data on the
population size of Canvasbacks (Aythya valisineria)
between 1955 and 2015 (U.S. Fish and Wildlife Service
2015; Figure 4.1d). Each year the duck population was

surveyed at a number of sites, so that estimates of the total
population at each sampling time are possible. There is
no clear trend in the duck population size over the period,
yet considerable variability exists over time and there is
strong evidence of autocorrelation in the series. As we
shall see, the availability of replicate data at each sampling
time affords the opportunity to disentangle process and
observation error and refine estimates of the parameters
governing population processes.
These four examples are far from exhaustive, but they

illustrate the breadth of possibilities one faces when con-
sidering how to proceed with a time series analysis. In
some cases, the goal of a research project might be clear
from the outset such as: Is the population size of a threa-
tened species declining? In many other cases, an iterative
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Figure 4.1 Ecological time series for four different species indicative of the variety of patterns that may be encountered. Counts of
population size are recorded annually for all species; error bars in (d) are 95% confidence intervals (CI).
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approach might be required in that characteristics of the
time series data obtained will inform the choice of mod-
eling conducted. Many different approaches can be taken
to analyzing ecological time series but these can be clas-
sified into three main methods: statistical, phenomeno-
logical, and mechanistic.
Statistical methods for time series analysis were origi-

nally developed within the field of econometrics, with
the primary goal to generate useful predictions of eco-
nomic variables, such as share prices or wages, based on
historical data. The standard statistical approaches
adopted for this purpose usually rely on autoregressive
integrated moving average (ARIMA) and related models.
ARIMA models are a class of regression model that
assume the response variable is a linear function of one
or more lagged values of itself as the autoregressive compo-
nent, and a weighted sum of one or more recent errors as
the moving average component. Themodels are commonly
used to reveal population cycles and characterize the
strength of density-dependent processes (Lundberg et al.
2000; Ziebarth et al. 2010), but assume all error is observa-
tion error. ARIMA models were developed as linear mod-
els for data with normally distributed errors, but as we will
see they can be extended to account for nonlinear
responses and nonstandard error distributions through a
flexible suite of correlated-error models. In contrast,
phenomenological models directly model the intrinsic rate
of increase (r) of a population. Phenomenological models
usually assume some density-dependentmodulation of the
population growth rate but they can also incorporate the
effects of other environmental covariates (Post et al.
2009). Although these models have typically been fit under
the assumption that all error is observation error, they are
readily extended to a state-space model framework that
allows a process error component.
One advantage shared by statistical and phenomeno-

logical models is that they only require data on the pop-
ulation size at each time step, which is often a year. If,
however, data on survival and fertility rates are available
instead, then a “mechanistic”model could be used to esti-
mate the specific effects of population density or external
factors on these vital rates and the emergent population
growth rate (Pelletier et al. 2012; Letcher et al. 2015).
In this chapter, we focus on statistical and phenomeno-
logical models for ecological time series, while readers
interested in mechanistic models are directed elsewhere
(Newman et al. 2014, Chapters 8 and 9).

4.1.2 Challenges to Time Series Analysis
in Ecology

Ecological time series pose a number of challenges that
are rarely encountered by other disciplines. One of the
most obvious technical difficulties is that a time series

that might be considered “long” by ecologists (e.g. more
than 10 years) are still relatively “short” for statistical pur-
poses (Ives et al. 2010). When a time series is short,
parameter estimates from a fitted model will have high
variance and may not be informative, which is the usual
small-sample problem (Ives et al. 2010; Dennis and Pon-
ciano 2014). Similarly, spurious trends or relationships
between the population size and environmental covari-
ates are to be expected for short time series (Knape and
de Valpine 2011). Ecological time series data also come
with a host of familiar challenges – the data can be con-
tinuous (e.g. density) or discrete (e.g. survey counts or
harvest numbers), and might contain many zeros. There-
fore, different data transforms or distributional assump-
tions may be required to model the data adequately.
The logistical challenges of monitoring wild populations
in the field also dictate that missing values are common-
place. The importance of missing values is linked to the
temporal autocorrelation in the time series – when auto-
correlation is high, a few missing values might be unim-
portant due to redundancy or because they can be
interpolated; otherwise such data gaps can present a seri-
ous problem. With the possible exception of time series
for harvested species, large intervals between sampling
times at a seasonal or annual time step are typical. Mon-
itoring wildlife populations is expensive and time-
consuming and surveys are normally conducted periodi-
cally. As a result, discrete-time models are far more com-
mon in the literature than continuous-time approaches,
particularly where data are collected at regular intervals
and species undergo at least some demographic change
like reproduction and dispersal on a seasonal basis. How-
ever, as much as possible, ecological time series models
should be formulated to reflect the dynamics being exam-
ined and can then be calibrated against any available data.
In this chapter, we will introduce three modeling

approaches used for analyzing single-species time series
data. The first type are classical autoregressive moving
average (ARMA) time series models, where past trends,
rather than particular underlying mechanistic processes,
are used to predict future behaviour; this can really be
viewed as a statistical model of the data. We then intro-
duce biological models of population dynamics in the
sense that they parameterize population growth over time
in terms of the intrinsic growth rate and the feedback
effects of past population density. We consider ordinary
differential equation models (ODE), which are the classi-
cal models used in dynamic modeling of population pro-
cesses where the emphasis is on explaining the average
expected behaviour of a species’ dynamics. We also dis-
cuss the approximation of these models in discrete time
using difference equations, with integration over speci-
fied time periods. Last, we consider state-space models
that describe population time series as partially-observed
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Markov processes where the true, but unknown, popula-
tion state is estimated, assuming that the observed popu-
lation counts are measured with error.

4.2 Time Series (ARMA) Modeling

4.2.1 Time Series Models

As a fundamental starting point, we will consider an
empirical statistical approach to estimating the dynamics
of ecological time series using ARIMA models. ARIMA
models provide a flexible structure for estimating the
characteristics of ecological time series to assess changes
in population sizes of species for management and con-
servation (Box 4.1). We refer interested readers to the
coverage of ARMAmodels for ecological time series anal-
ysis in Ives et al. (2010) and to Cowpertwait and Metcalfe
(2009) for general development of the ideas.
Consider the set of n observations of the population

size (or density) Nmade at discrete time points t. We will
denote this time series data by {Nt : t = 1,… , n}: which
may be abbreviated as {Nt}. Our goal for this introduction
is to understand the underlying dynamics of the popula-
tion and forecast future values of Nt given the observed
data. We will denote the forecast for a future value at time
t + kmade at time t by Nt + k t . Population sizes (or densi-
ties) are generally log-transformed for analysis as xt = log
(Nt) to represent log-linear dynamics.
Fundamentally, time series models can be split into

three components: a trend, a seasonal effect, and a sto-
chastic error. A simple model is:

xt =mt + st + εt , 4 1

where mt is the trend component, st is the seasonal com-
ponent, and εt is an appropriate stochastic error term at
time t. This model can be refered to as the additive
decomposition model, however, our focus in this chapter
is on models for the trend and error components and we
do not address the seasonal component models further
(see Cowpertwait and Metcalfe [2009] for details; also
see Kendall et al. [1998] and Louca and Doebeli [2015]
for reviews of estimating cyclicity in ecological time
series; Box 4.2). To aid in the understanding of how to
model the error term, we will first consider some mea-
sures of the properties of time series that will be useful.
Usually in statistical modeling, we assume that the error
component is independent and identically distributed
from a prespecified distribution. In the case of time series,
this may not be the case: often consecutive error terms
will be correlated. For example, we would expect that
the population size for any one year will be highly corre-
lated with the population size from the previous year.

A key aim in time series analysis is to model and then esti-
mate this correlation structure.
A fundamental assumption to modeling autocorrela-

tion in time series data is that of stationarity. We assume
that the time series is stationary in the mean if the sample
mean abundance x does not change with time, and
stationary in the variance if the sample variance σ2 is
constant for all times. The correlation between consecu-
tive observations can be measured by the sample autoco-

variance function (acvf ) γk = n−1 n−k
t =1 xt −x xt + k −x ,

which is the covariance between time points separated
by a time lag of k. The sample autocorrelation function,
which we will use later for evaluating correlation lags,
is then defined as ρk = γk γ0, where γ0 = σ

2.
So far we have used the term stationary to describe both

time series that are stationary in themean (constant mean
over time) and variance (constant variance over time).
Consider a time series as a whole; a model {xt} is strictly
stationary if the joint statistical distribution of xt1 ,…,xtn is
the same as the joint distribution of xt1 +m,…,xtn +m for all
t1,… , tn and m. This is a strict requirement, and so
instead we often consider time series models that are
second-order stationary. Second-order stationary time
series models have mean and variance that are constant
in time, and an autocovariance that only depends on
the time lag k.
The most basic time series model that represents an

observation in terms of the previous observation is the
random walk; it is defined for a time series {xt} as:

xt = xt−1 + εt , 4 2

where εt is white noise (i.e. the values of εt are independ-
ent and identically distributed with a mean of zero). If,
additionally, the distribution is normal, then the series
is called Gaussian white noise.

4.2.2 Autoregressive Moving Average Models

Extending the idea of expressing the observation at time
t in terms of the previous observation, we can define a
time series {xt} as an ARMA process of order (p, q),
denoted ARMA(p, q), in general terms as follows:

xt −μ =
p

i= 1

βi xt− i−μ +
q

j=0

ϕjεt− j 4 3

where μ is the mean of the stationary process, βi are the
autoregressive parameters of order p, εt is white noise,
and ϕj are the parameters of a moving average (MA) proc-
ess (Box et al. 1994; Ives et al. 2010). The autoregressive
process defines xt in terms of past observations and thus
detects delayed effects of past population size on current
dynamics. TheMA process defines xt in terms of previous
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Box 4.1 Modeling the Population Dynamics of Beavers Using ARIMA

The data are a time series of annual population counts of
beavers in the USA and Canada from 1931 to 1981 (NERC
Centre for Population Biology, Imperial College 2010;
Figure B4.1.1a). Examination of the plot shows an increas-
ing beaver population size over time with increased vari-
ability in population size for later years, which indicates
that the series is clearly not stationary in the mean, and
possibly not in the variance. We could formally test for
stationarity using, for example, the augmented Dickey-
Fuller test for unit roots (Dickey and Fuller 1979). Given
the increasing variance in population size counts that is
evident from the plot, we will log-transform the series
prior to further analysis. The resulting series is clearly non-
linear (Figure B4.1.1b).

The next step is to determine the nature of the trend over
time, and particularly to determine whether the series is
trend-stationarywhere theresiduals froma linear trendfitted
to the logged counts are stationary, or alternatively differ-
ence-stationarywhere the first-differences of logged counts
are stationary. In this example, the augmentedDickey-Fuller
test applied to each series indicates that the logged beaver
population size is difference-stationary, but not trend-sta-
tionary. The ecological interpretation would be that there
is nonlinearity in the temporal trend, associated with the
population size apparently reaching a plateau since the
1960s, which may reflect a carrying capacity, but that the
magnitude of annual population changes are relatively con-
sistent over time. We could proceed in one of two ways:
(i) examine the dynamics around the differenced series of
population size transitions; or (ii) identify a satisfactory
model for the nonlinear trend (for example, using piece-
wise-polynomial splines) and then examine the dynamics
around the residual deviations from that trend.

The next step is to use sample autocorrelations to infer
the order of autoregressive and MA processes for our time
series. The autocorrelation function measures the cross-
correlation of a time series with lagged series up to an
arbitrary maximum lag. In contrast, a partial autocorrela-
tion is the amount of correlation between a series and a
given lag of the series that is not explained by correlations
at all lower-order lags of shorter duration. Generally, 95%
confidence limits for an independent time series with
ρ0 = 1 are shown on autocorrelation function plots
(Venables and Ripley 2002), which can be used to identify
sample autocorrelations that are significantly different
from zero.

The first-differenced beaver population series exhibits a
negative lag-1 autocorrelation (Figure B4.1.2), which would
suggest that a first-orderMA term should be included in the
model. The lag-1 partial autocorrelation can indicate the
order of the AR process, but where the correlation is neg-
ative, as it is here, it provides additional evidence for an MA
process of order 1. Therefore, we would fit an ARMA (p = 0,
q = 1) model to first-differenced time series.

Whilst the autocorrelation functions provide a guide to
determine the order of the correlations, we can also use an
information-theoretic approach to determine the appro-
priate ARMA model. To do so, we would fit ARMA models
with all pairwise combinations of AR and MA orders and
select the model that minimizes the information criterion.
Using the AIC criterion corrected for small-sample bias
(AICc; Hurvich and Tsai 1989; Chapter 2) as a parameter-
penalized log likelihood for the beaver example, the
ARMA(0,1) model is ranked highest. This indicates that
the errors εt can be modeled by a MA process with εt =
− 0.35 × εt − 1, where εt − 1 is white noise with σ2 = 0 042.
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Figure B4.1.1 Time series plot of yearly beaver population size (in thousands) from 1931 to 1981 on the (a) raw and (b) log scales.
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Figure B4.1.2 Time series plots of (a) autocorrelation functions (ACF) and (b) partial ACF of first-differenced log population size, and (c)
loggedpopulation size time series and forecast population size over 10 years (solid line) based on anARMA(0,1)modelwith 95%confidence
intervals (CI) on the predictions (shaded region). Dashed lines in (a) and (b) indicate 95% CI cut-offs for significant autocorrelations.

Box 4.2 Population Cycles of Canadian Lynx

Ecological time series often exhibit cyclicity, so a common
goal is to understand these underlying patterns in con-
junction with trends and environmental relationships
(Kendall et al. 1998; Louca and Doebeli 2015). To illustrate
these types of analyses, we use a classical dataset of the
annual numbers of lynx trapped from 1821 to 1934 in Can-
ada (Figure B4.2.1a; initially described in Elton and Nichol-
son 1942). The data may be used as an index of lynx
population size to examine the underlying dynamics that
explain substantial temporal fluctuations in population
numbers. In the absence of direct information about the
driver(s) of the apparently cycling population numbers,
we may proceed to model this stochastic process.
The distribution of trapping numbers is right-skewed,

suggesting a log-transformation of the counts would be
appropriate prior to further analysis (Figure B4.2.1b). In
visualizing the relationship, there seems to be no obvious
linear trend, so we do not detrend the data. There is a
strong positive autocorrelation in the series at a lag of
10 and a strong negative correlation at a lag of 5, which
is indicative of a periodic effect of 10 years
(Figure B4.2.2). The partial autocorrelation function indi-
cates strong first- and second-order lags, and smaller
but potentially important correlations at greater lags
(e.g. lags 4, 7, and 11). Based on the autocorrelation

functions, a parsimonious approach could be to fit an
ARMA(2,0) model, and in fact this is the lag that has high-
est support (from the range 1–11 lags) based on model
rankings with the Bayesian Information Criterion (BIC;
Schwarz 1978). A cumulative periodogram (Diggle 1990)
suggests that the residuals from that model are white
noise, however the autocorrelation functions reveal some
small higher-order correlations are present. In contrast, an
ARMA(11,0) model is ranked highest based on AICc, and
this model captures the periodic dynamics (i.e. there are
no remaining peaks in the autocorrelation functions),
and results in independent residuals, but at the expense
of parsimony compared to the model ranked highest
using BIC (Note: BIC penalizes the model likelihood by
log(n)K, where K is the number of parameters in the
model, so for K = 1 and sample size n > 12, BIC places a
greater penalty on model complexity than AICc).

An alternative approach to ARMA that could be
explored in search of a more parsimonious model is to
fit a linear (in the parameters) statistical model to capture
the cyclic population dynamics. One example is to specify
a harmonic model for the 10-year cycle (based on the ACF
plot) of the form:

xt =mt + sisin 2πt 10 + cicos 2πt 10 + zt 4 4
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where mt is the trend, zt is the error term, and [si, ci] are
unknown constants. However, it transpires that there is
still some partial autocorrelation at lags 1 (positive) and
2 (negative), as well as some weaker higher-order correla-
tion in the residuals from this model. Refitting the model
using generalized least squares allows accounting for any
remaining ARMA structure in the residuals; an ARMA(2,0)
process for the residual correlation has highest-rank using

BIC, although this is less parsimonious than our previous
AR(2) model. Various authors have examined the lynx
trapping data (for example, Moran 1953; Stenseth et al.
1997; Stenseth et al. 1998), and most conclude that it is
related to a predator–prey (Lynx-Hare) model. Actually,
nonlinear autoregressive models (e.g. SETAR; Tong 1990)
are generally recognized to afford improved predictions
over an AR(2) model for these data.
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Figure B4.2.1 Annual numbers of lynx trappings for 1821–1934 in Canada on the (a) raw and (b) log scales.
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Figure B4.2.2 Time series plots of (a) autocorrelation and (b) partial autocorrelation functions of log population size, and (c) logged
population size time series and forecast population size over 12 years (solid line) based on an ARMA(2,0) model with 95% confidence
intervals (CI) on the predictions (shaded region). Dashed lines in (a) and (b) indicate 95% CI cut-offs for significant autocorrelations.
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white noise terms. Further, we can partition this model to
obtain an AR (p) as the special case ARMA(p, 0), and a
MA(q) as the special case ARMA(0, q). Autoregressive
lags can be generated in age- or stage-structured popula-
tions where reproductive maturity is delayed relative to
age (or stage) intervals. The delayed effects can also occur
due to species interactions, such as predator–prey rela-
tionships, and are amplified where both these processes
occur together.
Rather than detrending the data series prior to analysis,

we can difference the series directly within an ARIMA
framework; here the order of the process extends to
(p, d, q), denoted ARIMA(p, d, q), where d indicates
the degree of differencing. The random walk model
defined above is the special case of an ARIMA of order
(p = 0, d = 1, q = 0) where μ = 0; and in the case where
μ 0 the model is a random walk with drift parameter
μ. The ARIMA framework opens up a rich array of mod-
els for the dynamics of ecological time series, including a
random walk with autocorrelated errors (p = 1, d = 1,
q = 0), or with smoothed errors (p = 0, d = 1, q = 1), as
well as models with density dependence (p = 1, d = 0,
q = 0) plus a constant term (Dennis et al. 2006), which
we will expand on elsewhere in the chapter (Box 4.1).
Low-dimensional autoregressive models have been
shown to give accurate forecasts of future population
states across a wide range of taxa (Ward et al. 2014).
Stability in the dynamics of a population can be

measured by the rate at which the population returns
to its stationary distribution. Known as the characteristic
return time (Box et al. 1994), this measure depends on the
AR coefficients of an ARMA model and is calculated as
the magnitude of the inverse of the minimum root of
the characteristic equation of Eq. 4.3 (Box et al. 1994).
Ives et al. (2010) argue that this summary measure of
population dynamics may be particularly useful as it is
robust to the imprecision in ARMA model parameters
that results from the characteristically short lengths of
ecological time series. Return time has been used as a
key metric of population regulation, particularly in show-
ing that return times are generally long in ecological time
series, thus providing partial evidence for the conclusion
that density dependence is generally weak (Ziebarth
et al. 2010).

4.3 Regression Models
with Correlated Errors

To this point, we have considered traditional statistical
approaches to time series analysis that include some com-
bination of an autoregressive model and an error term
modeled as a linear combination of current and previous
errors. When the goal of a time series analysis is to

explore trends or the effects of environmental covariates
on population size, an alternative strategy is to treat all
temporal autocorrelation as noise and fit a regression
model without any lag terms while assuming some corre-
lation structure for the errors. For example, assuming we
have a time series of population counts Nt of length n and
we are interested in whether there is evidence of a trend in
abundance over time t or whether the mean population
size is stationary, we could fit the following regres-
sion model:

Nt = β0 + β1t + εt 4 5

where β0 and β1 are the ordinary least squares estimates of
the intercept and slope parameters, respectively, and
εt 0,σ2 , meaning that the residual error at time
t is drawn from a normal distribution with a mean of zero
and variance σ2. A key assumption of this model is that
the errors are independent, and for time series data we
want ε to be white noise. We can express the distribution
of the vector of errors from the model in matrix form as
ε 0, σ2 where is a n × n identity matrix. The
ordinary least squares approach to fitting linear models
can be extended by incorporating a more general covar-
iance matrix than σ2 using generalized least squares
(Box et al. 1994). For time series data where we can not
necessarily assume that the errors are independent of
one another, we then have the flexibility to construct this
covariance matrix (Σ) to account for the fact that errors
clustered close together in time are likely to be correlated.
To see how this works, let us assume that the errors of

this model are stationary. In other words, they are derived
from a process with a mean of zero and variance σ2 (i.e.
neither mean nor variance change over time), and that
their covariance depends only on the lag k between them.
The latter requirement ensures that the covariance of two
errors is simply equal to σ2ρk, which is the product of the
error variance and the correlation between errors
separated by lag k. Therefore, the error covariance matrix
Σ would be:

Σ = σ2

1 p1 p2 p3 pn−1

p1 1 p1 p2 pn−2

pn−1 pn−2 pn−3 pn−4 1

4 6

where the diagonal entries correspond to the constant
error variances and the off-diagonal entries reflect the
autocorrelated errors. We then need to use the data to
estimate both the error variance σ2 as well as all the ρk
values. To achieve this, we assume some relationship
between the ρk values that reduces the number of para-
meters requiring estimation. If the time series data are
collected at regular intervals, we might assume an ARMA
structure that is now familiar to us from Section 4.2.2.
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Consider, for example, a first-order autoregressive
model for the errors, equivalent to an ARMA(1,0) proc-
ess, such that the error at time t is a function of the error
from the previous time step:

εt =ϕεt−1 + vt 4 7

where the vt are Gaussian white noise with mean zero and
variance σ2v . It follows that ρk =ϕk and somemathematical

reasoning can prove that σ2 =
σ2v

1−ϕ2. This has simplified

our problem dramatically because only two parameters
need to be estimated to characterize the autocorrelated
error component of our regression model. These techni-
ques are extendable to more complex ARMA formula-
tions and other autocorrelation structures. We believe
that many ecologists will be attracted to this approach
to time series analysis because it is extendable to general-
ized linear or nonlinear models (Box 4.3). Whereas
traditional ARIMA methods assume that the response
variable is normally distributed, models with correlated
error structures can be fitted using link functions to non-
standard data types, including count or zero-inflated data
that commonly arise when populations are monitored.

4.4 Phenomenological Models
of Population Dynamics

Choosing the type of model to adopt in analyzing ecolog-
ical time series depends upon the questions you wish to
answer. The statistical models described in Section 4.3
use past trends, rather than a particular underlying mech-
anistic process, to predict future behavior. Statistical time
series models are often better at handling seasonality.
However, if the question is to understand what factors
are most important to a species’ abundance, and explore
population responses to perturbations, then a model
representing the biological phenomenon is required.
We now introduce a particular type of deterministic
model which is common to biological modeling, called
ODE. The parameters of these models represent biolog-
ical processes and are used when the emphasis is on
explaining the average expected behaviour of a species’
dynamics. Here, population dynamics are modeled as
evolving continuously in time, and also as a continuous
state variable, the latter meaning that fractions of animals
are assumed to exist. We then provide examples of fitting
discrete-time models using difference equations, which

Box 4.3 Models with Correlated Error Structures Using a Simulated Example

A common application of regression models with corre-
lated errors to modeling ecological time series is to relate
temporal patterns in the population dynamics of a species
with environmental variables that may explain the pat-
terns. Suppose that we are concerned with the viability
of a mammal population that has declined over the last
50 years. Over the same period, air temperatures have
risen due to climate change and it is suspected that
warmer temperatures lead to a reduction in juvenile sur-
vival rates. We want to estimate the relationship between
average annual air temperature and the population abun-
dance of the species. Since the maximum lifespan of the
mammal is around 10 years, the population size is likely to
be correlated from one year to the next. To illustrate such
a scenario, we simulated a population time series arising
from a first-order autoregressive process as follows:

xt = log Nt = β0 + β1Tt +ϕεt−1 + vt 4 8

where Tt is the logarithm of the annual temperature, ϕ is
the correlation between successive errors, εt − 1 is the error
from the previous year, and vt is Gaussian white noise.
Since εt − 1 is simply the difference between the true value
of xt − 1 and its expected value β0 + β1Tt − 1, we can rewrite
this equation as:

xt = β0 + β1Tt +ϕ xt−1− β0 + β1Tt−1 + vt 4 9

which clearly shows that this is an AR(1) model formula-
tion because the population size at time t is a function
of that at time t − 1. The simulated covariate series is
shown in Figure B4.3.1b, together with one realization
of the population time series derived according to the
autoregressive process described above (Figure B4.3.1a).
To illustrate an analysis that assumes a correlated error

structure, we analyzed one realization of the population
time series using generalized least squares. We assumed
a first-order autoregressive error structure and used either
ML or REML for themodel fitting. Parameter estimates and
95% CIs from both approaches are presented in
Table B4.3.1, as are the true values used to produce the
simulated data.
Both fitting methods produce accurate estimates of the

intercept β0 and slope β1 parameters, correctly identifying
the negative relationship between temperature and pop-
ulation abundance. However, the ML estimate of ϕ is low
compared to the true value (0.71 cf. 0.90) which suggests
that this estimate is biased, while the REML estimate is
slightly better (0.75) but still biased low. In fact, the bias
of both ML and REML estimates of ϕ is a known issue
(Ives et al. 2010).
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can be viewed as approximations of the continuous-time
population dynamics, including stochastic features repre-
senting extrinsic environmental forces that are unrelated
to population processes.

4.4.1 Deterministic Models

4.4.1.1 Exponential Growth
The most famous deterministic model is perhaps the
model giving rise to exponential growth. Let N be the

Although, in this simulated example, we focused on
identifying the relationship between population size
and an environmental covariate, it is worth stressing that
analyses of this kind are correlative and cannot demon-
strate causality. Spurious correlations between population
size and extrinsic variables can result because we only
have access to data for one realization of a noisy popula-
tion process, or simply because both the population and
covariate time series are trending. One approach that can
be used to evaluate whether relationships that are identi-
fied are an artifact of trends in both series is to detrend (or
take first differences) prior to analysis, and this method

should be employed routinely. Another approach is to fit
phenomenological models of population growth that
incorporate density dependence and environmental cov-
ariates to time series of ecological populations (Knape and
de Valpine 2011). However, care must be taken to ensure
that the correct form of density dependence is identified,
and that errors in observed population counts are prop-
erly accounted for, as these factors can lead to biased esti-
mates of relationships with environmental effects (Lindén
and Knape 2009; Lindén et al. 2013). Identifying the best
ways of inferring causality between environmental and
population time series is an active field of research.
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Figure B4.3.1 Plot showing simulated time series of (a) population size of a mammal species, and (b) temperature over 50 annual
time steps.

Table B4.3.1 Generating true values used to simulate the time series, and estimated parameter values of the fitted linear model with
autocorrelated errors.

Parameter True value ML Estimate 95% CI REML Estimate 95% CI

β0 5.0 5.11 (3.88,6.32) 5.09 (3.87,6.31)

β1 −3.0 −3.02 (−3.53, −2.50) −3.01 (−3.52, −2.50)

ϕ 0.9 0.71 (0.46,0.86) 0.75 (0.46,0.89)

σ 0.1 0.11 (0.08,0.16) 0.12 (0.08,0.19)

ML, maximum likelihood; REML, restricted maximum likelihood; CI, confidence interval.
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population size at time t, and assume that each individual
is growing at per-unit-time constant rate r. Hence, we
have the approximate dynamics:

dN
dt

= rN 4 10

This differential equation states that the rate of change in
population size with respect to time (left-hand side) is
equal to r times the current population size (right-hand
size). Importantly, r measures the instantaneous rate of
increase, which is the per capita rate of population
increase over a short time interval, which reflects the
difference between the instantaneous birth (b) and death
(d) rates. Given the importance of terminology here, it is
worth mentioning that r is sometimes called the realized
intrinsic rate of increase, or alternatively, the Malthusian
parameter. Consequently, changes in population size
depend on r, such that the population remains constant
where r = 0, increases exponentially where r > 0 (i.e.
instantaneous birth rate exceeds death rate), and
decreases exponentially for r < 0. The model assumes
constant birth and death rates and that growth is
continuous in time, as well as population closure with
no immigration or emigration, and that there is no age
or stage structure in demographic performance.
The differential equation above specifies the population

growth rate, so to calculate population size at any given
time, we need to integrate; the solution of this equation
can be given explicitly as:

Nt =N0e
rt 4 11

where N0 is the initial population size (at time t = 0) and
e is Euler’s constant (e≈ 2.718…).

4.4.1.2 Classic ODE Single-Species PopulationModels
that Incorporate Density Dependence
When resources are limited, so that birth and death rates
depend on the population size in some way, the popula-
tion growth rate will be constrained by population size.
Perhaps the most ubiquitous single species ODE model
in population modeling is the logistic model:

dN
dt

= rmN 1−
N
K

, 4 12

where N is the population size at time t, rm is the maxi-
mum intrinsic rate of increase (in contrast to the realized
rate of increase r = rm 1− N

K ) and K is the carrying capac-
ity (Box 4.4). In the limit as t tends to infinity, we have that
the population size approaches 0 if r < 0 and approaches
K if r > 0. Note that if r = 0 the population will not change
from its initial population size N0. Once again, to
calculate population size at any given time, we need to
integrate to provide the solution:

Nt =
K

1 +
K −N0

N0
e−rmt

4 13

An equivalent way to formulate this model is, for
example, to take the birth rate as constant and introduce
a density-dependent mortality rate. Analogous to the
exponential growth case where population rate of change
is equal to rN = (b − d)N, we can then express the rate of
change of the population size as a birth rate minus a death
rate, assuming population closure:

dN
dt

= bN −dN2, 4 14

where b is the per-capita birth rate parameter and d is a
friction coefficient (death rate parameter; Verhulst 1838;
Gabriel et al. 2005; Ross 2010). These steps result in
the carrying capacity asK = b/d and the growth rate rm = b
in terms of the previous formulation (Eq. 4.12).
A motivation for considering this alternate formulation
(Eq. 4.14) is to enhance the exposition of a popular
generalization of the logistic model, namely the theta-
logistic model (Gilpin and Ayala 1973; Stacey and Taper
1992; Sæther et al. 2000, 2002; 2008; Gerber et al. 2004;
Chamaillé-Jammes et al. 2008; Ross 2010).
The theta-logistic model may be parameterized as:

dN
dt

= bN −dN γ , 4 15

being a clear generalization of the logistic model
(Eq. 4.14), where b is the per-capita birth rate and d is
a friction coefficient provided γ > 1; if 0 < γ < 1 then the
model can still model density dependence provided
b and d are chosen to be negative; in such a case, |b| is
the per-capita death rate and |d| is a birth rate parameter
(where |a| = a if a ≥ 0 and |a| = − a if a < 0; Ross 2010).
The theta-logistic model is more commonly presented in
the form:

dN
dt

= rmN 1−
N
K

θ

, 4 16

where the parameter θ gives rise to the name of the model
and describes the curvature of the relationship between
population growth rate and population abundance. The
correspondence between parameters in the two different
representations (Eqs. 4.15 vs. 4.16) is such that rm = b,
θ = γ − 1 and K = (b/d)1/θ. When using the second para-
meterisation (Eq. 4.16), it is recommended to restrict θ >
−1 (corresponding to γ > 0 in Eq. 4.15, see Ross 2010). We
note that when θ > 0 (or equivalently γ > 1) the parameter
rm is the per-capita birth rate, whilst if θ < 0 (or equiva-
lently γ < 1) the parameter rm is the per-capita growth rate
of the population as the population size tends to infinity
(Ross 2010). The θ parameter describes the curvature of
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Box 4.4 Density-Dependent Population Dynamics of Sheep

To illustrate the examination of density-dependent popu-
lation growth, we will use a dataset on the population size
of sheep that were introduced on the Australian island
state of Tasmania in 1818 (Davidson 1938). The population
increased steadily following the introduction and reached
a plateau from around 1860 onwards, though there were
substantial fluctuations in the population between 1850
and 1936 (Figure B4.4.1).
To calibrate ODE models of population growth, one

approach is to minimize the sum of squared errors
between the model predicted population sizes N(ti) and
the data Nti , where the model predicted population sizes
are evaluated by integrating forward the ODE(s). Suppose
that there is a parameter (or vector of parameters) v (for
example, we might have v = (rm, K) for the logistic model
(4.9)). Then, we evaluate the (point) estimates v as:

v= argmin
v

T

i= 1
N ti −Nti

2

using an optimization algorithm (given some set of initial
parameter estimates). Last, we solve the ODE(s) given a
population starting value N0 to get the simulated popula-
tion trajectory. The estimated trajectory for the sheep
population based on the intrinsic growth rate (r) and
the carrying capacity (K) for the logistic (rm = 0 18;

K = 1712) and Gompertz (r = 0 69; K = 1732) models are
shown in Figure B4.4.2.
We can also estimate the parameters for the theta-

logistic model fitted to the sheep data (rm =0 17;

K = 1714; θ = 1 16). The population trajectory based on
these parameters was similar (not shown) to that for the
logistic model (as would be expected given that the θ
parameter estimate was close to 1). The method we used
for estimating the parameters of the theta-logistic model
is described in Byrd et al. (1995), which allows for con-
straints on the parameters. Such constraints are necessary
because the function fails to converge if all parameters are
allowed to vary freely due to the correlation between the
rm and θ parameters, as described in Polansky et al. (2009).
Another commonly used approach to modeling popu-

lation growth is to use discrete-time models. Using the
Ricker model as a discrete-time approximation of the
logistic model, it is straight-forward to regress log(Nt + 1/
Nt) on rm[1 − (Nt/K)], using nonlinear regression in some
form (Figure B4.4.2). The model implicitly assumes a con-
stant growth rate (the per-capita growth rate) over the
interval [ti, ti + 1]. If the time interval is very small then this
approximation can be justified; in general, the accuracy of
the approximation depends on the actual size of the per-
capita growth rate and the width of the time interval
between observations. However, for most populations
and datasets (where population estimates are, say, yearly)
this approximation may not be suitable and therefore
should be checked on a case-by-case basis.

Estimated model parameters for the Ricker (rm = 0 18,

95% CI = [0.14, 0.23]; K =1722, 1570,1888 ) and Gompertz

(rN = 1 = 0 69, 0 54,0 88 ; K = 1754, 1434,2073 ) models are
comparable to those estimated using continuous-time
models (above) and translate to the estimated relation-
ships shown in Figure B4.4.2. The strength of density
dependence can be calculated as a derived parameter
1 − c from the Gompertz model (Section 4.4.2); here the
strength parameter was 1−c = 0 09, 0 07,0 11 , providing
support for density dependent dynamics (as the 95% CI
excludes 0; but note that this interval ignores uncertainty
in the observed population sizes).
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Figure B4.4.1 Time series plot of sheep population size (points)
from 1818 to 1936. Population size estimated from the solution of
ODEs of continuous-time logistic (solid line) and Gompertz
models (dashed line).
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Figure B4.4.2 Scatterplot of sheep population growth rate
(differences in log(N) between years) and population size.
The fitted relationships are shown for the discrete-time Ricker
(dashed line) and Gompertz models (solid line). The
intersection of the fitted relationships and the (dotted) zero line
indicates the estimated carrying capacity K , whilst the y-intercept
gives the maximum rate of increase rm for the Ricker model (for
the Gompertz r is the rate of increase when N = 1).
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the relationship; when θ < 1 there is a concave relation-
ship between population size and population growth rate,
and when θ > 1 a convex relationship exists.
Another model that has appeared in the literature but

has not been widely adopted is the basic Savageau model:

dN
dt

= bN θ1 −dN γ , 4 17

with per-capita birth rate b and per-capita death rate
d (both positive) and θ1 < γ. Furthermore, we advise the
requirement that θ1 > 0 (Ross 2010). This model was
called “basic” by Savageau (1979). Once again, this model
may be reformulated into the form more akin to the
earlier presentations:

dN
dt

= rmN
θ1 1−

N
K

θ2

, 4 18

where rm = b, θ2 = γ − θ1 and K = b d 1 θ2 . We believe
this double-theta-logistic model has been largely over-
looked in the ecological community. Whereas the
theta-logistic model imposes linear changes in either
the population birth or population death rate, this model
allows for nonlinear changes in both of these rates.
Hence, it allows for much greater flexibility in the
modeling of single species dynamics.
Another commonly used model for the analysis of

population dynamics is the Gompertz model (Gompertz
1825), which has the deterministic form:

dN
dt

= αN log K − log N , 4 19

where α is a measure of the rate of return to equilibrium
and K is the carrying capacity. The solution to this
equation is given by:

Nt =Ke
e−αt log

N0
K , 4 20

where N0 is the initial population size.

4.4.2 Discrete-Time Population Growth Models
with Stochasticity

The choice between a discrete-time versus a continuous-
time model should be made based upon the underlying
demography of the population being modeled, as
opposed to the data that are available. If the species
evolves continuously in time, such that breeding and
deaths take place at essentially any time of year, then
a continuous-time model should be used. The fact that
data are only collected at discrete time points is irrele-
vant. On the other hand, for species with life histories
that result in discrete generations, such that births are
pulses that only take place at a relatively small window

of the year, or those where there are discrete seasonal
pulses in population growth, demographic change may
not necessarily be considered as continuous in time.
In these situations, discrete difference equations might
be used to approximate population dynamics
(Box 4.4). Indeed, the dynamics of any population for
which population counts are observed at equal time
intervals could be approximated by an appropriate dis-
crete difference equation for population growth. How-
ever, the accuracy of the approximation will decrease
with the length of time step.
The Gompertz population model (Royama 1992) is one

of several models that are commonly used to explain the
dynamics of ecological populations (Reddingius 1971;
Dennis and Taper 1994; de Valpine and Hastings 2002;
Dennis et al. 2006; Knape 2008). The discrete form of
the model that is generally used is derived by specifying
a relationship between the rate of return to equilibrium
and the generation time (May et al. 1974). The continu-
ous-time model is re-expressed by setting a = α log(K)
and the generation time to one such that the dynamics
are dependent only on a single estimated parameter
(b, see below). Using the notation employed by Dennis
et al. (2006) and Knape and de Valpine (2012a), a
discrete time model for population size at time t, Nt, is
defined as:

Nt + 1 =Nte
a+ blog Nt + εt , 4 21

where Nt is the population size (or density) at time t,
a measures the maximum rate of increase when
population size equals one (because the growth rate when
population size equals zero is negative infinity), b is the
parameter measuring density dependence, and εt is
Gaussian-distributed error, usually termed “process
error”, with mean zero and variance σ2.We introduce this
stochasticity to represent unexplained fluctuations in the
per capita population growth rate between sampling
periods caused by environmental heterogeneity that is
not explained by the density feedbacks (Dennis and Taper
1994). Generally, such data are analyzed on a log scale
(appropriately adjusted if there are zeros), so by
transforming such that xt = log(Nt) the equation can be
simplified as follows:

xt + 1 = xt + a+ bxt + εt ,

xt +1 = a+ b+ 1 xt + εt ,

xt +1 = a+ cxt + εt ,

4 22

where c = b + 1 is the strength of autocorrelation at lag 1.
This interpretation of an AR(1) process assumes statio-
narity, which only occurs where |c| < 1 (Dennis et al.
2006; Knape and de Valpine 2012a). The return tendency
of the population to equilibrium is measured by the
strength of density dependence 1 − c (Royama 1992).
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The (log) abundance time series is therefore density inde-
pendent when c = 1 (i.e. b = 0), and this case links
back to a density-independent random walk with drift
(as estimated by parameter a). The Gompertz model
estimates the strength of compensatory dynamics; so
c = 0 (i.e. b = 1) indicates perfectly compensatory
responses of population size, whereas c > 0 ( b < 1)
indicates (negative) density dependence. The Gom-
pertz model exhibits the greatest density dependent
effect at small population sizes, but as the population
size increases, the effect of density becomes less pro-
nounced. This form of density feedback can approxi-
mate a wide range of population dynamics (Sibly
et al. 2005).
A common alternative to the Gompertz is the Ricker

population model (Ricker 1954; Dennis and Taper
1994) for estimating the dynamics of fish stocks and
recruitment. The Ricker model differs in using Nt rather
than log(Nt) in the exponential function of the Gompertz
model (Eq. 4.21). Consequently, the Ricker model of
population abundances on the log scale is not linear in
its parameters. This model does imply a linear density
feedback relationship between log scale population
growth rate (xt + 1 − xt) and Nt:

Nt +1 =Nte
rm 1−

Nt

K
+ εt

,

Nt + 1 =Nterm 1−dNt + εt , where d = 1 K

4 23

Transforming to the log scale gives:

xt + 1 = xt + rm 1−dext + εt , 4 24

where rm is the maximal growth rate per time step when
population size is small and d is the equilibrium point.
Both stochastic versions of the Ricker and Gompertz
models presented here assume stochasticity arises solely
from environmental (process) noise. Knape and de
Valpine (2012a) use a first-order Taylor expansion of
the above form of the Ricker model to show that
1−rm from the Ricker model and parameter c from the
autoregressive form of the Gompertz model both meas-
ure autocorrelation of first-order linearizations, and
therefore are comparable measures of the strength of
density dependence from these two models.
The predicted dynamics of the Ricker model are similar

to the continuous-time logistic model when the intrinsic
population growth rate is relatively small (rm < 0.5). How-
ever, the approximation deteriorates as population
growth rate increases, and where growth rate approaches
or exceeds 2 the model exhibits complex dynamics,
including damping oscillations (rm = 1 − 2), cycles (rm = 2
− 2.692), or chaos (rm > 2.692; May 1976). Following from
the derivation of the Ricker model as a discrete-time
approximation of the logistic model, the discrete form

of the theta-logistic density feedback model (sometimes
called the theta-Ricker model) takes the form:

Nt + 1 =Nte
rm 1− N

K

θ
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Predicting rm and K from the theta-Ricker model, how-
ever, gives biased and imprecise estimates because of
the inherent trade-off between rm and θ and the generally
flat likelihood for this model (Polansky et al. 2009; Clark
et al. 2010), particularly where population abundance
fluctuates around K and thus contains little information
about the true value of rm. For these reasons, a strong
emphasis should be placed on convergence diagnostics
and parameter precision when deciding to use this model
for predicting dynamics.
Moreover, it is now well known that there are signifi-

cant biases associated with tests for density dependence
based on population growth models that do not account
for uncertainty in the observed population sizes in a time
series (Lebreton 2009), and that the bias increases with
the magnitude of the uncertainty (Lebreton and Gime-
nez 2013), providing misleading results. Lebreton and
Gimenez (2013) advocate that approaches ignoring
uncertainty in population size should be abandoned
and that state-space methods should be preferred instead
(Section 4.5).

4.5 State-space Modeling

Population abundance data are likely to contain errors for
a variety of reasons, including imperfect detection associ-
ated with habitat heterogeneity, sampling method, and
observer experience. Often these problems lead to the
use of indirect counting methods as the basis for estimat-
ing population sizes. The modeling approaches we have
presented so far contain only one level of error; however
there are two main components of variance in population
abundance time series data: observation or measurement
errors; and process errors (de Valpine and Hastings 2002;
Calder et al. 2003; Clark and Bjornstad 2004; Buckland
et al. 2004). Observation errors therefore represent varia-
tion in the observed population counts associated with
the survey methodology that lead to imperfect detection
as described above, as well as variation in environmental
conditions under which data are collected that affect
accuracy of measurement, logistical issues, and funding
constraints that change over time, as well as human error
(Freckleton et al. 2006). In contrast, process errors encom-
pass the natural variability in the true population size
associated with the biotic and abiotic drivers of
population fluctuations. Failure to account for observa-
tion error in population models risks incorrect inferences
about the processes influencing dynamics, for example
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overestimating the strength of density dependence
(Shenk et al. 1998; Freckleton et al. 2006; Knape 2008;
Lebreton 2009) and inflating estimates of process
variance.
State-space models (SSM; including Hidden Markov

models or HMM) provide an avenue to analyzing
population fluctuations and their potential drivers,
while simultaneously accounting for both observation
and process errors (de Valpine and Hastings 2002; de
Valpine 2003; Clark and Bjornstad 2004; Knape and
de Valpine 2012b). SSM are hierarchical models that
explain the true size or “state” of the population in
terms of parameters explaining population growth as
an autocorrelated latent process with stochasticity on
one level, and observation errors (usually) as log-
Normal deviations around the true, but unobserved,
population size. Accounting for errors in the observa-
tion process can provide more accurate estimates of
the underlying population states, as well as the variables
that may be driving fluctuations in those states, such as
climate variability. State-space approaches are now
commonly employed to model the dynamics of animal
populations (Zeng et al. 1998; Wang et al. 2006; Wilson
et al. 2011; Ahrestani et al. 2013).
State-space models can model linear and nonlinear

relationships and can potentially incorporate a variety
of statistical distributions. However, most classical
applications of state-space methods apply to models that
are linear in the parameters of the population growth
model and assume that the error components are
Gaussian-distributed. These constraints allow the model
parameters to be estimated with the Kalman Filter
(Kalman 1960) based on various algorithms (Koopman
et al. 1999; Shumway and Stoffer 2006).

The key ingredients in defining a state-space model are
that: (i) the observed population size at each time pointNt

is said to be independent of the past observations of pop-
ulation size, conditional on the estimated true population
state xt (termed “conditional independence”); and (ii) the
current estimated state xt is dependent only on the state
at the previous time xt − 1, termed the Markov property.

4.5.1 Gompertz State-space Population Model

The Gompertz population model provides a simple form
to illustrate a state-space model that includes density
dependence. As described above, the Gompertz model
on the log scale can be re-expressed as a lag-1 autoregres-
sive process when stationarity is assumed. If we allow for
sampling errors that lead to uncertainty in the observed
counts of population abundances, Nt, and assume that
these errors follow a log-Normal distribution, then the
observation errors can be incorporated into a state-space
formulation of the Gompertz population model on the
log scale yt = log(Nt) as:

yt = xt + ηt Observation model ,

xt +1 = a+ cxt + εt Process model ,
4 26

where yt = log(Nt) and ηt 0,σ2O (Dennis et al. 2006;
Knape and de Valpine 2012a). We use the Gompertz
state-space model to estimate the underlying dynamics
in population size of Canvasbacks (Box 4.5).
Small sample bias leads to overestimates of the strength

of density dependence for short time series (n < 40) if the
underlying dynamics are undercompensatory (Knape and
de Valpine 2012a). One possible test for density depend-
ence under this framework that avoids the problems of
bias outlined for process-error-onlymodels is a likelihood

Box 4.5 State-space Models of Population Dynamics of Canvasbacks

To illustrate the application of SSM to examine density-
dependent population growth while accounting for both
process and observation errors, we use annual estimates
of the population size of Canvasbacks in North America,
recorded on their breeding grounds from 1955 to 2015
(U.S. Fish and Wildlife Service 2015). Population size esti-
mates varied substantially over the years, and the annual
surveys provided an estimate of sampling variability for
each population estimate (Figure B4.5.1a).

The relationship between population growth rate and
population size appears to be roughly similar for both
the Gompertz and Ricker models over the observed range
of Canvasback population sizes (Figure B4.5.1b; although
this initial visualization ignores the presence of

observation errors in the annual estimates). We then fit
the Gompertz state-space model to the time series of
Canvasback population sizes (Figure B4.5.2), and aimed
to estimate all the model parameters, including both the
process (σ2P) and observation (σ2O) error variances. The esti-
mated strength of density dependence is relatively impre-
cise (1−c = 0 30, −0 08,0 69 ), however the likelihood
ratio test for density dependence (H0 : b = 0) is significant
(χ2df = 1 = 5 1,P = 0 024). Also, estimates of the model vari-
ance components σP and σO have low precision
(Coefficient of Variation CVP = 0.40 and CVO = 0.27, respec-
tively) when the model is fitted to the observed time series
without any other information about the magnitude of the
observation error variance (Lebreton 2009).
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However, in this case we have additional data that
could improve our estimates. Thus, we proceed by speci-
fying the standard deviation of the Gaussian distribution
from which the observation errors are drawn (σO) to equal
the standard error of population size in each sampling
year. Using known estimates of sampling error to specify
the amount of observation error in the model does not
substantially change the point estimate for σP. However,
there are two important consequences that result from
incorporating the additional information: (i) a more precise
estimate of the strength of density dependence

(1−c =0 35, 0 06,0 63 ); and (ii) markedly greater preci-
sion in the estimation of process error σP (CVP = 0.19).
The likelihood ratio test for density dependence (H0 :
b = 0) provides evidence for a feedback response
(χ2df = 1 = 8 4,P =0 0038). However, this test is anti-
conservative (Knape and de Valpine 2012a; Lebreton
and Gimenez 2013), and comparison with an empirical dis-
tribution of the likelihood ratio based on a parametric
bootstrap provides lower confidence in the conclusion
of density dependence (P = 0.062).

In contrast to the state-space model, the process-error-
only Gompertz model that assumes the population counts
are observed without error gives (upwardly) biased esti-
mates of the strength of density dependence (1−c =
0 58, 0 34,0 81 ) and the magnitude of process error is
greater by 40%. This example therefore demonstrates
the importance of accounting for observation error when
modeling population growth and evaluating evidence for
density dependence, and the importance of having addi-
tional information that informs on the relative magnitudes
of process and observation error variances.

To facilitate the comparisons of estimates from both the
Gompertz (linear) and Ricker (nonlinear) SSM, parameters
were estimated using a method that treats the latent popu-
lation states as random effects (Fournier et al. 2012; Kristen-
sen et al. 2016; Pedersen et al. 2011). It is important to note
thatwecouldhaveusedtheKalmanFilter for fitting the linear
and Gaussian Gompertz state-space model (Lindley 2003;
Knape anddeValpine 2012a), or indeedwe could have taken
a fully Bayesian approach that would allow comparisons
involving nonlinear and/or non-Gaussian models (Buckland
et al. 2004; Clark and Bjornstad 2004; Newman et al. 2006).
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Figure B4.5.1 (a) Time series plot of estimated population size of Canvasbacks (points) from 1955 to 2015; error bars show standard
errors of estimates associated with sampling variability. (b) Scatterplot of population growth rate and population size; the fitted
relationships are shown for the discrete-time Ricker (dashed line) and Gompertz models (solid line).
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Figure B4.5.2 Trajectory of population states over time (solid
line) estimated from a Gompertz state space model. Shaded
region shows 95% confidence intervals (CI) for the latent states.
The observed population sizes (and standard errors) are shown
in background.



ratio test comparing, for example, the Gompertz state-
space model with a reduced model that assumes density
independence (i.e. setting b = 0) using a parametric
bootstrap approach (Knape and de Valpine 2012a).
A problem that is encountered when fitting SSM, such

as those described above, is that the likelihood surfaces
are ridge-like, indicating correlation in the parameter
space, or have multiple local maxima. For example, high
correlations can occur between the population model

parameters r and b in the Gompertz state-space model.
Alternatively, the process σP and observation σO error
components trade off against one another such that
one component shrinks to close to zero and all variance
is captured in the other term (Dennis et al. 2006; Knape
2008). Essentially, in the absence of other information
these model parameters may be unidentifiable. This phe-
nomenon occurs frequently for short time series (Dennis
and Ponciano 2014), and in cases where the population
does not depart substantially from equilibrium (Dennis
and Taper 1994). Model diagnostics are critical in these
cases to assess the validity of parameter estimates and
consequent model inferences.
Employing a Bayesian approach to model fitting and

incorporating informative priors on the population
growth rate parameter from demographic data has the
potential to alleviate problems of identifiability (Delean
et al. 2013; Lebreton and Gimenez 2013), and where pos-
sible should be encouraged. Another avenue is to obtain
estimates of sampling error through replicated popula-
tion sampling, such as repeat counts, to inform the mag-
nitude of observation error (Dennis et al. 2010).
The resulting improvement to the estimate of process
error can increase the precision of the estimated strength
of density dependence (Box 4.5).

4.5.2 Nonlinear and Non-Gaussian State-space
Population Models

Linear Gaussian state-space models tend not to be suita-
ble for modeling small populations where demographic
stochasticity plays a more substantial role in the popula-
tion fluctuations, and where random variability in sur-
vival and reproduction between individuals inflates
process error. Models for these types of data that do
not account for errors in the observation process can pre-
dict negative estimates of population size. Greater flexi-
bility is obtained when fitting state-space models using
Markov chain Monte Carlo methods. Calder et al.
(2003) used Gibbs sampling to fit a Ricker state-space
model, where the system of equations is similar to that
described above for the Gompertz state-space model
but also requires specification of prior distributions for
all model parameters, including the initial population
state X0. The Bayesian framework also allows nonlinear

functional forms of density feedback (Wang 2007) and
non-Gaussian probability density functions (Knape
et al. 2011).
Other approaches that are available to fit nonlinear

models for density-dependent feedbacks and multiple
sources of error that follow non-Gaussian distributions
include: Bayesian state-spacemodels (deValpine andHas-
tings 2002; Clark and Bjornstad 2004), data cloning (Lele
et al. 2007), and a class of models for partially observed
Markov processes encompassing iterated filtering
(Ionides et al. 2015), approximate Bayesian Computation
(Toni et al. 2009), particle Markov chain Monte Carlo
(Andrieu et al. 2010; Peters et al. 2010), and synthetic like-
lihood (Wood 2010). This highly flexible class of models
are computationally intensive approaches to estimate true
population abundances as unobserved latent variables
using hierarchical models (King et al. 2016).
There has been a recent focus toward estimation of

SSM for population abundance time series using sequen-
tial Monte Carlo or particle filter methods (Peters et al.
2010; Knape and de Valpine 2012b; Hosack et al.
2012a). These methods involve a combination of particle
filters to explore the latent (or hidden) states such as the
true, but unknown, population size, and Metropolis-
Hastings Markov chain Monte Carlo to estimate the
parameters of the population growth models. Efficient
sampling of the parameter space means that these
approaches are superior to standard Metropolis-Hastings
or Gibbs sampling for high-dimensional problems, which
are the case for long time series. In addition, they can be
simple to use and the application of an adaptive proposal
for the static population model parameters means that
only minimal tuning is required (Peters et al. 2010). Hos-
ack et al. (2012b) introduce the use of the normal inverse
Gaussian distribution for the observation error variance
in particle filter state-space models. This particular distri-
bution is heavy-tailed to accommodate outlying values
and captures a variety of distributions, including the
Gaussian, log-Normal, Student’s t and Gamma, making
it a flexible choice when no direct information about
the distribution of observation errors is available.

4.6 Software Tools

Software for time series modeling are widely available,
including several packages available in R (R Core Team
2018) and other programming languages (e.g. Python).
With specific relevance to the approaches and examples
presented herein, Ives et al. (2010) provide descriptions
and both MATLAB (MathWorks 2018) and R code (R Core
Team 2018) for estimation of the parameters of ARMA
models using both maximum likelihood (ML) and
restrictedmaximumlikelihood (REML).Theauthors show
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thatREMLestimates are generally less biased thanMLesti-
mates. The likelihood functions presented in Ives et al.
(2010) can be used with alternative maximization routines
that are suited to optimization problems where there are
multiple local maxima, and the authors suggest simulated
annealing as onepossible example (Kirkpatrick et al. 1983).
As mentioned, most classical applications of state-

space methods apply to models that are linear in the para-
meters of the population growth model and assume that
the error components are Gaussian-distributed. The con-
straints allow the model parameters to be estimated with
the Kalman Filter (Kalman 1960) based on various algo-
rithms (Koopman et al. 1999; Shumway and Stoffer 2006),
which can be fitted easily using freely available software
packages such as the dlm and KFAS packages in Program
R. Dennis and Ponciano (2014) provide R code to
calculate ML and REML estimates of parameters of the
Ornstein-Uhlenbeck (OU) state-space model. Other
alternatives for fitting time series state-space models
include the packages pomp (King et al. 2016) and TMB
(Kristensen et al. 2016), or using a Bayesian approach
through rjags (Plummer 2016).

4.7 Online Exercises

The online R exercises for Chapter 4 provide examples
that apply the concepts presented in this chapter to
real-world time series data sets. In Exercise 1 we step
through the code to fit ARMA models to the time series
of beaver population abundances described in Box 4.1. In
Exercise 2, we outline approaches to fit continuous ordi-
nary differential equations to the time series of sheep
abundances presented in Box 4.4, and then go on to show
how to maximize the likelihood of discrete-time density
dependence models that include a stochastic term to
the same time series, which in this example provides a
good approximation to the continuous-time model. In
Exercise 3, we use a time series of Cackling Goose abun-
dance to introduce the fitting of state-space models for
density dependence (Box 4.5) to time series data for a
single species. We provide the code to estimate model
parameters using a Laplace approximation to the likeli-
hood, and provide a parametric bootstrap approach to
evaluate evidence for density dependence. We addition-
ally show how to apply a full Bayesian analysis to the esti-
mation of the model parameters for this data set.

4.8 Future Directions

Our major focus here has been on the dynamics of single
populations of a given species, however biological and
environmental effects might be expected to vary in space

and time. For example, the strength of density dependence
can differ among spatially separated populations due to
environmental differences (Wanget al. 2006). Importantly,
there have been recent developments that allow estimation
of spatial variation in population growth rates (Thorson
et al. 2015) and the explicit estimation of spatial variation
in the parameters for population growth rate and strength
of density dependence using a spatially varying coefficients
approach (Roy et al. 2016) using state-space models.
Another approach to population growth state-space

models incorporates imperfect detection into the likeli-
hood explicitly, and can model variation in detection as
a function of spatial and temporal covariates (Hostetler
and Chandler 2015). These models, based on hierarchical
N-mixture models for repeated counts frommetapopula-
tions (Dail and Madsen 2011), can also account for other
common processes in ecological count data such as excess
zeros and spatial variation in dynamics. Here, population
growth is modeled as a Poisson process and the mean can
be expressed in terms of a Gompertz or Ricker model for
density dependence, and the parameters of these models
can be allowed to vary as functions of environmental cov-
ariates (Hostetler andChandler 2015). Alternatively, envi-
ronmental stochasticity can be modeled as log-Normal
variation in population growth, and this process can be
constrained to differ spatially (Hostetler and Chandler
2015). Commensurate with the flexibility of these models,
the precision with which parameters are estimated
depends on the information available on each process
within the data. As such, the precision of state parameters
depends on accurate estimation of the detection probabil-
ity, and therefore replicated count data that allow the
assumption of population closure are recommended
(Hostetler and Chandler 2015).
A common limitation when fitting models incorporat-

ing density-dependent dynamics to population time
series using discrete-time formulations of the models
occurs when the time intervals between sampled
observations are not equal. Unequal intervals may be a
consequence of environmental conditions that affect
the timing of sampling, or simply the logistical
constraints of field sampling programs. To address this
scenario, Dennis and Ponciano (2014) extend the den-
sity-dependent Gompertz state-space model to allow
for unequal time intervals. The model is based on a sto-
chastic version of the continuous-time, deterministic
Gompertz model, which, when transformed to the log-
scale, describes as a continuous-time diffusion process
where density-dependent growth is perturbed by envi-
ronmental noise (Dennis and Ponciano 2014). On the
log-scale, the model is an OU process, and this process
can be extended to a state-space model by adding a nor-
mally distributed observation error component, as
described above for the Gompertz state-space model.
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Of course, given the complexity and dimensionality of
state-space models, great care should be taken when fit-
ting these models to population time series. Considera-
tion should be placed on whether, despite the best
intentions of capturing all of the components of variation
in the observed data, there is indeed enough “informa-
tion” in a particular time series to support inferences from
such complex models. Problems in the estimation of both
model parameters and state variables have been shown to
give misleading results, even for simple linear Gaussian
state-space models (Auger-Méthéé et al. 2016). There is
a high cost associated with the estimation of complex
lag structures and observation errors when using short
and variable time series, yet the return, in terms of predic-
tive capacity, may be low (Ward et al. 2014). These issues
highlight the fact that valid inferences can only follow
from a careful evaluation of model results to determine
whether accurate model parameters are actually achieve-
able for a given state-space model.
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Summary

Capture-recapture models are a foundational tool in population ecology, because we recognize that the individuals we observe
at any point in time represent only a sample from some larger population of interest. Conceptually, estimating population
abundance requires us to model and estimate detection probability, the proportion of individuals in the population that occur
in a sample. In this chapter, we consider the use of capture-recapture models for estimating abundance, and explore how
insights into sampling and ecological processes allow us to model detection across time, space, and individuals, thus improving
abundance estimates. We review standard capture-recapture models for estimation of abundance, including their assumptions
and applications. We include in our review models where populations are assumed demographically and geographically closed
during sampling, and models that relax that assumption. We also review recent advances arising from the development of
hierarchical capture-recapture models and spatial capture-recapture (SCR) models.

5.1 Introduction

Capture-recapture methods represent perhaps the most
widely used statistical methodology in population ecol-
ogy. The basic principles have existed for decades, and
a large number of synthetic monographs or texts have
been produced on these techniques (Otis et al. 1978;
Seber 1982; White 1982; Williams et al. 2002; Borchers
et al. 2002; Royle et al. 2014). The methods are based
on encounter data from marked animals and the models
enable inference to be made about population para-
meters, including demographic rates such as survival,
movement, and population change, state parameters
such as population size or density, and in the presence
of imperfect detection of individuals. Conceptually, we
understand the effect of imperfect detection in the con-
text of binomial sampling. If we sample a population
and observe n individuals, we suppose that n represents
a binomial sample of some population of size N:

n Binomial N ,p 5 1

where p is the probability that an individual appears in the
sample. Therefore, heuristically, we can think of con-
structing an estimator of N by equating the observed

sample size of individuals, n, to its expected value pN,
and then solving for N:

N =
n
p

5 2

When we substitute an estimate, p, into this equation, it
is a standard population size estimator referred to as the
conditional estimator (Sanathanan 1972). The estimator
illustrates one of the most important concepts in ecolog-
ical sampling, and thus many authors refer to it as the
canonical estimator of abundance because it forms the
conceptual basis of many models and procedures
(Williams et al. 2002, Kéry and Schaub 2012).
What makes capture-recapture models interesting and

useful is not a simple heuristic for estimatingN but rather
that a wide variety of models are available for explaining
how individually identifiable animals are observed in the
field and how features of both sampling design and
ecological processes affect these observations. In particu-
lar, the parameter p is really a function of a number of
more fundamental parameters that determine the proba-
bility of detection of individuals during specific sampling
occasions. Capture-recapture models therefore allow
researchers to model specific features of the sampling
scheme or biology that vary by individual or over time.
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The data obtained from CR studies are often much richer
than just the observed sample of size n. In particular, the
data can be referenced in time and space, and individual
characteristics can be incorporated in order to more
realistically model the process of observing animals. In
this chapter, we review some of the standard capture-
recapture models that are widely used for estimating
population size and density, and we discuss recent
advances in this field based on the use of hierarchical
capture-recapture models.
Capture-recapture models for inference about popula-

tion size have been the cornerstone of statistical popula-
tion ecology for decades. However, estimating and
modeling population size allows for development of an
understanding of how populations vary in space and time,
and this is of fundamental interest in both population
ecology and wildlife management. The theoretical and
empirical bases of these models are more relevant now
than ever before, due to the advent of new technologies
both for obtaining individual encounter history informa-
tion (e.g. DNA, camera trapping), but also due to new sta-
tistical methods that makemore efficient use of encounter
history data and allow researchers to build more realistic
models of population structure and dynamics.

5.2 Genesis of Capture-Recapture
Data

Essentially all capture-recapture models make use of
encounter history data obtained from repeated sampling
of individuals in a population. Encounter histories in
basic form are a sequence of 0s and 1s indicating whether
an individual was captured or not during each of several
sampling occasions. We denote by y the binary variable of
capture state so that y = 1 represents the event captured
and y = 0 is the event not captured.
Individual encounter history data are often obtained by

classical field methods such as live trapping and tagging
small mammals in trapping grids or, in the case of birds,
using mist-nets and numbered leg bands. However, more
recently developedmethods such as identification of indi-
viduals with natural marks using camera trapping
(O’Connell et al. 2010), and genetic identification from
various sources, including scat surveys carried out by
detector dogs, are becoming more common (Long et al.
2008). The explosion of new technology for detecting
and obtaining individual identity has made capture-
recapture methods more useful now than ever before.
Use of such field methods gives rise to two basic classes

of capture-recapture models: models for which the pop-
ulation is assumed to be closed to additions or subtrac-
tions (deaths, births, or migration), and conversely,
models for populations that are open to demographic

change, such as the Jolly–Seber class of models (Jolly
1965; Seber 1965). From a data collection standpoint,
the major difference between the two classes is the time
elapsed between consecutive sampling occasions. Closed
populationmodels apply to situations where the sampling
occasions occur in rapid succession, so that absence of
mortality, recruitment, or movement may be reasonable
to expect. Conversely, open population models apply
when sampling occasions are far enough apart that such
processes may be operative. Robust design models are
unique in that they combine features of closed and open
models (Pollock 1982; Kendall et al. 1999), however,
for abundance estimation, robust design models
function essentially as closed models. We focus primarily
in this chapter on closed models, as they are the most
widely used and diverse set of models for abundance
estimation. However, we will visit Jolly–Seber models
toward the end of the chapter.

5.3 The Basic Closed Population
Models: M0, Mt, Mb

At the core of the closed capture-recapture models is a
simple binomial or logistic regression model. The
response variable is whether an individual was captured
during a particular sample occasion (and perhaps at a par-
ticular location; more to come on that). Denote this
binary outcome by yik = 1 if individual iwas captured dur-
ing occasion (sample) k and yik = 0 if not, for all i = 1, 2,…,
N individuals in the population. The essence of closed
population models is that the yik are Bernoulli trials which
we express symbolically as:

yik Bernoulli pik , 5 3

where pik = Pr(yik = 1) is the capture or encounter
probability of individual i during sample occasion k.
For now, we assume that the yik observations are
independent within individuals and among individuals.
That is, we assume that capture of individuals does not
affect the capture of others, and their capture at some
occasion does not affect their subsequent capture. These
two assumptions can be relaxed in certain situations,
some of which we discuss later. Three additional basic
assumptions of closed capture-recapture models that
we will assume throughout are that:

1) The population is closed geographically to movement
and demographically to births and deaths.

2) Marks are not lost, overlooked, or misread.
3) Each sample of individuals is a random sample of the

population of interest.

Williams et al. (2002) provide a thorough discussion of
these model assumptions, testing them and the effects of
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their violation. In general, when important assumption
violations are suspected, the strategy should be to extend
themodel to accommodate those violations. For example,
if the population is suspected to be open due to recruit-
ment and survival, then open population models should
be considered. Alternatively, if the population is not
geographically closed, then spatial capture-recapture
(SCR) models should be considered.
Closed population models are concerned with model-

ing the probability of encounter (pik) and, principally, with
estimating abundance (N). We discuss a few common
model structures for pik and the strategies for estimating
N. When detection probability is constant for all indivi-
duals and sample occasions, i.e. pik = p0, this is called
“model M0” in the capture-recapture literature (Otis
et al. 1978). There are several basic extensions of this
model, some of which we discuss shortly, but see also Otis
et al. (1978), Williams et al. (2002), and Cooch andWhite
(2008) for more detail. The recent book by Kéry and
Schaub (2012) discusses the standard suite of models
from a Bayesian perspective analyzed in the WinBUGS
software.
For cases where detection or encounter probability

depends on any number of fixed covariates that are com-
pletely known for all individuals and all sample occasions,
the probabilities pik depend on covariates according to
some model, such as a logit model:

logit pik = α0 + α1xik , 5 4

where xik is the value of some covariate measured for
individual i at sampling occasion k. Two standard exam-
ples of models with fixed covariates are time-specific
models and behavioral response models. Time-specific
encounter probability models, so-called “model Mt,”
account for variation in detection over time. Time-
specific variation can arise due to variation in weather
or other environmental conditions that cause variation
in detection probability. A general version of model Mt

allows for occasion-specific detection probabilities, one
for each occasion. Models that allow for behavioral
response to capture, “model Mb,” are valuable in situa-
tions where animals respond negatively with trap shyness
or positively with trap happiness to the experience of
being captured, thus inducing a nonindependence of
encounters of the same individual that must be modeled.
One obvious example is when food is used to bait animals
into a trap – this can result in a trap-happy effect. Behav-
ior models can be developed by introducing xik as an indi-
cator variable of previous capture (i.e. xik = 1 if individual i
was captured prior to occasion k. Such a behavioral
response is sometimes called a persistent behavioral
response, because the effect of initial capture lasts for
the duration of the study. Alternatively, we might con-
sider a Markovian response, in which the effect of

previous capture is ephemeral and lasts only until the
next (or a few more) capture occasions (Yang and Chao
2005). A common protocol for estimating abundance in
fisheries applications is removal sampling where animals
are temporarily or permanently removed from the
population. Removal sampling is a special and extreme
case of a behavior model in that once an animal is
captured, it will never be captured again. The decline in
encounter frequency over consecutive rounds of
removals is informative about encounter probability.
We consider some further extensions of closed popula-

tion models shortly but we use the basic models with
fixed effects here to introduce a number of widely used
strategies for inference.

5.4 Inference Strategies

As models for a binary response, closed capture-
recapture models are closely related to standard logistic
regression models. Indeed, if N were known, or if it is con-
ditioned out of the likelihood (Section 5.4.1), capture-
recapture is precisely a logistic regression model. As a
result, some strategies for analyzing closed population
models closely parallel the way that standard logistic
regressionmodels are analyzed, and onemay analyze cap-
ture-recapture models using strategies based on either
maximum likelihood or Bayesian inference.
The main challenge in analyzing closed capture-

recapture models is that N is unknown and, as a result,
our observed data are only the positive encounter his-
tories for individuals that were captured at least once,
where the outcome not captured at all is not observable.
Thus, capture-recapture produces a sort of biased
sampling, and this must be accounted for formally in
developing estimators of N (and other quantities) from
encounter history data.

5.4.1 Likelihood Inference

Two classical approaches have been widely used for infer-
ence about population size (N): one based on the
conditional likelihood, and a second based on theuncondi-
tional or full likelihood (Borchers et al. 2002; Cooch and
White 2008). Following standard ideas of unequal
probability sampling (Horvitz and Thompson 1952), the
conditional likelihood is formed by expressing the proba-
bility distribution for thedata conditional on the event that
the individual appears in the sample. In the context of
capture-recapture, “appears in the sample” is equivalent
to “is captured at least one time.” Conversely, the full
likelihood includes a contribution to account for the fact
that “is captured at least one time” is a randomeventwhich
also depends on the model parameters.
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We clarify the nature of the conditional and full likeli-
hood approaches using the simplest model M0 in which
encounter probability, p, is constant. In that case, we
can aggregate the data to form a binomial likelihood
for the individual totals (encounter frequencies) yi =

K
k = 1yik . Then, if N were known, the data would be a

sample of binomial observations where each yi is a bino-
mial response with number of trials equal to K, and where
the goal is to estimate the binomial probability parameter
p. That is, the probability distribution for the observations
from which we construct the likelihood is the standard
binomial probability mass function (pmf). In the condi-
tional likelihood approach, to account for the fact that
we can only observe positive values, we need to condition
on the event that y > 0 – that is, we need to find out what
the pmf is for the observed counts, which are strictly
positive, i.e. each observed frequency is at least 1. The
resulting pmf is used to construct the conditional
likelihood, which we can compute using the law of total
probability. In particular, the probability of the event
y = k for any value k is the sum of two parts: Pr(y = k) =
Pr(y = k|y > 0) Pr(y > 0) + Pr(y|y = 0) Pr(y = 0). For k = 1,
2,…, K, clearly the second part of this expression evaluates
to 0, i.e. for the observable values of y. Therefore, the
conditional probability that y = k, given that y > 0, is:

Pr y= k y > 0 = Pr y= k Pr y > 0 5 5

For the binomial encounter frequency model of model
M0 and related models, the conditional probability distri-
bution has the following form:

Pr y y > 0 =

K
y

py 1−p K −y

1− 1−p K 5 6

This probability mass function is also called a zero-
truncated binomial. Note that the combinatorial term,
which is not a function of any model parameter, can be
ignored in maximizing the likelihood to obtain the
maximum likelihood estimates (MLEs). Therefore, the
likelihood for the n observed encounter frequencies y1,
y2,… , yn is therefore the product of n components based
on the zero-truncated binomial pmf:

L p y1,y2,…,yn =
n

i= 1

pyi 1−p K −yi

1− 1−p K 5 7

The conditional maximum likelihood estimator of p is
obtained by maximizing Eq. 5.7.
You may have noticed that there is no N in the

conditional likelihood for the zero-truncated binomial

(Eq. 5.7) – only p. So, what do we do to estimate N?
The so-called conditional estimator of N derives from
the canonical estimator, by noting that the expected value
of the observed sample size n is:

E n = pN 5 8

where p = 1 − (1 − p)K. Then, the conditional estimator of
N, Nc, can be defined according to:

Nc = n p, 5 9

where p is obtained by plugging-in the MLE of p into the
expression for p. This idea of conditioning on capture can
be generalized to othermodels, though the formulation of
the marginal pmf can become more complex in
such cases.
An alternative framework for inference in capture-

recapture models is the joint or full likelihood, which is
developed by computing the joint likelihood of the
encounter histories and n, under the binomial assump-
tion for n. Sanathanan (1972) proves the asymptotic
equivalence of the conditional and full likelihood estima-
tors. The unconditional (full or joint) likelihood is the
product of the conditional likelihood and the binomial
contribution from n:

L p,N y1,y2,…,yn,n

=
n

i= 1

pyi 1−p K −yi

1− 1−p K

N
n N −n

pn 1−p N −n,

5 10

which if we combine terms we wind up with a more
familiar binomial-looking expression for the model M0

likelihood (Eq. 14.6 of Williams et al. 2002). The full
likelihood for many capture-recapture models, including
model M0, can be derived as a multinomial distribution,
for distributing individuals into K + 1 classes (Royle and
Dorazio 2008), including the class representing y = 0
(not captured).
Likelihood inference extends directly for cases where

p depends on any number of fixed covariates. When there
are covariates thought to influence detection probability,
this requires that the likelihood for each of the n observed
individuals be expressed in terms of probabilities pik
which may depend on covariates according to some
model, such as a logit model as discussed in
Section 5.3, and also the parameters α0 and α1 (see
Eq. 5.4) and possibly additional parameters depending
on how many covariate effects are being modeled. To
indicate that p now depends on the parameters α0 and
α1, we will write p(α). When covariates are modeled, it
is convenient to analyze a general form of the likelihood
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formulated in terms of individual level encounter
histories:

L α0,α1,N yik =
N

n N −n
n

i= 1

K

k = 1

pik α yik 1−pik α 1−yik

K

k =1

1−pk α
N −n

,

5 11

where here pk(α) is the probability of not encountering
an individual in sample occasion k which will, in general,
depend on the fixed covariate values for sample occa-
sion k.

5.4.2 Bayesian Analysis

Parameter estimation and inference based on likelihood
methods remains the standard approach in applications
involving inference about N. Bayesian analysis has
become more popular due to the advent of accessible
and efficient computing platforms, the appealing nature
of Bayesian inference, which allows for the direct
characterization of uncertainty about parameters using
probability distributions, and the flexibility in model
development that Bayesian analysis permits. In principle,
Bayesian analysis of either the conditional or full
likelihood of the model is straightforward, and several
developments and applications have appeared in the
literature (Castledine 1981; Smith 1991; George 1992;
Basu and Ebrahimi 2001; King and Brooks 2001). Any
of the closed population capture-recapture models which
contain a number of encounter probability parameters
and, for analysis based on the full likelihood, the param-
eter N, can easily be analyzed by Bayesian methods. To
conduct a Bayesian analysis requires specification of prior
distributions for each unknown parameter. Given the
likelihood and set of prior distributions, inference about
N or other model parameters is then based on the poste-
rior distribution, which is the probability distribution of
N given the data.
For some models or in some applications, Bayesian

analysis is facilitated by the use of data augmentation
(Royle et al. 2007a; Kéry and Schaub 2012; Royle and Dor-
azio 2012), which is based on a reformulation of the
model in terms of individual encounter histories under
a certain prior specification for N. As a practical matter,
analysis based on data augmentation proceeds by aug-
menting the observed encounter history matrix with a
large number of all-zero encounter histories which corre-
spond to individuals that were not captured (Figure 5.1).
The analysis must be based on adding a sufficient number

of these all-zero encounter histories such that the total
size of the augmented data set is certain to be larger than
the true value of N. The key idea is that the model for the
augmented data set is a zero-inflated version of the
known-N model. For example, considering model M0,
if N were known, then the model of the encounter
frequencies is a simple binomial model with parameter
p and sample size K. However, under data augmentation,
where the data set is augmented up to a size ofM, then the
model for the augmented encounter frequencies is a
zero-inflated binomial with additional parameter ψ which
is related to the quantity of excess zeros beyond that
which would be accounted for given N. In fact, the
relationship between unknown N and the parameter ψ
derives from the binomial distribution, E(N) = ψM.
Because M is fixed, data augmentation essentially shifts
the inference problem from one of estimating N to one
of estimating ψ .
We illustrate the concept of data augmentation applied

to the simplest model – model M0. For this model, the
likelihood under data augmentation – that is, for the data
set of size M – is a simple zero-inflated binomial
likelihood for the observed encounter frequencies (out
of K samples) y1, y2,… , yn augmented with all-zero
encounter frequencies yn + 1,… , yM. The zero-inflated
binomial model can be described hierarchically, by
introducing a set of binary latent variables – the
data-augmentation variables, z1, z2,… , zM – to indicate
whether each individual i is (zi = 1) or is not (zi = 0) a
member of the population of N individuals exposed to
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Figure 5.1 Data augmentation schematic showing the observed
data set (left), the unobserved “true” data set (middle), and the
augmented data set (right). Source: Borrowed with permission
from Kéry and Schaub (2012, figure 10.2).
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sampling. We assume that zi~Bernoulli(ψ) where ψ is the
probability that an individual in the data set of sizeM is a
member of the sampled population. The zero-inflated
binomial model which arises under data augmentation
can be formally expressed by the following set of assump-
tions where we include typical prior distributions for the
parameters p and ψ :

yi|zi = 1 Binomial(K, p) (5.12)

yi|zi = 0 I(y = 0) (5.13)

zi Bernoulli(ψ) (5.14)

Ψ Uniform(0, 1) (5.15)

p Uniform(0, 1) (5.16)

for i = 1,…, M, where I(y = 0) is a point mass at y = 0. This
is modelM0 when formulated by the use of data augmen-
tation, which partitions the zeros of the augmented data
set into real individuals (sampling zeros) versus excess
augmentation (structural zeros). It is convenient in some
of the standard Bayesian software packages (BUGS/
JAGS) to express the conditional-on-z observation model
concisely in just one step: yi zi ~ Binomial(K, zip), which
we understand to mean, if zi = 0 then yi is necessarily 0
because its success probability is zip = 0.

5.4.3 Other Inference Strategies

There are some other general approaches to inference in
closed population capture-recapture models. One
approach is to use Poisson-integrated likelihood
(Sandland and Cormack 1984), in which the full likeli-
hood having parameter N is integrated over a Poisson
prior distribution for N. The Poisson-integrated likeli-
hood also extends readily to structured populations
(Converse and Royle 2012) and so it is handy for model-
ing variation in abundance among strata or groups.
A related idea is to use a binomial-integrated likelihood
(chapter 6 of Royle et al. 2014) in which the full likelihood
is integrated over a binomial prior: N Binomial(M, ψ)
where M is fixed at some large value and ψ is estimated
instead of N. The model is consistent with the data aug-
mentation approach but it can be readily applied in a like-
lihood estimation framework. Royle and Dorazio (2008)
provide an application of the binomial-integrated likeli-
hood to distance sampling.

5.5 Models with Individual
Heterogeneity in Detection

The basic models described above make some restrictive
assumptions about the manner in which detection
probability varies among individuals in the population.

However, individual heterogeneity in detection is ubiqui-
tous for reasons related both to biology and sampling. For
example, individuals use space differently and therefore
might be exposed to different numbers of traps, or our
sampling method might favor certain demographic
classes (e.g. age-, sex-, or size-biased sampling). The exist-
ence of heterogeneity in detection probability that is not
accounted for by the modeling can result in underestima-
tion of population size. One can see this intuitively by
considering the extreme case where some individuals
have no chance of being detected, i.e. p = 0, such as young
animals that are not yet mobile. In this case, the
population that would be estimated would not include
that group of animals with p = 0. In general, we see
that the sample of individuals favors those with high
detection probability, and thus our sample will tend to
overestimate the population level p and underestimate
N, because N = n p.
The problem of heterogeneity is well-known, and several

typesofcapture-recapturemodels thatcontrol for individual
level effects in detection probability have been developed
and are in widespread use. Examples include models with
fixed effects measured at the individual level, which are
called individual covariatemodels, andmodels that contain
unstructured or latent variation in the form of an individual
random effect, including finite mixture models.

5.5.1 Model Mh

Models with individual heterogeneity are models which
posit that the detection probability parameter p varies
by individual, say pi for individual i. The class of models
and estimators that accommodate such variation are
referred to collectively as “model Mh.” In reality, this is
a broad class of models, each being distinguished by
the specific distribution assumed for pi. There are many
different varieties of model Mh including parametric and
various nonparametric approaches. Burnham and
Overton (1978) proposed a nonparametric jackknife
estimator,which formed the basis for estimating popula-
tion size in the presence of heterogeneity for many years.
Chao (1984, 1987) also developed a nonparametric esti-
mator in the presence of heterogeneity that has been
widely adopted. A formal model for heterogeneity in p
was proposed by Norris and Pollock (1996), and general-
ized by Pledger (2000) and subsequent papers. The mix-
ture model assumes that pi, the probability of detection
for individual i, is a latent variable belonging to a finite
number of latent classes say pc for c = 1, 2,…, Cwith prob-
abilities fc where c fc = 1. In practice, two or three
classes is usually sufficient to explain heterogeneity in
realistic data sets. In addition, from a practical standpoint,
it is difficult to estimatemore complex latent class models
because the number of parameters increases rapidly. The
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number of parameters in a finite mixture model is 2C
where C is the number of latent classes. As a result, the
likelihood can be difficult to explore due to its complex
form and potentially multiple modes.
Fully parametric models of heterogeneity have also

been proposed. For example, a standard model is the
logit-normal mixture model (Coull and Agresti 1999)
which supposes that the encounter probability pi for
individual i varies according to: logit(pi) = μ + ηi where
ηi Normal(0, σ2) or, equivalently, written as:

logit pi Normal μ,σ2 5 17

This model is a natural extension of the basic model
with constant p, as a mixed generalized linear model
GLMM, and similar models occur throughout statistics.
It is also natural to consider a beta prior distribution
for pi (Burnham 1972; Dorazio and Royle 2003).
Inference about model parameters, including N, in

modelMh is slightly more involved than in other standard
models, because the model involves individual random
effects. The standard method in all of statistics for infer-
ence in random effects is based on the so-calledmarginal
likelihood or integrated likelihood (Coull and Agresti
1999; Dorazio and Royle 2003). The basic idea is that
the marginal likelihood for the observations is computed
by removing the random effect from the conditional-on-η
likelihood by integration, yielding a marginal likelihood
that is only a function of the structural parameters and
not the random effect, and which can be maximized to
obtain the MLE of the model parameters. The technical
details of analyzing themarginal likelihood are widely dis-
cussed, for examples Coull and Agresti (1999), Dorazio
and Royle (2003), and chapter 6 of Royle and Dorazio
(2008). Bayesian analysis of models with random effects
is straightforward using standard methods of Markov
chain Monte Carlo (MCMC). Examples of this abound
in the literature (Fienberg et al. 1999; Royle and Dorazio
2008; Link and Barker 2009; King et al. 2010; Royle
et al. 2014).
One important practical matter is that estimates of

N can be extremely sensitive to the choice of heteroge-
neity model (Fienberg et al. 1999; Link 2003). Indeed,
Link (2003) showed that in some cases it is possible to
fit different models that yield precisely the same log-
likelihood, yet produce wildly different estimates of N.
In that sense, N for most practical purposes is not iden-
tifiable across classes of mixture models, which should
be considered before adopting model Mh as a definitive
solution for individual heterogeneity. An alternative
solution to the problem of individual heterogeneity is
to seek to model explicit factors that contribute to
heterogeneity, such as using individual covariates or
spatially explicit models.

5.5.2 Individual Covariate Models

The models described in Section 5.5.1 accommodate
heterogeneity in detection probability that is not explain-
able by explicit covariates. However, closed population
models can be extended to accommodate explicit individ-
ual-level covariates. These models are similar in structure
to model Mh, except that some individual-level effect is
observed for the n individuals that appear in the sample.
In particular, the model is of the form:

yi Binomial K ,pi , 5 18

where pi is functionally related to a covariate xi.
A standard model is the logit-linear model:

logit pi = α0 + α1xi 5 19

In many studies, the covariate x might be related to
body size or age, for example. Following the model nota-
tion of chapter 6 of Kéry and Schaub (2012), we will call
this model Mx. There are two different approaches to
inference about N under model Mx (section 11.3 of
Borchers et al. 2002). The first approach is to put a model
on the covariate x, which allows us to deal with the fact
that x is missing for the N − n individuals never captured,
and then we can either do likelihood analysis with the
“full likelihood” approach (Borchers et al. 2002), or we
can conduct a Bayesian analysis using MCMC (Royle
2009). An alternative approach in common use is based
on a Horvitz-Thompson unequal probability sampling
estimator, and is called the Huggins-Alho estimator
(Huggins 1989; Alho 1990; Williams et al. 2002).

5.5.2.1 The Full Likelihood
The individual covariate is unobserved for the N − n
uncaptured individuals and therefore we require a model
to describe variation among individuals so that the
sample can be extrapolated to the population. For exam-
ple, we might suppose that the individual covariate has a
normal distribution:

xi Normal μ,σ2 5 20

This assumption, together with Eqs. 5.18 and 5.19, pro-
vides a fully specified model which can be analyzed using
standard methods. A standard example of an individual
covariate model is that in which animal size or body mass
is thought to influence detectability. Another standard
example is “group size” detected in aerial surveys, such
as flocks of waterfowl (Royle 2008).
Analysis of the full likelihood for individual covariate

models can be challenging because the covariate values
for the N − n individuals that were never captured are
missing data, and therefore the marginal probability of
y = 0 must be computed by numerical integration. Alter-
natively, Bayesian analysis of individual covariate models
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is relatively straight forward in the BUGS language and
similar MCMC algorithms using data augmentation
(Royle 2009).

5.5.2.2 Horvitz-Thompson Estimation
Traditionally, estimation of N in individual covariate
models is achieved using methods based on ideas of
unequal probability sampling. This approach leads to
an estimator of N of the following form:

N =
n

i

1
pi α

, 5 21

where pi α is the probability that individual i appeared in
the sample, which depends on the parameters α = (α0, α1)
through Eq. 5.19. The quantity pi α is the probability
that an individual is captured, i.e. Pr(yi > 0; α) which in
closed population capture-recapture models is given by:

pi α =Pr yi > 0; α = 1− 1−pi α K 5 22

In practice, parameters α are estimated from the con-
ditional likelihood of the observed encounter histories
which is,

Lc α y1,…,yn =
N

i= 1

Binomial yi α
pi α

5 23

The conditional likelihood is maximized to obtain the
MLE of α, which is then used in Eq. 5.21 to obtain an esti-
mator of N.

5.5.3 Distance Sampling

Distance sampling is not traditionally considered a
capture-recapture method, but it is perhaps illuminating
to note that conceptually, distance sampling is a type of
individual covariate model with only a single sample,
K = 1. Therefore, animals are not marked in the tradi-
tional sense but, rather, they are individually identified
in the sampling process, and individual-specific informa-
tion is recorded, including location, perpendicular dis-
tance to the transect line, and perhaps group size.
Inference is traditionally based on a conditional estima-
tor, although estimation based on the full likelihood is
also straightforward (section 7.2 of Borchers et al. 2002).
The model underlying distance sampling is precisely

the same as that which applies to the individual-covariate
models, except that observations are made at only K = 1
sampling occasions. However, in distance sampling we
pay for having only a single sample (i.e. K = 1) by requir-
ing constraints on the model of detection probability. In
particular, it cannot have an intercept parameter in the
basic model, which leads to the often-stated assumption
that distance sampling assumes perfect detection on the

transect line. A standard model for encounter probabil-
ity is:

pi = exp −
x2i
2σ2

, 5 24

where xi denotes the distance at which the ith individual
is detected relative to some reference location where
perfect detectability (p = 1) is assumed. The parameter
σ determines the rate of change in detection probability
as a function of distance. The function is usually called
the half-normal detection probability model. An
additional assumption is that of a uniform distribution
for the individual covariate xi. The customary choice is
xi ~Uniform(0, B) where B > 0 is specified, and corre-
sponds to the limit of observation: either a count radius,
or a transect width.

5.5.4 Spatial Capture-Recapture Models

Capture-recapture models are enormously popular in
population ecology. However, the central focus on popu-
lation size, N, in closed models has long been recognized
as a deficiency in practical applications. The reason is
that, in practice, no population is truly closed because
geographic closure can never be satisfied in practice
and, as a result, a strict sample area cannot be defined.
As a result, it is not possible to convert N to density (a
summary of abundance that is invariant to sample area)
in the absence of additional information. Or, to put the
problem another way, the area to which the N estimate
applies is unknown. To understand this intuitively, imag-
ine a grid of live traps (Figure 5.2). Some of the animals
caught in the live traps may have home ranges that only
partly overlap the grid – illustrated by the home range on
the left of the trapping grid. Thus, the size of the home
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Figure 5.2 A trapping grid with two individual home ranges
superimposed. Home-range centers are indicated by black dots.
The effective sample area of a trapping grid depends on the typical
home ranges of individuals. Individuals with home ranges located
predominantly off-grid may still be captured.
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ranges inflates the effective area sampled. If the home
ranges are large, we are effectively sampling a larger area
because animals that use areas relatively far from the grid
may be caught on the grid. If the home ranges are small,
we are effectively sampling a smaller area. But how do we
know? It is the spatial information in SCR that helps us,
conceptually, to resolve this.
Historically, the fact that area is unknown in capture-

recapture studies, thereby complicating the conversion
of N to density, has been addressed by the prescription
of buffer strips or nested trapping grids based on an ad
hoc treatment of the movement information in trapping
data (reviewed by section 14.3 of Williams et al. 2002), or
by using telemetry data to compute an adjustment to
estimated detection probability based on a model of
temporary emigration (White and Shenk 2001; Ivan
et al. 2013).
Another problem that arises in the application of

classical capture-recapture models is that individual
heterogeneity is induced by the spatial juxtaposition of
individuals in a population with the array of traps or sam-
pling devices (Figure 5.2). For example, individuals whose
home range is on the edge of a study area or trap array are
exposed to fewer traps and therefore likely have lower
probabilities of detection compared to individuals whose
home range is more centrally located within the trap
array. Thus, the spatial nature of capture-recapture stud-
ies induces individual heterogeneity that should be
accounted for. Historically, this problem of heterogeneity
has been accounted for by fitting standard types of heter-
ogeneity models Mh (Karanth and Nichols 1998;
Section 5.5.1), or alternatively, model Mx with observed
location of capture as an individual covariate
(Boulanger and McLellan 2001; Section 5.5.2).
New classes of spatially explicit capture-recapture

models (SECR) or just SCR provide a formal resolution
to the problems of undefined sample area, and of heter-
ogeneity in detection probability (Efford 2004; Royle et al.
2014; Borchers 2012), by taking advantage of auxiliary
information about location of capture that exists in virtu-
ally all capture-recapture data sets. SCR models are
essentially a version of ordinary individual covariate mod-
els described above, but with imperfect information about
the individual covariate. Spatial models are being rapidly
adopted in practice, with many recent applications to
DNA sampling, camera trapping, and other situations
(Dawson & Efford 2009; Gardner et al. 2010a; Gopalas-
wamy et al. 2012).
The basic idea with SCR models is to extend the

ordinary capture-recapture model by introducing a latent
variable, s, for each individual in the population. The
variable s represents the individual’s home range or
activity center. The collection of latent variables for the
population of N individuals can then be treated as a

spatial point process, which can be modeled explicitly.
Then, encounter probability is expressed as a function
of that latent variable. In a typical problem, suppose an
array of J camera traps is used to observe a population
of individuals that are individually identifiable based on
natural marks over some period of time (K nights). The
array of traps produces individual- and trap-specific
encounter frequencies yij for individual i and trap j. For
camera traps, a sensible encounter probability model is
the binomial model:

yij Binomial K ,pij , 5 25

where the trap- and individual-specific encounter proba-
bility is assumed to be a function of distance between an
individual’s home-range center and the traps. For exam-
ple, a plausible model is:

logit pij = α0 + α1 × dist si,xj
2
, 5 26

where dist(si, xj) is the (unobserved) distance between the
location of trap j, xj, and a summary of individual location si.
Conceptually, we view si as the center of activity or home-
range center for individual i. That dist(si, xj) is not observed
mayappearproblematic,but this isanalogoustoanyrandom
effect in classical random effects models. Therefore, formal
inference for SCRmodels is achieved by regarding the activ-
itycenters sias latent variablesor randomeffects.Themodel
is extended then by specifying a probability model for these
latent variables. In particular, the customary assumption
(used in almost all recent applications of SCR models) is,
for i = 1, 2,…, N,

si Uniform S , 5 27

where S is a region of the plane in the vicinity of the trap
locations. You can think of this as the area which contains
the population exposed to sampling by the traps. The
common view of SCR models is that the activity centers
s1,… , sN represent a realization of a statistical point proc-
ess, and the region of the plane S is usually called the
state-space of the point process. Given the state-space
for any particular model, the parameter N of the SCR
model is the population size of individuals as the number
of activity centers which exist in that state-space. There-
fore, SCR models provide a direct linkage between the
data and density, the number of individuals per unit area,
D =N/area(S).
In applications of SCR models, the logit model of

Eq. 5.26 is rarely used, even though it is a perfectly reason-
able and valid model. Instead, standard models are those
which are common in distance sampling. The similarity is
sensible because distance from a trap to a home range
center is analogous to the distance between an observer
and an animal if the data were collected under distance
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sampling protocols. Therefore, a distance sampling
model such as the half-normal model can be used:

pij = p0exp −dist si,xj
2

2σ2 , 5 28

where the parameters p0 and σ are estimated (note: σ here
is unrelated to σ of the logit-normal model Mh described
previously). Many other models are possible, and the
secr package of Efford (2011) contains about a dozen
candidate models (see Table 7.1 in Royle et al. 2014).
One of the key concepts underlying SCR models is that

the encounter probability model corresponds to an
explicit model of home range or space use. In the half-
normal model, the parameter σ is the parameter of a
bivariate normal home range model. Models can be
developed which include explicit elements of resource
selection (Royle et al. 2013), latent movement models
(Royle et al. 2016), or that accommodate non-Euclidean
space use (Sutherland et al. 2015; Fuller et al. 2016).

5.5.4.1 The State-space
In Bayesian analysis of SCR models, it is necessary to pre-
scribe S because the analysis proceeds by simulating
realizations of s1,… , sN from the required posterior
distribution. Individuals have to reside somewhere. In
developing the problem this way, N is sensitive to the
choice of S – as its area increases, so too does N and vice
versa. However, as S becomes large, then pij diminishes to
zero rapidly, at least under well-behaved models, and
additional increases in S are inconsequential. In particu-
lar, N will continue to increase but density will become
invariant to the size of S, which is a consequence of the
model, and which implies a constant density of indivi-
duals. The same phenomenon is relevant to the likeli-
hood-based analyses of Borchers and Efford (2008).
The region over which the likelihood is integrated must
be defined explicitly, but construction of the state-space
often happens “under the hood” when likelihood analysis
is conducted, and so it may not seem like an explicit
element of the model in such cases.

5.5.4.2 Inference in SCR Models
Both likelihood and Bayesian analyses of SCR models are
straightforward using standard methods. Bayesian analy-
sis of the model specified in terms of the latent activity
center variables is easily achieved using standard methods
of MCMC (Royle et al. 2014). Likelihood analysis of SCR
models is based on the marginal likelihood in which the
random effects si are removed from the conditional-on-s
likelihood by integration over the state-space S. The basic
approach applies directly to analysis of three alternative
models: (i) the full likelihood which includes N; (ii) the
conditional likelihood which is conditional on n; and
(iii) the Poisson-integrated likelihood where the full

likelihood is integrated over a Poisson prior distribution
for N (Borchers and Efford 2008; chapter 6 of Royle et al.
2014). The basic approach of computing the marginal
likelihood is standard in other classes of capture-
recapture model (modelMh, individual covariate models,
distance sampling) with no additional technical or
conceptual considerations.

5.6 Stratified Populations
or Multisession Models

A situation that arises often in practice is that in which a
stratified or group-structured population is sampled, so
that the resulting encounter history data fall naturally
into g = 1, 2,…, G groups or strata (organized in space
and/or time). A common situation occurs in studies of
small mammal populations, which might involve estab-
lishing a set of G trap arrays. In these types of problems,
it is usually of interest to model variation in the unknown
population sizes, Ng, among the trapping arrays, perhaps
in response to landscape/habitat (Royle et al. 2007b) or
treatment effects (Converse and Royle 2012). Another
common situation occurs in bird surveys which are often
conducted using capture-recapture counting protocols,
such as double-observer sampling or time-removal sam-
pling. In these situations, it is natural to formulate the
model in terms of local population sizesNg for each point
count location g. Then, the observed data for point count
location g is naturally described as conditional on Ng. In
both situations for small mammal and bird counts, the
groups were spatial groups and the population size para-
meters Ng related to the spatial populations being
sampled. However, the groups do not have to be spatial
groups: It would be natural also to define them to be tem-
poral groups, whereNg is the population size in year g = 1,
2,…, G, or different combinations of spatial units and
temporal periods. Because it is common to define tempo-
ral strata in capture-recapture models, the termmultises-
sion model is often used to describe these scenarios and
the resulting models.

5.6.1 Nonparametric Estimation

If there is not explicit interest in modeling patterns in
abundance across the g groups or strata, there are sub-
stantial benefits to combining data across groups into a
single analysis for abundance estimation; the benefits
accrue in terms of efficiency in estimating p and therefore
N for each group. For example, a behavioral effect may be
reasonably modeled in common across individuals of the
same species, existing in different places. If 10 different
spatial strata had been sampled, a shared effect of
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behavior would save nine parameters compared to an
independent analysis for each strata. Converse and Royle
(2012) examined this issue explicitly, and some efficient
approaches include sharing information across groups
to estimate fixed effects, and also exploiting the group
structure to estimate random effects for the detection
parameters. Converse et al. (2006) demonstrated use of
such estimates in a weighted regression analysis to model
the abundance estimates, while accounting for the non-
zero sampling covariances. However, advances in
hierarchical estimation models (Converse and Royle
2012; Royle et al. 2012) make this ad hoc approach less
attractive. One can imagine taking a non-hierarchical
approach to produce estimates of N across strata within
the context of a monitoring program, where the primary
interest is the abundance estimates themselves. With
sufficient data on each population of interest, this
approach should be reasonably efficient from a statistical
standpoint, and avoids having to make explicit assump-
tions about N.

5.6.2 Hierarchical Capture-Recapture Models

A flexible approach to building capture-recapture models
for stratified populations can be achieved using hierarchi-
cal capture-recapture models based on developing
explicit statistical models for population size among the
groups (Royle et al. 2012). In this way, we can move
beyond simply estimating abundance or density to mod-
eling variation in abundance or density over space and
time, which is almost always more interesting from both
a management and research perspective. From a practical
standpoint this is advantageous because it makes efficient
use of data from all groups for estimating shared para-
meters, which can be useful when some of the groups
have small sample sizes.
To motivate the hierarchical capture-recapture model,

suppose capture-recapture data are collected on g = 1,
2,…, G populations, each having population size Ng. To
devise a model for this situation we might consider any
of our standard capture-recapture observation models
(e.g. models M0, Mb, etc.), and thus the model for the
observations for each group is one of the standard
models, having one or more detection parameters and a
population size parameter Ng. In addition, we assume a
model for the population size parameters Ng. For
example, we might assume that Ng~Poisson(λg) where:

log λg = β0 + β1xg , 5 29

and where xg is some covariate measured at the popula-
tion level. Other abundance models could be considered
(e.g. negative binomial), but the point here is that, using a
hierarchical capture-recapture model, we analyze the

joint model which includes component models that
describe the observation of the capture-recapture data –
the observation model – and that which describes
variation in abundance among the strata.
Hierarchical capture-recapture models for stratified

populations have not appeared widely in the literature
although the data structure is somewhat common in
practice. Royle et al. (2007b) analyzed a version of these
models based on the capture-recapture summary
statistics, which have a multinomial distribution with
index Ng. The main objective of their analysis was to
model spatial variation in Ng and they considered a
Poisson type of model with over-dispersion. Likelihood
analysis of hierarchical capture-recapture models is
possible. Several detailed case studies of such models
applied to bird population studies can be found in chapter
7 of Kéry and Royle (2016). A general Bayesian analysis of
stratified capture-recapture models was given by
Converse and Royle (2012) and Royle and Converse
(2014) in the context of SCR models.

5.7 Model Selection and Model Fit

When considering alternative models for the probability
of detection, such as whether or not a mixture appropri-
ately captures heterogeneity, or if an individual covariate
should be used, there will be interest in identifying the
model(s) that are the best fit for the data.Model selection
provides the tools for ordering or ranking themodels, and
maybe choosing a “best” model, for obtaining model-
averaged estimates across several candidate models with
support, and for evaluating whether a given model is
appropriate for inference to answer the question, does
it “fit” the data? Here, we review some basic strategies
for carrying out model selection and evaluating good-
ness-of-fit in models for estimating population size.
Readers are referred to Chapter 2 for a more detailed
treatment of model selection and multimodel inference.

5.7.1 Model Selection

Using classical analysis based on likelihood, model selec-
tion is easily accomplished using the Akaike Information
Criterion (AIC) (Burnham and Anderson 2002; also
Chapter 2). The AIC of a model is simply twice the neg-
ative log-likelihood evaluated at the MLE, penalized by
the number of parameters (K) in the model:

AIC = −2logL θ y + 2K 5 30

Models with small values of AIC are preferred. It is
common to use a “corrected” version of AIC, referred
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to as AICc, that has a correction term to account for small
sample sizes:

AICc = −2logL θ y +
2K K + 1
n−K −1

5 31

where n is the sample size. While the use of AIC and sim-
ilar criteria have been widely adopted in ecology, and
especially in the analysis of capture-recapture data,
researchers are increasingly recognizing practical difficul-
ties in their application. For example, they do not apply
directly to hierarchical models that contain random
effects (Grueber et al. 2011), unless they are computed
directly from the marginal likelihood. Moreover, it is
not clear what should be the effective sample size n in cal-
culation of AICc, as there can be covariates that affect
individuals that vary over time, or space. Nevertheless,
the use of AIC is straightforward in many problems
and, as a result, it has gained widespread use in cap-
ture-recapture models since the publication of Burnham
and Anderson (2002).
Bayesian model selection is somewhat less straightfor-

ward than that based on AIC or AICc. O’Hara and Sil-
lanpää (2009) provide a general review of variable
selection ideas from a Bayesian standpoint, and other
candidate approaches were evaluated by Royle et al.
(2014) in the context of SCR models (see also Kéry
and Royle 2016). The area of Bayesian model selection
has undergone rapid development and synthesis, with
many recent papers which should be consulted for
additional guidance including Millar (2009), Link and
Barker (2009), Tenan et al. (2014), and Hooten and
Hobbs (2015).
A good heuristic approach that is easy to apply when

the model consists of a small number of fixed effects is
a conventional approach based on hypothesis testing. That
is, if the posterior distribution for a parameter overlaps
zero substantially, then it is probably reasonable to dis-
card that effect from the model. A second approach,
which can be applied in many situations, is direct calcu-
lation of posterior model probabilities for a given set of
models. One idea for achieving this is the indicator var-
iable selection method of Kuo and Mallick (1998). To
illustrate how Bayesian variable selection can be applied,
consider a simple model which has a behavioral response
covariate Cik = 1 if individual i is captured prior to occa-
sion k, and Cik = 0 otherwise. The behavioral response
model posits that:

logit pik = α0 + α1Cik 5 32

Kuo and Mallick (1998) suggest expanding the model
to include a binary latent variable w Bernoulli(0.5)
and expressing the model for p according to:

logit pik = α0 +wα1Cik 5 33

Then, the variable w is estimated along with the other
parameters of the model. The importance of the covariate
C is thenmeasured by the posterior probability thatw = 1.
These ideas are demonstrated by Royle et al. (2014), and
covered by Royle and Dorazio (2008). Link and Barker
(2009) have good coverage of computing posterior model
probabilities and general issues related to Bayesian model
selection.
An AIC-like approach that has gained considerable

traction in Bayesian analysis is the Deviance Information
Criterion or DIC (Spiegelhalter et al. 2002). AlthoughDIC
is widely used, there seem to be several variations, and a
consistent version is not always reported across comput-
ing platforms. Even statisticians do not have general
agreement on practical issues related to the use of DIC
(Millar 2009). Royle et al. (2014) evaluated the use of
DIC for SCR models and suggest that it can produce sen-
sible results if the hierarchical structure of the models is
the same but only the fixed effects are being varied. The
authors also suggested that attempts to evaluate or cali-
brate the use of DIC for any specific problem should be
made. The main advantage of DIC as a model selection
criterion is ease of calculation. Model deviance is defined
as −2log(L); i.e. for a given model with parameters θ: Dev
(θ) = −2 ∗ logL(θ|y). The DIC is defined as the posterior
mean of the deviance, Dev(θ), plus a measure of model
complexity, pD: DIC = Dev(θ) + pD. The standard defini-
tion of pD is pD =Dev θ −Dev θ where the second term
is the deviance evaluated at the posterior mean of the
model parameter(s), θ. The pD term here is interpreted
as the effective number of parameters in the model.
Gelman et al. (2004) suggest a different version of pD
based on one-half the posterior variance of the deviance:
pV = Var(Dev(θ) y)/2. While DIC is easy to compute,
care should be taken in its application, especially in the
context of models with latent variables (Millar 2009).

5.7.2 Goodness-of-Fit

In practical settings, we estimate parameters of a desira-
ble model, or maybe several models, with the idea of using
one or all of them to produce an estimate of N along with
some statement of uncertainty. For that to be a valid
statement of uncertainty we would like to be confident
that our model is a reasonable approximation to truth.
Or, in other words, does the model appear to be an ade-
quate description of our data? Formal assessment of
model adequacy or goodness-of-fit is a challenging prob-
lem and there are no all-purpose algorithms for doing this
in either frequentist or Bayesian paradigms (Chapter 2).
However, in many cases, whether Bayesian or frequentist,
the main idea for assessing model fit is the same: we com-
pare data sets from the model we are interested in with
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the data set we have in hand. If they appear to be consist-
ent with one another, then our faith in the model
increases, at least to some extent, and we say that the
model fits.
In simple cases, using classical inference methods, it is

sometimes possible to identify a test statistic of theoret-
ical merit, perhaps with a known asymptotic distribu-
tion. For classes of models for which the sufficient
statistic is a count statistic, we can apply conventional
fit testing ideas based on chi-square statistics using
the Pearson residual, based on the difference between
the observed and expected frequencies. Otis et al.
(1978, appendix K) provide some examples of this for
the basic models such as Mb and Mt. These classical
ideas provide a satisfactory approach for simple models
where the sufficient statistic is a vector of count frequen-
cies but, in general, this will not be the case, including
any model containing individual level effects, such as
in SCR models, or individual covariate models. In these
cases, it is not possible to reduce the data to sensible
count statistics, or the choice of a fit statistic may not
be obvious. There is little guidance in the literature on
goodness-of-fit in the context of capture-recapture
models based on individual encounter histories. There-
fore, only tentative guidance can be given. For this, we
draw on analogies with site-occupancy models which
have a similar data structure, in that they are composed
of encounter histories for individual sites. MacKenzie
and Bailey (2004) suggest a goodness-of-fit testing
framework based on aggregating data into unique
encounter histories, and Kéry and Royle (2016,
section 10.8) adapted this strategy based on aggregating
data into row or column totals which, in the context of
capture-recapture, would be individual encounter
frequencies or sample occasion encounter frequencies.
It seems reasonable to use a parametric bootstrap to
characterize the null distribution of such a statistic.
To our knowledge, no one has investigated this
approach for capture-recapture models.
For Bayesian analyses, the most effective practical

approach for evaluating model fit seems to be based on
the Bayesian p-value (Gelman et al. 1996) which has
not been widely applied in capture-recapture models
(but see chapter 8 of Royle et al. 2014). Using this
approach, data sets are simulated from the posterior
distribution, and some fit statistic is computed for each
simulated data set, usually based on the discrepancy of
the observed data from its expected values. The same
fit statistic for the actual data set at hand is then compared
to the posterior simulated values of the fit statistic. The
Bayesian p-value is the proportion of times the fit statistic
for the simulated data is greater than that of the observed
data. A model that is adequate for a given data set should
have a Bayesian p-value that is not too close to 0 or 1. For

practical purposes, we might judge this to be greater than
0.10 and less than 0.90.

5.7.3 What to Do When Your Model Does
Not Fit

Invariably with large and complex data sets, situations
may arise in which the global model as the most complex
model of possible interest, or a reduced model of interest,
simply does not fit the data set at hand. In this case, a
standard suggestion is to calculate a variance inflation
factor or c-hat, an adjustment parameter that is also
referred to as a lack-of-fit ratio or a quasi-likelihood
adjustment for over-dispersion. For some background
on this in the context of capture-recapture models see
Williams et al. (2002; p. 323) and Cooch and White
(2008, chapter 5). The c-hat statistic is the ratio of the
fit statistic computed for the actual data to its expected
value. In classical capture-recapture applications of good-
ness-of-fit assessment, inference for nonfitting models is
dealt with by inflating the resulting standard errors of the
nonfitting model by the square-root of c-hat (as done in
Program Mark, White and Burnham 1999). Kéry and
Schaub (2012, p. 401) apply an idea similar to the c-hat
adjustment but in the context of Bayesian analysis and
Bayesian p-values. Kéry and Schaub compute a c-hat-like
statistic as the ratio of the fit statistic computed for the
actual data to that of the replicate data sets, and interpret
the parameter as analogous to the classical c-hat for like-
lihood-based inference. Additional guidance and exam-
ples of assessment of model fit are given throughout
Kéry and Royle (2016).

5.8 Open Population Models

In extending capture-recapture models to demographi-
cally open populations, the major change is that indivi-
duals may enter (by birth or immigration), or exit
(death and emigration) between sampling occasions.
A relatively large class of open models allows individuals
only to exit the population, such as time-since-marking
models which condition on first capture in the traditional
Cormack–Jolly–Seber model. Alternatively, the model of
Jolly (1965) and Seber (1965) also allows for entry into the
population as well via recruitment or immigration pro-
cesses. Open population models allow for the estimation
of abundance at each capture occasion, along with popu-
lation dynamics parameters such as survival and recruit-
ment (Chapter 7). In many applications of open
population models, it is conventional or even necessary
to interpret survival and recruitment as effective survival
and recruitment, which includes both true birth/death
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and also immigration/emigration. A critical difference
between the closed models and open models that allow
abundance estimation is that behavioral effects, for
example trap happiness or trap avoidance, cannot be
accommodated in traditional parameterizations of open
population models, and will result in bias in N, if the
effects are present. It is therefore important that newly
encountered individuals have the same detection proba-
bility as previously encountered individuals. If this
assumption holds, Jolly–Seber models can be useful for
estimating abundance.
Historically, a number of specific formulations have

been developed of open population models, which we
collectively describe as Jolly–Seber type models. Cooch
and White (2008; chapter 12) provide a good technical
development and literature review of these different
formulations of the model. One of the key formulations
is the super-population model in the Schwarz and Arna-
son (1996) formulation. In this parameterization, the
model is parameterized in terms of distinct survival
probabilities, and the total population size over the
duration of the study, called the “super-population,”
say Nsuper. Then, the recruitment model allocates the
Nsuper individuals among the T years using a multino-
mial model based on when they recruited to the
population.
A limitation of classical formulations of Jolly–Seber

type models is that they are not formulated in terms of
individual encounter histories, but instead are based on
sufficient statistic summaries of the data such as encoun-
ter history frequencies. As a result, modeling individual
level effects, for example individual covariates, heteroge-
neity, or latent spatial location as in SCR models, is not
possible. However, Bayesian analysis of Jolly–Seber type
models based on data augmentation (Royle and Dorazio
2008; Kéry and Schaub 2012; Royle and Dorazio 2012)
permits general formulations of open population models
that can easily be extended to models with individual
effects. Bayesian analysis of the Jolly–Seber model using
data augmentation is based on a convenient state-space
formulation of the model involving an individual “alive
state”, zi, t, a binary variable indicating whether individual
i is alive (zi, t = 1) or dead (zi, t = 0) during time period t.
The state model allowing for recruitment and survival
is described by two component models, one for the initial
state

zi, t Bernoulli γ1 , 5 34

and a model describing subsequent state transitions:

zi, t +1 zi,1,…,zi, t

Bernoulli zi, tϕi, t + γt +1
t

k = 1

1−zi,k , 5 35

whereϕi, t is the apparent survival probability of individual
i during the interval (t, t + 1) and γt are effective “recruit-
ment” parameters. In the context of Bayesian analysis
using the data augmentation formulation, the data set is
augmented up to a large size M, and then γ1 is the prob-
ability that z1 = 1 in period 1 relative to a super population
of sizeM and γ2,… , γT − 1 are then probabilities relative to
individuals that have not yet been recruited. The γt para-
meters are related to recruitment in the sense that the
number of births during period t, Bt, is a function of the
γt parameters. For t = 1, E(B1) =Mγ1 and for t > 1,

E Bt =M
t−1

k = 1

1−γk γt 5 36

The observation model for this formulation of the
Jolly–Seber model is specified conditional on the latent
state variable zi, t. For example, when there is only a single
sampling of the population during each period t, the
observation model is

yi, t zi, t = 1 Bernoulli pi, t 5 37

and, if zi, t = 0, yi, t = 0 with probability 1.
An advantage of this state-space formulation of the

Jolly–Seber model is that it is based on individual obser-
vations and individual states, and therefore one can
develop general models in which parameters depend on
individual. As an example, a model with individual heter-
ogeneity in ϕi, t is

logit ϕi, t = μt + ηi, 5 38

where ηi Normal(0, σ2). It also easily accommodates a
SCR observation model (Gardner et al. 2010b) in which
the observations also depend on trap locations xj (the
location of trap j), and individual activity centers si as
in the basic SCR models described previously.
We noted at the beginning of this section that there are

several classical non-Bayesian formulations of the Jolly–
Seber model which are not based on individual level
encounter data. Conversely, there are also a number of
distinct Bayesian formulations of individual-level Jolly–
Seber models. Each set of models are effectively different
parameterizations for the recruitment process. See Kéry
and Schaub (2012) for details and examples of the
available models.

5.9 Software Tools

Capture-recapture models described in this chapter are
easily analyzed using both Bayesian and classical likeli-
hood methods. Most applied Bayesian analyses are con-
ducted with general-purpose software for carrying out
MCMC, such as WinBUGS (Lunn et al. 2000) or JAGS
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(Plummer 2003). Given what amounts to a pseudo-code
description of the model, each of these pieces of software
comes up with an algorithm for conducting the MCMC
sampling of the posterior distribution. These BUGS
engines can be called from R using convenient packages
R2WinBUGS (Sturtz et al. 2005), Rjags (Plummer 2003),
or jagsUI (Kellner 2014). Most of the existing BUGS
implementations of capture-recapture models for esti-
mating N are based on the use of data augmentation
(Royle et al. 2007a; section 4.1). Extensive coverage of
implementations based on data augmentation using the
BUGS language to fit closed and open population models
can be found in Royle and Dorazio (2008), Kéry (2010),
and Kéry and Schaub (2012). The general considerations
for choosing priors, and conducting MCMC, are not
unique to capture-recapture models and so we avoid a
detailed discussion here, but see Kéry (2010), Link and
Barker (2009), or King et al. (2010), and especially Kéry
and Schaub (2012) which has quite a bit of material on
analysis of both closed and open population capture-
recapture models.
Themost frequently used software today for likelihood-

based abundance estimation and inference about
population size is Program MARK (White and Burnham
1999; Cooch andWhite 2008), which has largely replaced
earlier packages for fitting closed population models
(primarily CAPTURE; White 1982). Within Program
MARK, one can fit a wide variety of model types, including
most broadly, either the conditional likelihood (Huggins
1989; Alho 1990) or full likelihoodmodels (section 14.3 of
Cooch and White 2008. The design matrix within MARK
provides flexibility to the user in terms of effects to
include (time and behavior). Heterogeneity can be
accounted for in several ways: within the conditional

likelihood models, individual covariates can be integrated
to model heterogeneity in detection. The finite mixture
model of Pledger (2004) can also be fit. Program MARK
also allows users to fit the Jolly–Seber models, other
classes of open population models, and multistate
models. An R package, Rmark, is also available to
facilitate use of Program MARK for R users.
A number of specialized R packages exist for inference

about N in capture-recapture like data. The package
secr can fit a wide range of SCR models including those
relevant to camera trapping, live trapping, sampling by
acoustic detectors, and many other classes of models
(Efford 2011). The R package unmarked was designed
specifically to deal with data from unmarked individuals
(Fiske and Chandler 2011), and implements likelihood
analysis of certain classes of multinomial-mixture models
described by Chandler et al. (2011). See also chapter 7 of
Kéry and Royle (2016). The model structure which can be
handled by unmarked allows for multinomial observa-
tions (which includes basic capture-recapture models)
based on population sizes Ng and prior distributions for
Ng such as Poisson or negative binomial, where the mean
may depend on explicit covariates.

5.10 Online Exercises

We illustrate the application of some of the standard
capture-recapture models as well as a SECR using cap-
tures of deer mice (Peromyscus maniculatus, Box 5.1).
An R script to process the data and reproduce the ana-
lyses is available in the R package oSCR (Sutherland et al.
2019 see the help file? peromyscus; the oSCR package
can be installed from github [Box 5.1]).

Box 5.1 Example of Peromyscus Trapping Grid Data

We illustrate the application of some of the standard cap-
ture-recapture models as well as a SECR using captures of
deer mice (Peromyscus maniculatus). Mice were captured
over a five-day period on a trapping grid comprised of
121 live traps arranged in a square with 25-m spacing
between traps (Figure B5.1.1). For this specific trapping
grid, n = 66 individuals were captured a total of 185 times
over the K = 10 sampling occasions (five morning and five
afternoon occasions). The data represent a subset of a lar-
ger dataset from an experiment using spatially and tem-
porally replicated trapping grids to evaluate impacts of
forest fuels management practices (Converse et al. 2006;
Royle and Converse 2014). An R script to process the data
and reproduce the analyses here is available in the R

package oSCR (see the help file? peromyscus; the oSCR
package can be installed from here: https://github.com/
jaroyle/oSCR).
For this data set, we considered versions of models Mt,

Mb, and Mh and various combinations of these models.
Time of day is thought to affect encounter probability
due to the nocturnal habits of deer mice. Thus, we model
this time effect as a binary “dummy variable” distinguish-
ing morning and afternoon trap checks, and include it as
an additive effect on the logit of detection probability (i.e.
a version of model Mt). As is standard in small mammal
trapping studies, the traps were baited, here with rolled
oats and chicken feed, and so it is reasonable to expect
a positive or trap-happy behavioral response. This effect
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5.11 Future Directions

In this chapter we provided an overview of capture-
recapture models for estimating population size. We cov-
ered the basic catalog of models introduced by Otis et al.

(1978), including modelsM0,Mb,Mt, and two treatments
of heterogeneity models (model Mh), which allow
unstructured individual variation in encounter or detec-
tion probability p. We also covered individual covariate
models, in which one or more covariates thought to

was modeled using a dummy variable indicating whether,
on a given occasion, an animal had been previously cap-
tured (Mb). Again, the behavior effect was included as an
additive effect on the logit of detection probability. We
considered the behavior effect alone and in combination
with the time effect. We also fit two versions of model Mh:
the logit-normal model and the two-component fixed
mixture model. Model selection results based on AIC indi-
cated a clear importance of both the behavioral response,
which was strongly positive (i.e. trap happy), and a time
effect with higher detection probability at morning trap
checks.

Wealso fit several SCRmodels. Thesemodels contain an
additional parameter σ (not related to the parameter of
the same label in the logit-normal heterogeneity model)
which relates encounter probability to the distance
between individual activity center (a latent variable)
and traps. Therefore, SCR models account for individual
heterogeneity in the form of an explicit mechanism –
spatial organization of traps relative to individual home
ranges, as opposed to regarding it as a latent variable

having no explicit interpretation – as is the case in the
two versions of modelMh presented above. All SCR mod-
els require specification of an explicit state-space, defin-
ing the possible locations for activity centers. For the
analysis here, we used a regular spacing of points near
the trapping grid. We considered including either a
behavioral response alone or in combination with the
time effect. For the model fit here, we used a local behav-
ioral response inwhich the probability of capture at a trap
changes only for the trap of capture, but not other traps. It
is not possible to formally compare the SCR models to
ordinary capture-recapture models because the data
used to fit each class of models is different. For ordinary
capture-recapture models, the data are the 2d array of
individual × occasion encounter histories, and for the
SCRmodels the data are the 3d array of individual × trap ×
occasion encounter histories.
The key issue that motivates the importance of SCR

models compared to ordinary capture-recapture models

is that the interpretation of N under the ordinary capture-
recapture models is imprecise. In other words, the descrip-
tion of any ordinary CR model does not involve any
explicit statement about the relevant sampling area that
N applies to. Conversely the SCR model uses the state-
space which is part of the model in the sense that it
defines the support of the individual random effect si,
and thus it interacts explicitly with the data and SCR
model parameters as part of the formal estimation proce-
dure. If you change S then N will change. As with the ordi-
nary CR model, the best SCR model contains both a
behavioral response and a time effect. We note that these
are not directly comparable to those of the ordinary
model because we fit a model in which the behavioral
response is trap-specific, and the probability of encounter
is also affected by distance. This model estimates about
6.75 individuals/ha which is more directly interpretable

than is the estimate of N = 68 under the similar ordinary
CR model. If animals trapped on the grid only occupied
the area of the trapping grid itself, 6.25 ha, we would have
a density estimate of 68/6.25 ha or 10.88 individuals/ha.
We can see that the spatial CR model has allowed us to
account for the larger effective sample area, and without
having to guess at its extent.
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Figure B5.1.1 Trapping grid of 121 traps (red + signs) and the
state-space (black dots) used in fitting the spatial capture-
recapture (SCR) model.
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influence detection probability is measured on each indi-
vidual that is captured (model Mx). Individual covariate
models provide a natural transition to the relatively
new class of models known as SCR or SECR. SCR models
are similar to individual covariate models, where the indi-
vidual covariate is the unobserved activity center of indi-
viduals. SCR models link observations to the activity
center using a model for encounter probability that posits
a decreasing function of distance between traps and activ-
ity centers. SCR models show promise for integrating
many theories of spatial population ecology with individ-
ual encounter history data obtained by standard methods
for the study of animal populations such as camera trap-
ping and noninvasive genetic sampling (Royle et al. 2018).
Last, we reviewed Jolly–Seber type models for estimation
of abundance in open populations.
However, there are a number of topics not covered

here, or only mentioned sparingly, which are active
research areas. One topic of practical importance that
needs more attention is the assessment of model fit for
capture-recapture models that include individual-level
effects. Model fit is an issue whether one adopts a likeli-
hood or Bayesian approach to inference. Work is needed,
both to develop fit statistics that are suitable under
important assumption violations, and also studies to
assess the power of those fit statistics.
Another methodological area of enormous practical

relevance is that of modelingmisidentification ormisclas-
sification of individuals in capture-recapture. Interest in
this problem has been motivated largely by errors in
genetic identification of individuals (Lukacs and Burn-
ham 2005; Link et al. 2010) and, as a result of that specific
context, stands to grow more in importance as genetic
methods become less expensive and more widely used.
However, the concept of uncertain identity is also rele-
vant to camera trapping (Royle 2015; Augustine et al.
2018), and sampling based on multiple marking methods
(McClintock 2015).
Methods that estimate population size or density in the

absence of unique identification of individuals also seem
promising. There are at least two distinct lines of work:
one based on SCR, such that there is auxiliary information
about where the encounters are made (Chandler and
Royle 2013; Sollmann et al. 2013a,b), and one in which
the spatial observations are assumed to be measurements
on independent replicate populations (Dail and Madsen
2011). We covered SCR models in this chapter, but we
think this topic will continue to expand as technology
becomes cheaper and more widely deployed. A recent
synthesis of SCR methods is Royle et al. (2014). Mark-
resight models, which combine data on marked and
unmarked individuals, are under active development
and have great practical relevance to many studies in
which capture of individuals is difficult (McClintock

et al. 2009; Pledger et al. 2009; Sollmann et al. 2013b;
Lyons et al. 2016).
Due to the explosive growth of new technologies such

as camera trapping and DNA sampling, capture-
recapture methods can be applied in situations that only
a few years ago were impractical to study. Due to rapid
and widespread adoption of these new technologies, cap-
ture-recapture methods are more practical and relevant
than ever before. New technologies combined with new
analytic methods stand to revolutionize the ways that ani-
mal populations are studied.
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Estimating Survival and Cause-specific Mortality from Continuous Time Observations
Dennis L. Murray and Guillaume Bastille-Rousseau

Department of Biology, Trent University, Peterborough, Ontario, Canada

Summary

Ecologists must understand the causes and demographic consequences of mortality to properly conserve and manage popula-
tions. Survival data collected in continuous time can yield robust survival estimates with high precision, but currently these
methods are underused in ecology. Continuous time survival data can be derived from studies ranging from direct observation
of stationary nests to radio telemetry of free-ranging animals; consistently, these designs involve intensive monitoring and high
probability of detection of individual subjects. Continuous time survival rates are calculated using estimators that define time
intervals either by constant risk periods (e.g. Mayfield, Heisey–Fuller) or mortality events (e.g. Kaplan–Meier, Nelson–Aalen);
these estimators differ in their assumptions and suitability for specific study designs and datasets. Univariate survival rate com-
parison using simple nonparametric tests is ill-suited for ecological data because of common irregularities like few mortalities,
staggered entry of subjects, and right censoring of survival timelines. Semi-parametric Cox proportional hazard (CPH) models
offer robust insight into relative hazard while allowing researchers the flexibility to address study design complexities including
multiple predictors, random effects, and time-dependent variables. Fully parametric survival models rarely provide improve-
ment over a semi-parametric approach and require that underlying survival distributions are known, which is uncommon in
ecology. An additional advantage of a continuous time study design is that precise timing of the mortality event is determined,
potentially also allowing researchers to identify cause of death. Cause of death information is the basis for competing risks
analysis, which extends the CPH approach to multiple mortality agents. Although infrequently used in ecology, competing
risks analysis can be especially useful in conservation and management by revealing the relative importance of different risk
types and whether they are additive or compensatory to other mortality sources. Knowledge gained from competing risks anal-
ysis can be especially valuable for appropriately targeting mitigation efforts. Newer approaches in survival analysis, including
mixed-effects modeling and Bayesian methods, hold promise for refining inference from continuous time datasets. In sum,
research in ecology will benefit from expanded collection and analysis of continuous time survival data, with new tracking
technologies like camera-based monitoring and satellite-based radio telemetry being especially noteworthy for supporting
novel analysis and insight. Ultimately, better integration of continuous time survival and competing risks analyses will con-
tribute importantly to future advances in population ecology and conservation biology.

6.1 Introduction

Population ecologists have a longstanding interest in
understanding the causes and consequences of mortality
in organisms. Understanding when and where an animal
or plant dies, what is the cause of death, and whether
predisposing factors led to the mortality event, is of par-
amount relevance to research ranging from demographic
analysis to conservation biology (Grosbois et al. 2008;
Nussey et al. 2008). At its core, an individual’s survival
rate (or mortality rate, where survival = 1 – mortality)
is central to estimates of fitness and thus is a necessary

consideration when investigating evolutionary processes
(Metcalf and Pavard 2007). Population-level survival
and mortality estimates are fundamental to understand-
ing population status and viability, community interac-
tions, and ecosystem resilience (McCallum 2000;
Morris and Doak 2004). Yet, population ecologists face
substantive logistical challenges when studying survival
and mortality in natural settings. Free-living organisms
often occur at low density and have cryptic lifestyles, or
else exhibit elusive or vagile behavior or prolonged
periods of stasis or dormancy. Not only do such con-
straints make it difficult to implement a robust survival
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monitoring schedule, but they limit the ability to effec-
tively survey mortality risk continuously through time.
When survival monitoring is infrequent or has a low
probability of detection, status and fate of individuals can-
not be inferred directly, which challenges our ability to
obtain unbiased survival estimates. In fact, the reliability
and rigor of survival research is a general concern in pop-
ulation ecology (McCallum 2000; Williams et al. 2002;
Murray 2006), leading to efforts to improve monitoring
and estimation through both careful design and
implementation of observational studies, and adoption
of analytical procedures that provide robust inference
while accounting for limitations in ecological datasets.
Contemporary methods in survival analysis repeatedly

track uniquely marked individuals until they reach an
endpoint like death or loss from the survey (Figure 6.1).
Owing to the challenges of monitoring individual free-
living organisms and documenting their fate, survival
research in ecology can involve indirect and infrequent
detection, leading to incomplete confirmation of the

organism’s status and discrete survey events that are
separated by time gaps that can last days, months, or even
years. In fact, ecologists commonly survey animals via
live-capture, opportunistic field observation, or from
noninvasive genetic methods, and then use capture-
mark-recapture (CMR) statistics to estimate probability
of survival (Chapter 7). Survival estimates based on
CMR methods are usually approximations (i.e. “apparent
survival,” sensu White and Burnham 1999) because the
sampling protocol is discrete, and mortality, emigration,
and other fates usually are not known. Alternative models
are being developed to more precisely estimate survival
from discrete time data (Barbour et al. 2013; Schaub
and Royle 2013; Chapter 7), but there is no substitute
for monitoring individuals continuously through time
and documenting their fate directly. Yet, this protocol
requires specialized monitoring and statistical proce-
dures based on known-fate methods (sensu White and
Burnham 1999). Continuous time survival monitoring is
logistically more demanding and not possible or

Infrequent survey
Repeated/continuous

monitoringMonitoring
scheme

No Yes

Yes
Cohort tracked
during lifespan

Individually marked
subjectsLife table

methods

Parametric
survival
methods

Low certainty High certaintyDetection
probability

Monitored during
discrete intervals

Survival time

Monitored
continuously

Lived/dead
recovery
models

Discrete / interval
censored survival

models

Unknown

UnknownUnknown

Known

Known Known
Cause of deathCause of death

Underlying
survival

distribution

Semi-parametric
survival models

Semi-parametric
competing risks

models

Parametric
survival models

Parametric
competing risks

models

Figure 6.1 Conceptual diagram for selecting a continuous time survival analysis approach. Individuals must be distinguished and
monitored repeatedly with high detection probability. Monitoring frequency should be sufficiently intense to develop a continuous survival
timeline. Whether the underlying survival distribution and cause of death are known will determine whether fully parametric and
competing risks methods can be used. Source: Adapted from Murray and Patterson (2006).
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appropriate for all field studies, but when available, data
from such studies can offer less bias and increased
precision compared to their discrete time counterparts.
Notably, discrete time and continuous time analytical
methods yield similar survival estimates when monitor-
ing and detection frequency converge, even though both
approaches remain philosophically and computationally
distinct (Efron 1988; Williams et al. 2002).

6.1.1 Assumption of No Handling, Marking
or Monitoring Effects

Organisms can be monitored in a continuous or semi-
continuous manner using a variety of approaches, and a
fundamental assumption in survival research is that
researcher activities and marking methods do not affect
subjects. Stationary subjects like plants or nest sites can
be individually tagged and assessedmanually by observers
or through deployment of field cameras; many verte-
brates and some invertebrates can be tagged and moni-
tored using very high frequency (VHF) transmitters
that are detected remotely using radio telemetry; more
recently, larger species are monitored using Global Posi-
tioning System (GPS) or satellite-based transmitters
(Bridge et al. 2011; Mansfield et al. 2012; Kissling et al.
2014). These activities and devices allow researchers to
potentially track the status of individuals continuously
through time, and thereby facilitate precise death time
estimation compared to more passive monitoring
approaches that serve in discrete time survival research.
Yet, procedures like repeated visitation of nest sites, or
capture and handling of animals for radio transmitter
deployment, or even the effects of radio transmitters
themselves on animal behavior, condition, and fitness,
are potentially impactful to subjects. In fact, it is reason-
able to suggest that monitoring protocols and devices
used in continuous time data collection tend to be more
invasive, with more frequent monitoring andmore obtru-
sive tags, than methods used for discrete time survival
research. For example, we know that if predators follow
human scent when searching for food, nest-site visitation
by researchers may increase predation risk (Major 1990;
Kurucz et al. 2015; but see Ibáñez-Álamo et al. 2012). We
also know that stress associated with animal capture and
handling can have marked impacts on post-capture sur-
vival probability (Gilbert et al. 2014; Chitwood et al. 2017;
DelGiudice et al. 2018). Further, radio transmitters are
sometimes deployed on individuals that are either too
small or too sensitive to carry the tags (Paquette et al.
1997; Saraux et al. 2011). In fact, some research activities
or tag types may have subtle effects that are not easily dis-
cerned or quantified using standard monitoring
approaches (Hamel et al. 2004; Brooks et al. 2008;
Ludynia et al. 2012; Vandenabeele et al. 2012). Although

assessing the pros and cons of different monitoring and
tagging methods is beyond the scope of our chapter, we
remind that the potential effect of proposed monitoring
activities and devices on subjects should be understood
prior to initiating a survival study. Resources are available
for evaluating the potential effects of handling and
marking (Murray and Fuller 2000; Barron et al. 2010),
and guidelines are available to help design field proce-
dures having minimal researcher impacts (Hawkins
2004; Casper 2009). Thus, at the outset of a continuous
time survival study researchers should consider carefully
whether research activities are likely to affect subjects,
how field procedures and tags can be adjusted to mini-
mize potential negative effects, and if necessary, how such
effects can be detected, quantified, and addressed via data
processing or analytical adjustments.

6.1.2 Cause of Death Assessment

Continuous time detection of individuals provides addi-
tional benefits by allowing researchers to determine cause
of death through contemporaneous recovery of carcasses
and assessment of the death site. Plants and animals nor-
mally succumb to a variety of mortality agents, and know-
ing what agents are implicated is important for providing
a range of options in survival analysis (Figure 6.1). Cause
of death information is especially relevant when research-
ers aim to focus mitigation efforts to forestall population
decline or promote recovery. Yet, there are obvious logis-
tical challenges in determining cause of death in the field,
including that carcasses are difficult to recover and post-
mortem exams often provide equivocal results. Even sur-
vival studies prioritizing cause of death determination can
fail to confirm the source of mortality for a sample of sub-
jects, or else confound proximate causes of death or the
factors directly causing mortality (e.g. predation, starva-
tion) with the ultimate causes (e.g. sublethal infection,
malnutrition). For example, even though predation is
well-known as the primary proximate cause of death in
snowshoe hares (Lepus americanus), an experimental
manipulation of sublethal parasites in hares showed that
ultimately, parasitism (Murray et al. 1997) and declining
body condition (Murray 2002) contribute importantly to
hare predation. Likewise, sublethal parasitism increases
predation risk in Red Grouse (Lagopus scotica; Hudson
et al. 1992) whereas poor body condition predisposes
coral reef fish (Pomacentrus amboinensis) to predation
(Hoey and McCormick 2004). Thus, additional informa-
tion about predisposing factors is important for compre-
hensive cause of death assessment. Similarly, whether
specific risk factors incur additive or compensatory
mortality on populations remains a longstanding, albeit
understudied, interest in ecology (Burnham and
Anderson 1984; Boyce et al. 1999; Murray et al. 2010),
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and an understanding of proximate and ultimate causes
of death is an important component of such an assess-
ment. Accordingly, continuous time survival research
can contribute to disentangling the roles of different
causes of death and their demographic implications.
In this chapter, we review continuous time survival

analysis in field-based ecology. Continuous time survival
methods (i.e. “time-to-failure” or “time-to-event”models)
are appropriate in research situations where survival
monitoring is frequent with a high detection probability.
Herein, we highlight important considerations and
limitations when designing continuous time survival
research (Winterstein et al. 2001; Williams et al. 2002;
Murray 2006), and focus on the application of multiple-
variable regression-based approaches which are espe-
cially well-designed for the challenges associated with
observational field research. Our review extends to meth-
ods that account for cause-specific hazards and compet-
ing risks. Competing risks analysis is well-established in
disciplines like epidemiology and industrial design
(Crowder 2001; Pintillie 2006; Austin et al. 2016), but
until recently was rarely used in ecology (Heisey and Pat-
terson 2006). Owing to this oversight, and because collec-
tively these methods are rarely covered in ecology
undergraduate curricula and related statistical texts,
review of this topic is important for students and
researchers in population ecology.

6.1.3 Historical Origins of Survival Estimation

Human demographic analysis served as basis for contem-
porary methods in survival analysis, and an early demog-
rapher, John Graunt (1620–1674), accessed public
records of births and deaths in Renaissance London to
conduct “political arithmetick” in an effort to reveal dem-
ographic trends. Graunt pooled death records into 6–
10 year (age) intervals to show changes in probability of
survival and age-specific mortality (Figure 6.2). These
records reveal a steady decline in survival probability as
individuals age, such that by age 60 only 10% of the initial
cohort remained alive and by age 80 only 1% had survived.
This pattern translates to high mortality in age classes
spanning 0–60 years and a lower risk in later ages, likely
reflecting disproportionate loss of particularly frail indivi-
duals in the younger age classes.
In principle, we can evaluate these survival andmortality

rates using either a cumulative function representing prob-
ability of survival considering all previous age classes
(Figure 6.2a), or as age-specific mortality rates that reflect
probability of death during a specific time interval
(Figure 6.2b). Note that Figures 6.2a and b could have been
expressed as the mortality function and the age-specific

survival rate, respectively, because of the aforementioned
“1 minus” property between survival and mortality.
Today, Graunt’s analysis serves as an important

foundation in statistical demography (Wainer and
Velleman 2001; Egerton 2005); a similar example in
ecology comes from Adolph Murie’s study of Dall sheep
(Ovis dalli) skulls collected over several years near Mt.
McKinley, Alaska (Murie 1944). Murie estimated age of
death from tooth wear and developed life tables to calcu-
late mortality and lifespan in amanner similar to Graunt’s
approach with human public records (Box 6.1). Murie
showed that Dall sheep have qualitatively similar survival
patterns to those seen in humans, except that the decline
in survival probability in the middle age classes is more
restrained (Figure 6.2c). Age-specific variation results in
lower age-specific mortality among middle-aged sheep
compared to young and old individuals (Figure 6.2d).
Note that the parallels between the Graunt and Murie

datasets extend beyond the basic shape of the survival
functions. The life table approach used by both research-
ers constitutes a rather blunt survival analysis and differs
from modern methods by being retrospective and recon-
structive by using information from individuals who have
already died rather than those whose risk was actively
monitored (Figure 6.1). Use of age at death data is a
cross-sectional assessment of a given population rather
than a longitudinal study that follows survival of a cohort
of individuals through real time. In fact, the human and
sheep studies hinge on assumptions related to temporal
consistency in both mortality risk and mortality report-
ing, and that the population age distribution and size
are virtually stationary (Anderson et al. 1981); these
assumptions are probably unrealistic and untestable for
either dataset. More broadly, life table methods are espe-
cially problematic for long-term study of organisms living
in highly variable environments where survival monitor-
ing is opportunistic and probability of detection is low.
For example, if emigrating sheep are subject to higher
mortality risk but leave no evidence of their fate during
field collections, they would be under-represented and
the resulting survival estimate would be biased. Similarly,
if smaller or more fragile lamb skeletons are less likely to
be detected, juvenile survival may be overestimated
(Gilbert et al. 2014). Fundamentally, life tables fail to track
how individual mortality risk varies through time. In con-
trast, a well-designed continuous time survival study
actively tracks individuals as they experience individua-
lized and variable risk exposure. The specific approaches
and limitations of life table methods in ecology, including
as a means of survival analysis, are discussed elsewhere
(Hastings 1997; McCallum 2000; Neal 2004). The
remainder of our chapter focuses specifically on survival
monitoring of individual subjects in continuous time.
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6.2 Survival and Hazard Functions
in Theory

To properly track risk through continuous time, we must
establish representative survival timelines for individual
subjects. Quantitative survival estimation measures the
cumulative survival function S(t) and the hazard function
h(t) of individuals. Assume that T is a non-negative
random variable denoting time-to-failure (i.e. death), so
that the survivor function represents the cumulative

probability of survival of an individual at least until a
specified time, t;

S t =Pr T ≥ t 6 1

The survivor function reflects the probability that there
is no event prior to t, which is identified as the start of the
monitoring period. Therefore, the survival rate equals 1
when t = 0 and decreases to zero as t approaches infinity
(Figure 6.3a). Indeed, across a sufficiently long study
duration all subjects will eventually succumb tomortality,
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Figure 6.2 Cumulative survivorship (a) and (c) and age-specific mortality rate (b) and (d) in humans (approximately 8 year block) and Dall
Sheep. Datasets for humans and sheep were from Graunt (1662) and Murie (1944), respectively.
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although in a time-to-failure context, those who are lost
from the study and thus succumb to an unknown fate
only contribute to S(t) while they are successfully
detected. Variable T can be considered as either contin-
uous or discrete, with the former tallying death over
distinct, fixed-length time intervals and the latter tracking
mortality across largely uninterrupted timelines. For
example, if researchers monitor turtle nest survival by
relocating nests on foot, daily visitation is probably nec-
essary to achieve the uninterrupted timeline for a contin-
uous time analysis; less frequent detection will result in
discrete time intervals with uncertain timing of death
events, potentially warranting a discrete time analysis.
As time progresses, the survival function based on

cumulative probability of survival inevitably declines, as
did survival functions for humans (Figure 6.2a) and Dall
sheep (Figure 6.2c). The shape of the survival function
reflects how mortality risk changes with time, with

steeper declines indicating increased risk as the individual
ages. Thus, we can consider the cumulative distribution
function of the survival timeline, F(t), which reflects the
probability of dying by T and is the complement of the
survivor function:

F t = 1−S t =Pr T ≤ t 6 2

The trajectory of the cumulative distribution function
under a range of scenarios is described in Figure 6.3b. It
may be helpful to consider the cumulative distribution
function as equivalent to a cumulative mortality
function.
The hazard function h(t) is the fundamental unit in the

statistical analysis of survival and represents the instanta-
neous failure rate, or in other words, the instantaneous
risk of death conditional upon the subject’s survival to
the beginning of the time interval (Cleves et al. 2010).
Expressed in terms of probabilities, the hazard function is:

Box 6.1 Life Table Analysis

Murie (1944) collected skulls from Dall sheep found dead
near Mt. McKinley in Alaska. Skulls were aged based on
tooth wear, allowing estimation of the number of animals
dying in each age class (x). We can then use a life table
approach to reconstruct the demography of the popula-
tion. From an initial sample of 608 sheep skulls, Murie cal-
culated the number left alive (nx) when expressing the
starting population as 1000 individuals (i.e. conversion
factor: 1000/608 = 1.645). Number of sheep dying in age

class x is: dx = nx – nx + 1. Proportion of the total population
surviving (lx) is: lx = nx/n0 and the mortality rate (qx) is:
qx = dx/nx. The average number of individuals alive in each
age class (Lx) is: Lx = (nx + nx − 1)/2. We can determine age-
specific life expectancy (ex) by calculating: ex = Tx/nx, where
Tx =

∞
x Lx . The life table for the Dall sheep population is

provided below, and proportion surviving and mortality
rate relative to age are graphed in Figure 6.2c and d,
respectively.

Age class (x)
Number
alive (nx)

Number
dying (dx)

Proportion
surviving (lx)

Mortality
rate (qx)

Avg. no. alive
in age class (Lx) Tx

Life
expectancy (ex)

0–1 1000 199 1.000 0.199 900.5 7053 7.0

1–2 801 12 0.801 0.015 795 6152.5 7.7

2–3 789 13 0.789 0.016 776.5 5357.5 6.8

3–4 776 12 0.776 0.015 770 4581 5.9

4–5 764 30 0.764 0.039 749 3811 5.0

5–6 734 46 0.734 0.063 711 3062 4.2

6–7 688 48 0.688 0.070 664 2351 3.4

7–8 640 69 0.640 0.108 605.5 1687 2.6

8–9 571 132 0.571 0.231 505 1081.5 1.9

9–10 439 187 0.439 0.426 345.5 576.5 1.3

10–11 252 156 0.252 0.619 174 231 0.9

11–12 96 90 0.096 0.937 51 57 0.6

12–13 6 3 0.006 0.500 4.5 6 1.0

13–14 3 3 0.003 1.000 1.5 1.5 0.5
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h t = lim
Δt 0

Pr t ≤T < tΔt T > 1
Δt

6 3

Equation (6.3) illustrates that the probability of survival
past T is a function of the risk as time approaches zero
(Figure 6.3c), meaning that the hazard rate represents
the risk of death over an infinitesimally small time unit.
Practically speaking, to achieve Δt 0, survival status
should be monitored over short time intervals with a high
probability of detection, although to some degree these
criteria can be relaxed if hazard is very low. For instance,
in the case of turtle nest monitoring it may be possible to
relax daily monitoring if mortalities are especially
infrequent or if the timing of death can be estimated with
little error. Ultimately, continuous time survival analysis
requires that subjects are monitored intensively so that
timelines are largely uninterrupted, and timing of
mortality is precisely known.
An important difference between the survival and

hazard function is that while survival rates are bounded
from zero to one and the survival function experiences
a constant decline when plotted against time, hazard rates
can range from zero (no risk) to infinity (certainty of
death) and can increase, decrease, or follow irregular
patterns depending on how risk changes with time. If
mortality risk increases dramatically with age, the survival
function declines rapidly while its corresponding hazard
function increases; conversely, if risk decreases with age,
the survival function declines gradually and the hazard
declines as well (Figure 6.3c). The hazard function is
linked to its survival function through the corresponding
probability density function, f(t), where:

h t =
f t
S t

6 4

Note that the notation used implies that the capitalized
term (i.e. F(t)) represents the cumulative sum, whereas
the lowercase (i.e. f(t)) is its first derivative [Figure 6.3].
To estimate the hazard function from the survival
function, we note that the first derivative survival
function, S (t), and probability density function, are linked
[ f (t) = −S (t)]. Accordingly, we recognize that hazard and
survival functions are related such that if hazard is
constant through time, h(t) = λ, then S(t) = e−λt. We
can then derive the survival function directly from the
hazard function by:

S t = exp −

t

0

h u du , 6 5

which also allows us to back-calculate to obtain the haz-
ard function from the survival function:

h t = −
dS t dt

S t
6 6

These algebraic exercises demonstrate that the survival,
hazard, and related functions are all directly linked. To
further illustrate this point, we can invoke an additional
function, the cumulative hazard function, H(t), which
measures the accumulation of hazard at a given point
in time and can be represented as:

H t =
t

0
h u du 6 7

H(t) reflects the sum of hazards experienced by a subject
and thus is a measure of risk accumulation. In other
words, the derivative (slope) of the cumulative hazard
function provides a time-specific estimate of hazard,
and logically the accrual of this hazard can increase or
remain stationary but never decrease with time
(Figure 6.3e).
From the above calculations, we note that the cumula-

tive hazard function,H(t), is related to our other functions
of interest, namely the hazard (6.7a), cumulative survival
(6.7b), cumulative distribution (6.7c), and probability
density functions (6.7d):

h t =
d
dt

H t 6 8a

S t = exp −H t 6 8b

F t = 1– exp −H t 6 8c

f t = h t exp −H t 6 8d

At this juncture, we can consider more explicitly the
linked expression of these various functions. As it turns
out, the hazard function can follow a variety of functional
forms, the most versatile being theWeibull function. The
Weibull invokes a dimensionless shape parameter (p) that
specifies how hazard varies through time. We can express
the Weibull hazard function as:

h t = ptp−1 6 9a

and the four corresponding related functions as:

S t = exp − tp 6 9b

F t = 1– exp − tp 6 9c

f t = ptp−1exp − tp 6 9d

H t = tp 6 9e

Figure 6.3 illustrates several of these functions across a
sample of p values.

6.3 Developing Continuous Time
Survival Datasets

Continuous time survival monitoring gives rise to data
that are comprised of consecutive non-negative observa-
tions from the same individual. As such, survival data do
not conform to standard assumptions of independence
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and normality, and therefore require specialized dataset
structure and analytical techniques. Further, continuous
time survival analysis was originally developed for human
medicine and industrial design, where subjects are
tracked with relative ease, continuity, and certainty of
detection compared to ecological studies. Concerns
regarding the rigor of survival datasets and analyses in
ecology highlight a need for careful data collection,
dataset structuring, and data exploration, to avoid weak
inference and biased results (Winterstein et al. 2001;
Williams et al. 2002; Murray 2006).

6.3.1 Dataset Structure

We consider an example with a continuous time survival
dataset for five individuals in a hypothetical population
(Table 6.1). A survival dataset normally should reference

when observations begin and end for each individual, and
in standard survival analysis subject fate is recorded as a
binary variable (death: “1”; non-death: “0”). Individuals
failing to die during the study are right-censored and also
coded as “0” (see ID no. 2 and 5, Table 6.1). As discussed
below, censoring includes all non-mortality outcomes
such as intentional withdrawal from the study, loss
of contact, emigration, and study termination prior
to a subject’s death (Collett 2003; Murray 2006).
Left-censoring refers to staggered entry and the timing
that a new subject is recruited to the study.
Continuous time studies aim to eliminate interruptions

in subject timelines, and Murray (2006) provides recom-
mendations for establishing continuous time survival
monitoring schedules. However, even with intensive
monitoring longer gaps may arise when subjects are
not surveyed or detected for extended periods. For

Table 6.1 Hypothetical continuous time survival dataset.

Id Timein Timeout Days Fate Birthday Mass Sex Ageclass Year COD1 COD2

Basic

1 21jan12 22july13 548 1 15jan11 1250 1 1 2

2 21jan11 27may12 492 0 2jan08 1100 0 3 1

3 10feb12 12oct12 245 1 20jan10 1340 1 2 2

4 21jan12 07mar13 411 1 8jan11 1190 1 1 2

5 15may12 01dec12 200 0 10jan11 1350 0 1 2

5 12feb13 11jun13 119 1 10jan11 1350 1 1 2

Time-dependent

1 21jan12 22july13 548 1 15jan11 1250 1 1 2

2 21jan11 27may12 492 0 2jan08 1100 0 3 1

3 10feb12 12oct12 245 1 20jan10 1340 1 2 2

4 21jan12 07mar13 411 1 8jan11 1190 1 1 2

5 15may12 01dec12 200 0 10jan11 1350 0 1 2

5 12feb13 11jun13 119 1 10jan11 1350 1 2 3

Competing risks

1 21jan12 22july13 548 1 15jan11 1250 1 1 2 1 0

2 21jan11 27may12 492 0 2jan08 1100 0 3 1 0 0

3 10feb12 12oct12 245 1 20jan10 1340 1 2 2 1 0

4 21jan12 07mar13 411 1 8jan11 1190 1 1 2 0 1

5 15may12 01dec12 200 0 10jan11 1350 0 1 2 0 0

5 12feb13 11jun13 119 1 10jan11 1350 1 2 3 0 1

The dataset consists of five subjects (Id), each was recruited (Timein) and exited (Timeout) the study on a known date. The total number of
days monitored is recorded for each individual (Days) as is the fate (1 = death, 0 = censor). Birthdate was known for each individual. When each
subject was recruited to the study, its body mass (Mass: continuous variable), gender (Sex: binary variable), age category (Ageclass: categorical) and
year of capture (Year) were recorded. In the Basic table, each row represents a continuous timeline and Subject no. 5 is distinguished by having
two entries, reflecting a gap when the individual was not monitored. The Time-dependent dataset is extended to convert Ageclass and Year
into time-dependent covariates that are adjusted at the beginning of each calendar year. The Competing risks dataset further extends the dataset
to differentiate individuals according to their cause of death (COD1, COD2). Note that this data structure can be altered depending on the software
package used and whether the study is designed to monitor a cohort with fixed recruitment timing (i.e. no staggered entry) or if all subjects are
monitored to the time of death.
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example, in nest survival studies, periods of inclement
weather may preclude daily visitation by researchers,
whereas in radio telemetry research animals may tempo-
rarily leave the study area or else transmitters can fail and
only be replaced at a later date. Normally, such gaps in an
individual’s timeline should be censored, which results in
subject timelines being comprised of distinct uninter-
rupted segments punctuated by gaps with no data (see
id no. 5, Table 6.1; Figure 6.4a). Yet, such gaps remain
a point of contention as some authors suggest that miss-
ing observations can be imputed using standardized pro-
cedures, although the appropriate structure of such
imputation models remains in doubt given that the

dependent variable includes both event (i.e., death) and
time (Van Buuren et al. 1999; White and Royston
2009). A critical point here is that, as a general rule, gaps
in survival timelines should never be interpolated manu-
ally because this will bias the survival estimate in favour of
subjects who re-enter the dataset and against those who
fail to do so (Winterstein et al. 2001).
In theory, continuous time survival studies should

detect mortality events more or less when they occur,
leaving little uncertainty in the estimated death time.
However, low detection success often adds uncertainty
to the estimated timing of death, as may be the case when
a subject is found dead after a gap in detection. How one
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corrects for the gap between the last live detection and the
mortality event can be problematic because the common
approach is to assume that mortality occurred at themid-
point of the monitoring gap (Winterstein et al. 2001;
Murray 2006). In theory, this approach will underesti-
mate variance and inject bias in the survival estimate
(Lindsey and Ryan 1998; but see DeCesare et al. 2017).
Likewise, assuming that several mortality events with
uncertain dates occur at the midpoint of a monitoring
gap creates tied death times, which is mathematically
not possible in a continuous time context (Murray
2006). Some remedies for tied death times, including
death time randomization or application of survival time-
line likelihood functions, are implemented as defaults in
some survival analysis software (Kalbfleisch and Prentice
2002; Collett 2003). Ultimately, while these adjustments
may help address uncertainty in mortality timing, as a
general rule, datasets that have extensive gaps in survival
timelines and high uncertainty in death times may be best
suited for approaches based on discrete time (Chapter 7)
or interval censoring (Singer and Willett 1991).

6.3.2 Right-censoring

Right-censoring occurs when an individual’s ultimate dis-
position is not known (see Id no. 2 and 5, Table 6.1). As a
general guideline, right-censoring should be kept to a
minimum and also be random or “noninformative”
(Collett 2003). However, censoring rates can be a prob-
lem in ecological research because of the challenges asso-
ciated with intensively tracking a representative sample of
subjects under unpredictable field conditions to precisely
estimate timing of the death event (Murray 2006). For
example, field studies of long-lived organisms are almost
always completed before all subjects have died, meaning
that datasets inevitably include right-censored indivi-
duals. Likewise, if nests that are located in dense vegeta-
tion are less likely to be relocated at all times during the
study, or if smaller individuals are prone to lose radio
transmitters and thus succumb to an unknown fate,
censoring will be biased. Field adjustments can be
implemented to address censoring issues, including
broadening relocation efforts to improve detection
success or extending the study duration until most
individuals have died. Sometimes, sources of censoring
can be identified and reclassified using ancillary informa-
tion obtained when the subject was last detected (Hays
et al. 2007). Diagnostic tests for informative censoring
involve assessing the significance of covariates potentially
associated with censoring status, or plotting survival time
of known deaths versus censored individuals (Oakes 2001;
Collett 2003).
As an example of the problems that can arise with cen-

soring, Smith et al. (2010) studied survival of recolonizing

wolves (Canis lupus) for 22 years in the northwestern
United States, where packs ranged over broad areas
and were heavily persecuted by humans. A longstanding
concern is that wolf survival estimates could be inflated if
emigrating animals have a higher mortality risk or if
radio-collared individuals are killed illegally and their
transmitters are intentionally destroyed, leaving no evi-
dence of their fate. To minimize overall censoring rates
and the potential for informative censoring, Smith et al.
(2010) intensified searches for missing animals when
radio contact was lost and deployed new transmitters
whenever animals were recaptured. Prior to their survival
analysis, the authors confirmed that survival time was
similar between censored and noncensored groups and
that other potential confounding factors like proximity
to human activity or to the edge of the monitoring area
did not influence censoring patterns. Because censoring
rates were comparable overall and only slightly higher
for animals residing in remote locations, Smith et al.
(2010) concluded that informative censoring was likely
negligibly associated with emigration from the study area
rather than from human persecution. In contrast, Liberg
et al. (2011) found that high censoring rates among radio-
collared wolves in Sweden were attributable to cryptic
poaching, which took place when animals were killed
intentionally by humans who then disposed of the
transmitter and associated evidence of mortality. Conse-
quently, an analysis that reclassified previously censored
wolves as dead revealed an unsustainable mortality rate
for the Swedish wolf population. This sensitivity analysis
highlights both the potential role of informative
censoring on bias in survival estimates, as well as the
importance of intensive monitoring and data exploration
for deciphering censoring patterns in survival datasets.
Once detected, informative censoring may be

addressed either by establishing confidence intervals
(CI) for survival times of censored animals or by conduct-
ing the survival analysis separately across censoring cate-
gories. It is also possible to develop survival models where
censoring status is parameterized explicitly, although this
latter option may involve making untestable assumptions
about survival times and censoring patterns (Collett
2003). As a general observation, survival studies in
ecology should pay much closer attention to censoring
patterns, including reporting overall censoring rates, test-
ing for potential censoring bias, and adopting appropriate
corrective measures (Murray 2006).

6.3.3 Delayed Entry and Other Time
Considerations

Survival estimates can be influenced by the structure of
the time scale used in analysis (Fieberg and DelGiudice
2009), and continuous time survival datasets should be
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coded with time scales that are biologically sensible and
that reflect study design considerations (Figure 6.4). This
point is especially relevant to ecological studies, where
mortality risk can be sensitive to the effects of age, season-
ality, or calendar time. For example, if tree survival is
repeatedly influenced by seasonal drought (Mueller
et al. 2005), recurrent time (i.e. an annual cycle) may be
the appropriate time scale for survival estimation; if mam-
mals are subject to especially high mortality immediately
postpartum (Gilbert et al. 2014), age-based tracking may
be warranted (i.e. tracking starts at birth). In our basic
dataset for a hypothetical organism (Table 6.1), calendar
time was selected as the time scale because of the long
duration of monitoring and lack of age-related or
seasonal mortality pulses. Thus, researchers should
consider the range of time scales that are possible
(Figure 6.4), and select the best option for their study
circumstances. Likewise, selecting the appropriate time
unit for analysis (i.e. days, months, years) is important
because it can influence the interpretation and utility of
survival estimates and related model coefficients.
In many field studies, individuals are recruited through

an extended period sometimes spanningmonths or years,
leading to delayed entry (i.e. left-censoring or staggered
entry) (Table 6.1; Figure 6.4a). Variation in timing of
entry poses a number of challenges including that early
mortalities can bias survival estimates if the initial sample
size is small and some subjects die before all are recruited
(Murray 2006; Fieberg and DelGiudice 2011). Sometimes,
the survival dataset can be left-truncated to exclude early
recruits, as was done by Smith et al. (2010) for a handful of
wolves that were monitored during the 1980s. Here, the
dataset was restricted to subjects monitored after 1994,
which was justified because a small minority of animals
were monitored during the early years of the study, sur-
vival estimates were comparable before versus after this
date, and temporal variables did not distinguish early ver-
sus later recruits in an exploratory survival analysis
(Smith et al. 2010). Occasionally, handling or marking
protocols themselves may influence survival, andmeasur-
ing changes in subject condition or behavior immediately
post-capture can reveal the potential benefits of left trun-
cating individual survival timelines prior to their full
recovery (Dechen Quinn et al. 2012).
Left truncation also inevitably arises when survival

monitoring is limited to select time periods. For neonatal
ungulates, recruitment to a survival study typically hap-
pens within days after birth, when juveniles can be effec-
tively captured and equipped with radio transmitters
(Murray 2006). However, neonatal ungulates commonly
experience high predation risk within hours after birth
and this mortality pulse is usually missed when animals
are recruited using traditional protocols and timelines
(Gilbert et al. 2014). Thus, survival rates for juvenile

ungulates are regularly overestimated, and this bias is spe-
cifically due to left truncation of subject timelines. Thus,
researchers should conduct appropriate data exploration
and report potential survival estimate bias from left trun-
cation (Fieberg and DelGiudice 2011).

6.3.4 Sampling Heterogeneity

Across a cohort of subjects, individuals with higher
frailty will die sooner, leaving those with lower risk to
contribute disproportionately to mortality rate estima-
tion. Likewise, if an initial group of subjects is recruited
and tracked, over time the cohort of survivors will be
entirely comprised of older individuals that may have
higher or lower hazards. In either scenario, lack of
replacement leads to progressive sampling heterogene-
ity, which biases the survival estimate and limits its gen-
erality (Zens and Peart 2003; Prichard et al. 2012). It
follows that such problems will be aggravated by high
mortality rates, prolonged study duration, or high initial
heterogeneity among subjects. Thus, proper study
design and subject recruitment are crucial for limiting
progressive sampling heterogeneity, and important cor-
rective measures include delayed recruitment of repre-
sentative subjects to replace those that have died
(Murray 2006). To detect whether a survival dataset is
affected by sampling heterogeneity, baseline hazards
can be plotted and checked for temporal variation
(Vaupel and Yashin 1985). From an analytical perspec-
tive, sampling heterogeneity can be evaluated using
study entry time as a covariate in survival models
(Collett 2003; Murray 2006; Prichard et al. 2012),
although this approach may cause unwanted correlation
between the predictor and response variables.
Sometimes researchers intentionally recruit different

types of subjects into a survival study, thereby making
sampling heterogeneity an implicit aspect of study design.
Smith et al. (2010) radio-collared wolves that were repre-
sentative of the larger population as well those that were
recently involved in livestock depredation. Baseline mor-
tality risks were markedly higher for wolves that killed
livestock, so Smith et al. (2010) necessarily treated each
group separately in analyses and used only the represen-
tative sample in deriving survival estimates for the
broader wolf population. Thus, researchers should be
aware of how different sampling regimes can affect sam-
pling heterogeneity and attendant survival estimates, and
thereby assess the composition of the sampling popula-
tion at different points during the study. When diagnostic
tests reveal sampling heterogeneity and the potential for
biased survival estimates, necessary adjustments may
involve restricting the analysis to subjects that best reflect
the population of interest.
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6.3.5 Time-dependent Covariates

As individuals go through life, susceptibility to risks will
vary with time; risks tend to increase or decrease
according to intrinsic factors like age, body condition,
or reproductive status, and to extrinsic factors like
temperature, predator numbers, or season. Whenever
possible, survival datasets should capture such variability
by including time-dependent (or time-varying) covariates
that account for temporal changes in risk owing to vari-
ability in predictor variables (Kleinbaum and Klein 2011).
For example, if we want to document the effect of
environmental conditions on survival of an endangered
cactus at the northern edge of its geographical range,
we should include daily temperature measurements in
the survival dataset so we can relate daily temperature
variation to plant survival.
Time-dependent or “time-varying” covariates are

designed to reflect timing of the change in risk factors.
Specifically, the dataset is constructed to reflect potential
temporal change in the variable’s impact on risk status of
the individual. In Table 6.1, under the Basic classification,
the five subjects are classified with a fixed value for the
Age class and Year variables, meaning that these values
represent conditions at the time that subjects were first
recruited into the study. These values do not consider
the time-varying nature of age or year on subject mortal-
ity risk. However, because subject no. 5 wasmonitored for
an extended period during which it transitioned to an
older age category and year of study, appropriate adjust-
ments to these variables are needed to reflect temporal
variability in risk. Under the Time-dependent classifica-
tion (Table 6.1), Id no. 5 is recognized as being in a higher
age category and subsequent year during its second mon-
itoring period. Here, the Age class and Year variables
were adjusted to represent the subject’s current status
with respect to those variables rather than conditions at
the time of recruitment to the study, as was the case
for the Basic classification.
Time-dependent variables can be incorporated into

survival datasets by splitting subjects into different obser-
vation periods. As a rule of thumb, extrinsic variables are
easier to present in a time-dependent context because
they may not require intensive monitoring of subjects
and related data on location, behavior, or condition. In
the cactus example, coding for extreme weather condi-
tions would be a simple matter of relating the recorded
daily temperature, or daily minimum temperature, with
the outcome of our survival monitoring for that time
interval. The frequency of updating time-dependent vari-
ables, and the degree that subject timelines will need to be
split to accommodate time-dependent variables, will
depend on both the objectives of the study and the avail-
ability of ancillary information to include in the dataset.

Intensive (i.e. daily) timeline splitting is required to doc-
ument the effect of a specific temperature threshold on
cactus survival, but it may be less crucial if we are more
concerned with the cumulative effect of low temperature
or with a factor that varies little over time. Another con-
sideration is that time-dependent covariates can be coded
either in real-time or following time delays to reflect lags
between exposure to risk factors and expression of related
changes in risk. For female wolves, reproductive status
might be classified as a time-delayed time-dependent var-
iable, because physiological effects of pregnancy and lac-
tation on mortality risk may be most important especially
in the months following parturition (Smith et al. 2010).
Note that there are a variety of considerations and coding
options that can guide the structure of time-dependent
variables in a survival dataset (Kleinbaum and Klein
2011), and this aspect of dataset design requires careful
evaluation of both data availability and study objectives.

6.4 Survival and Hazard Functions
in Practice

6.4.1 Mayfield and Heisey–Fuller Survival
Estimation

To understand how survival and hazard rates vary
through time or relative to different factors, we first
review the more common continuous time survival
estimators. The Heisey–Fuller, Mayfield, and related
estimators track survival over distinct time intervals
where risk remains constant within an interval. The
Kaplan–Meier andNelson–Aalen estimators let mortality
events rather than changes in risk determine the duration
of time intervals. The Heisey–Fuller estimator (HF) was
developed specifically for radio telemetry research where
a group of individuals are monitored intensively for sur-
vival status and fate, whereas the Mayfield and related
estimators originate from field studies involving continu-
ous time monitoring of bird nest failure (Mayfield 1975;
Williams et al. 2002). For illustrative purposes, we focus
on the HF estimator, but the Mayfield estimator and
related methods share a similar foundation and provide
largely consistent results (Trent and Rongstad 1974;
Heisey and Fuller 1985; Williams et al. 2002). We
compute HF survival by:

S = 1−
d
r
, 6 10

where d is the number of deaths and r is the cumulative
duration of monitoring. In nest survival or radio teleme-
try studies where individuals are monitored on a daily
basis, parameter r is the number of individual days of
exposure, and the term d/r is the crude mortality rate,
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where “crude”means that all causes of death are included.
Confidence limits for the HF and related estimators can
be calculated using methods outlined in Johnson
(1979), Bart and Robson (1982), Heisey and Fuller
(1985), and Powell (2007). Because in HF survival
estimation risk is constant within a time interval, d/r
should remain consistent from beginning to end of the
interval. Accordingly, the HF is expanded to an interval
spanning t days by: S(t) = St, and to i intervals by:

S =
I

i= 1

Si 6 11

For example, Wirsing et al. (2012) monitored mortality
rates of nests of painted turtles (Chrysemys picta) and
snapping turtles (Chelydra serpentina) by daily checks at
nest sites for the duration of the nesting period (June–
September).Most nest losses were due to predation by rac-
coons (Procyon lotor). They monitored 94 painted turtle
and 198 snapping turtle nests, documented 54 and 166
nest mortality events, and accumulated 3561 and 3121
observation days, respectively. Using the HF, the daily
survival rate was markedly higher for painted turtles
[painted: 1 − (54/3561) = 0.98484; snapping: 1 − (166/
3121) = 0.94681)]. When extrapolated to a roughly four-
month (110-day) nesting period (which assumes a con-
stant mortality risk through the four-month period), nest
survival is almost 19% for painted turtles and roughly zero
for snapping turtles (painted: 0.98484110 = 0.18631; snap-
ping: 0.94681110 = 0.00245). As an aside, when working
with daily survival rates it is helpful to retainmultiple digits
after the decimal because rounding error can alter rates
when extrapolating to longer time intervals. For painted
turtle nests, 0.98484110 = 0.186; 0.9848110 = 0.185; and
0.984110 = 0.189.
The HF estimator is attractive because survival esti-

mates are easily calculated from summary survival data
on number of deaths and number of days of exposure.
The model is robust to censoring, provided that censor-
ing is random, and overall this estimator is especially use-
ful for populations exposed to variable risk, where risk
remains constant over shorter time periods that can be
pooled into distinct time intervals. However, whether risk
remains constant within an interval is critical to model
performance, even though researchers rarely verify this
assumption (Stanley 2004;Murray 2006). In fact, we show
later that HF estimates for turtle nest survival are biased
because risk was not constant through the nesting period.
Further, the HF model can be biased if survival is moni-
tored across irregular and infrequent intervals because of
the imprecision in estimating timing of a mortality event;
in such cases application of a likelihood-based alternative
is advised (Hensler and Nichols 1981). Last, another
important issue with the HF estimator is that while the

rates themselves are easy to compute by hand or with a
spreadsheet, the CI are less straightforward and to date
researchers have done so mainly using a DOS-based pro-
gram (MICROMORT, Heisey and Fuller 1985). To our
knowledge, there is no accessible MS Windows-based
replacement for calculating HF CI, meaning that on a
long enough timeline, the HF estimator may become
obsolete and its effective survival may drop to zero.

6.4.2 Kaplan–Meier Estimator

The Kaplan–Meier estimator (KM) is the most popular
survival estimator and is widely encountered in both
medical and ecological literature. KM estimation consid-
ers the timing of death events as the determinant of inter-
val endpoints, so if there are k unique death times, the
corresponding survival rate is the product of survival
during each interval, i:

S =
k

i= 1

1−
di
vi

, 6 12

where di is the number of deaths and vi is the number of
subjects at risk during i. KM variance is calculated as:

var S = S2
n

i=1

di
vi vi−di

6 13

A distinct feature of the KM estimator is that time interval
endpoints are defined by actual mortality events and the
focus of the estimator is on the individual subject rather
than on the time interval; this is philosophically consist-
ent with contemporary individual-based approaches to
survival analysis, making the KM estimator a logical com-
plement to standard analysis. The relationship between
constant survival and interval endpoints follows a step-
function, with Figure 6.5a showing high initial mortality
during the early nesting period and lesser mortality later
in the season, for both turtle species. Seasonal changes in
mortality risk also emphasize why our earlier use of the
HF estimator likely was not appropriate for determining
turtle nest survival rates. The KM probability of cumula-
tive survival for the 110-day nesting period is 0.357
(95% CI = 0.243, 0.524) for painted turtles and 0.165
(0.120, 0.226) for snapping turtles; these estimates differ
substantially from the earlier estimates calculated using
HF estimation (painted turtle: 0.186; snapping turtle:
0.002) and doubtless reveal bias in the original HF esti-
mates (Table 6.2). However, the HF estimates could be
improved to some extent by first tallying mortality risk
within shorter time intervals when risk is more constant.
We can also determine nest mortality risk (hazard)

by first estimating the cumulative hazard from the sur-
vival function (H(t), see Eq. 6.8b) and then differentiating
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Figure 6.5 Kaplan–Meier survival functions (a), and hazard functions (b) for snapping turtle and painted turtle nests relative to time since
clutch initiation. For snapping turtles only, panels (c) and (d) compare Kaplan–Meier and Nelson-Aalen survival (c), and Kaplan–Meier and
Nelson–Aalen failure (d) rates. 95% CI are omitted for clarity. Source: The dataset was modified from Wirsing et al. (2012).

Table 6.2 Survival and failure rate estimates (±95% CI) during 110-day intervals for
painted turtle and snapping turtle nests exposed to predation risk.

Painted turtle Snapping turtle

Heisey–Fuller survival 0.186 (0.119, 0.292) 0.002 (0.001, 0.006)

Kaplan–Meier survival 0.357 (0.244, 0.524) 0.165 (0.120, 0.226)

Nelson–Aalen survival 0.410 (0.288, 0.583) 0.274 (0.213, 0.354)

Kaplan Meier failure 1.030 (0.646, 1.411) 1.802 (1.487, 2.120)

Nelson–Aalen failure 0.892 (0.54, 1.245) 1.295 (1.038, 1.546)

Confidence intervals (CI) for the Heisey–Fuller estimator are obtained through Taylor series
approximation (Heisey and Fuller 1985). Models were based on a modified dataset with a
subset of variables and results differ from published estimates (Wirsing et al. 2012).
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(h(t), see Eq. 6.8a). Practically speaking, this procedure is
usually accomplished by using a nonparametric smooth-
ing spline that is set to an appropriate bandwidth
(Mueller and Wang 1994; Hess et al. 1999; Tsai et al.
1999). Bandwidth selection is largely arbitrary but the
resulting graphed function should provide sufficient var-
iation to reveal the most biologically meaningful patterns
in hazards. For both turtle species, hazards decline dra-
matically with nest age, although there may be a slight
increase in risk after 60 days (Figure 6.5b).
One drawback of the KM approach is that a new param-

eter is estimated with each death event, leading to lack of
parsimony in studies having many deaths. Another issue
is that in theory tied death times are not possible and
require special treatment (Pollock et al. 1989). Since the
KM estimator was initially developed for clinical research,
the basic estimator is designed to deal with studies where
subject recruitment occurs at the outset, but when stag-
gered entry is present the generalized Kaplan–Meier
model (GKM) makes adjustments for the conditional
probability of late recruits (Pollock et al. 1989). For
instance, the GKM would have been the appropriate esti-
mator for survival analysis of wolves (Smith et al. 2010) or
turtle nests (Wirsing et al. 2012), had calendar time rather
than survival time been the temporal unit of interest. Yet,
it is important to highlight that notwithstanding its
advantages for late recruits, the GKM estimator is sensi-
tive to small sample sizes, especially when mortalities
occur early in the study before the full complement of
subjects is under observation (Woodroofe 1985). Like-
wise, both the KM and GKM estimators give rise to
absurd values in long-term studies when the entire initial
group of subjects dies before subject recruitment is com-
plete (Murray 2006). Thus, researchers should be
judicious as to whether to include delayed entry of
subjects in a survival analysis if KM or GKM survival esti-
mation is a priority. Instead, left truncation may benefit
datasets that have a small sample of early recruits.
Currently, most statistical software packages do not
account for staggered entry or GKM, so the default in
almost all applications is the standard KM estimator.
Ingeneral,KMestimationmaybesuperioroverHF if risk

varies widely with time (Figure 6.5a). In contrast, HF esti-
mation may be more appropriate if mortality events occur
in pulses or are particularly common or rare. Both HF and
KM estimators are distinguished by how an interval end-
point is defined, and the methods are convergent when
intervals are similarly identified (Pollock et al. 1989).

6.4.3 Nelson–Aalen Estimator

Owing to the limitations associated with both HF and KM
estimation, there is a counting process analogue, the
Nelson–Aalen estimator (NA), that can provide improved

estimates, especially when sample sizes are small. The NA
is often computed in the context of cumulative hazards.
Recall that H(t) = −ln{S(t)}; the cumulative hazards NA
estimator is, through i time intervals:

H t =
j ti ≤ t

di
vi
, 6 14

where vi is the number at risk at ti and di is the number of
deaths at ti (Cleves et al. 2010). When dealing with small
sample sizes, KM survival estimates and NA cumulative
hazards tend to be superior to their counterparts, and as
a general rule NA tends to overestimate survival whereas
KM overestimates cumulative hazards (Table 6.2).
Differences between the estimators become more
pronounced as sample size diminishes (Figure 6.5c, d),
but both estimators are convergent when sample sizes
are large. Also, in contrast to the KM estimator, the NA
estimator is robust to gaps when no subjects are at risk.
Nevertheless, the NA estimator seems to be underused
in ecological studies, as most researchers seem to accept
the default KM, perhaps without fully appreciating its
potential limitations. At a minimum, simulations with var-
iable sample size and variation could be used to establish a
general rule of thumb for when KM versus NA estimation
should be used in survival estimation.

6.5 Statistical Analysis of Survival

6.5.1 Simple Hypothesis Tests

Sometimes, it may be convenient to initiate a survival
analysis by comparing survival functions between popu-
lations or treatments without explicitly considering a
suite of predictor variables. Such tests are structured
around the null hypothesis of no differences between
groups, and can provide preliminary insights and sum-
mary statistics related to the primary factors imposing
risk. HF estimates can be compared using confidence
limit overlap, using the z-statistic for two groups
(Hensler and Nichols 1981; Bart and Robson 1982) or
contingency tables for larger groups (Heisey and Fuller
1985; Sauer and Williams 1989). Survival data obtained
from the KM estimator can be compared using a variety
of nonparametric likelihood or rank tests (Box 6.2). Sur-
vival studies in ecology sometimes restrict their analysis
to these simple tests, despite that they were originally
designed for evaluating straightforward hypotheses from
clinical trials having balanced designs, randomization,
consistent distribution of mortality events, and limited
delayed entry or censoring (Murray 2006). These condi-
tions are unlikely to be upheld in a majority of ecological
datasets, making these tests inappropriate for the multi-
tude and complexity of factors affecting mortality risk
under field conditions.
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6.5.2 Cox Proportional Hazards

Risk factors in observational field studies are more appro-
priately analyzed usingmultivariate regression approaches.
The Cox proportional hazards model (CPH) is the most
widely used survival analysis method in the medical
sciences and is firmly established in ecological research
(Williams et al. 2002; Murray 2006). The model is based
on the partial likelihood of the hazard, hi(t), where the
ith individual is subject to a vector of covariates potentially
influencing risk; xI = (xi1, xi2,…, xip). The corresponding
CPH model is:

hi t = h0 t exp β1xi1 + β2xi2+…+ βpxip , 6 15

where h0(t) is the baseline hazard (constant-only model)
for an individual with covariate vector xI = (0,0…0), and β
is an unknown parameter (Murray 2006). The model is
considered semi-parametric because the underlying
shape of the hazard function remains unspecified, such
that hi(t) and hj(t) differ only in that their ratio [hi(t)/
hj(t)] is proportional through time and differs by the
exponential term related to the covariates. It follows that
the absence of a specified hazard function makes the CPH
model particularly versatile for the challenges of ecolog-
ical survival research, where the functional form of base-
line hazard is rarely known. CPHmodels generate hazard
ratios (HR) or model coefficients (β) that are related by
HR = exp(β), such that HR > 1.0 (or β > 0) indicates

increased risk whereas HR < 1.0 (or β < 0) indicates
reduced risk, relative to the baseline.
Wirsing et al.’s (2012) analysis of turtle nest survival con-

siders a variety of risk factors potentially affecting nest pre-
dation. As an extension of our earlier survival estimate
calculations (Table 6.2), multivariate CPH models
(Table 6.3) reveal that for painted turtles, corridor proxim-
ity (Corridor: dummy variable, 1 = yes) is negatively asso-
ciated with risk whereas date of nest laying (Datelaid:
calendar date) is positively associated with risk. In other
words, because Corridor has hazard <1.0, and 95% CI that
do not overlap 1.0, we can infer that proximity to a corridor
reduces predation risk. Datelaid has a hazard ratio > 1.0
(and 95% CI do not overlap 1.0), implying that nests laid
later in the nesting season incur higher relative risk. We
note that risk decreased by 81.4% (1 – 0.186 × 100) when
the nest was within a corridor, and risk increased by
4.3% (|1 – 1.043| × 100) for each day that egg laying was
delayed. Additionally, predation risk increased by 14% (|
1 – 1.014| × 10 × 100) for every 10m increase from vegeta-
tive cover (Veglaid variable was coded as continuous, in
meters), but because the 95% CI for Veglaid overlapped
1.0, we infer that the effect of this variable was not statisti-
cally significant. For snapping turtle nests, risk increased by
22% (|1 – 1.022| × 10 × 100) for every 10m increase in dis-
tance from water (Waterdist was coded as continuous, in
meters), andwith lesser (nonsignificant) influence fromdis-
tance to vegetation (Vegdist was coded as continuous, in
meters) and effect of disturbed habitat (Disturbed was

Table 6.3 Hazard ratios (HR) (±95% CI) from semi-parametric Cox proportional hazards (CPH) models, and hazard rates from parametric
exponential and Weibull regression models, for nests of painted turtles and snapping turtles.

Variable 1 Variable 2 Variable 3

Painted turtle Corridor Datelaid Vegdist

Cox 0.186 (0.064, 0.542) 1.043 (1.014, 1.074) 0.997 (0.978, 1.016)

Exponential 0.129 (0.045, 0.369) 1.132 (1.088, 1.177) 1.013 (0.995, 1.031)

Weibull∗ 0.129 (0.056, 0.473) 1.062 (1.029, 1.096) 0.999 (0.980, 1.019)
∗Weibull shape 0.406 (0.326, 0.507)

Snapping turtle Disturbed Vegdist Waterdist

Cox 2.901 (0.832, 10.116) 0.997 (0.986, 1.010) 0.050 (0.023, 0.109)

Exponential 2.349 (0.735, 7.510) 1.000 (0.988, 1.012) 1.030 (1.014, 1.04)

Weibull∗ 2.988 (0.901, 9.920) 0.997 (0.985, 1.009) 1.025 (1.006, 1.043)
∗Weibull shape 0.509 (0.456, 0.568)

Models for each species included only significant variables identified by Wirsing et al. (2012). Variables Corridor and Disturbed are dummy
variables identifying whether the nest is on a predator travel corridor or in disturbed habitat, respectively (yes = 1), Datelaid is the Julian date
when the nest was first laid, Vegdist and Waterdist is the distance to vegetation and open water, respectively. Models were based on a modified
dataset with a subset of variables and results differ from published estimates (Wirsing et al. 2012).
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coded as dummy variable, 1 = yes). In a similar study,
Leighton et al. (2011) usedCPH to determine sea turtle nest
survival using a continuous time monitoring approach and
determined that risk increased according to vegetative
cover and time during the nesting season.
Once a hazard model is generated, it is possible to

describe survival differences between groups by compar-
ing HR (Table 6.3) or computing adjusted survival curves,
which are computationally distinct from KM estimates
because they factor in the possible effects of covariates
on survival. Figure 6.6a and b provide survival curves
for painted turtle and snapping turtle nests in light of
predictor variables included in hazard models for each
species. It is clear that there are notable differences in
the estimates provided by the adjusted survival curves
versus the KM estimates (Figure 6.5a) or hazards
(Figure 6.5b) examined earlier.
CPH analysis requires continuous survival timelines

but when ecological datasets are punctuated by monitor-
ing gaps (i.e. low or variable detection probability), a
counting process analogue of CPH can be used: the
Andersen–Gill model (AG, Hosmer et al. 2008). We
discussed counting processes previously in the context
of the NA cumulative hazards estimator. Here, the count-
ing process considers the survival timeline as an accumu-
lation of conditional independent steps, which is a
function of the total number of events (deaths) and the
cumulative intensity process of the events up to t.
Functionally, the counting process approach discretizes
units of survival such that individual observations in time
rather than continuous timelines underlie the analysis;

the two approaches converge when there are no gaps in
survival timelines (Murray 2006). For example, Johnson
et al. (2004) used AG rather than CPHmodels to evaluate
mortality risk among radio-collared grizzly bears (Ursus
arctos) because the sample included many punctuated
timelines and thereby favored a counting process
approach. Similarly, Liebezeit and Kendall (2009) mod-
eled the role of industrial activity on nest mortality in a
variety of shorebirds and passerine birds; discontinuous
nest survival timelines necessitated the application of
AG rather than CPH models. Note, however, that
researchers do not usually need to be concerned about
the specific application of AG models in survival analysis
because these are invoked as a default in most software
programs when subject timelines are punctuated.

6.5.3 Proportionality of Hazards

The CPH approach is based on an assumption of propor-
tional hazards across the model, meaning that there
should be a linear relationship in how hazards vary
according to predictor variables. The assumption can
be verified using a variety of graphical approaches, and
hazard proportionality between painted and snapping
turtle nests can be assessed using linearity in plots of
log(survival) vs. log(time) or -log(-log(survival)) vs. log
(time) (Kleinbaum and Klein 2011). Our graphical assess-
ment of the assumption using either method (Figure 6.7a
and b) reveals largely parallel lines, and therefore propor-
tional hazards. Note that here we could have used natural
logs rather than log10 in our tests, and different software
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Figure 6.6 Survival probability for nests of snapping turtles (a) and painted turtles (b). Functions include Kaplan–Meier survival rates derived
from observed data as well as those predicted by nest site location relative to habitat disturbance (a) and travel corridors (b) from a
univariate Cox proportional hazards (CPH) model. Source: The dataset was modified from Wirsing et al. (2012).
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programs use different transformations as defaults. Alter-
natively, we could plot the relationship between KM sur-
vival functions versus those from a CPH model with the
predictor in question, and gauge parallelism between
observed and expected functions (Kleinbaum and Klein
2011). Naturally, when predictor variables are continuous
they should be reclassified into categories for proper
graphical evaluation of the proportional hazards
assumption.
Hazard proportionality can also be checked via analysis

of residuals or model re-estimation (Therneau et al. 1990;

Gail 1991). The primary tool for model checking in CPH
analyses is the Schoenfeld residuals, which is based on the
contribution of each covariate to the fit of the model spe-
cifically at each failure time. If residuals are distributed
randomly, then there is no inherent structure and the
proportional hazards assumption is met. For example,
Schoenfeld’s residuals from a simple univariate model
comparing predation across turtle species are distributed
randomly, with no inherent trend (Figure 6.7c), and
with no statistically significant difference (Χ2 = 0.006,
p = 0.94). Thus, hazard proportionality is implied for
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the model under consideration. In cases where complex
multivariate hazard models are considered, it is appropri-
ate to check the fit of Schoenfeld residuals both for
individual predictors as well as for the global model.
Cleves et al. (2010) outline a variety of additional tests
that can be used to further gauge hazard proportionality
in CPH models.
If hazards are not proportional, a number of options are

available, including developing separate models across the
problematic variable and using nonparametric methods to
compare survival rates. Better yet, a stratified CPH model
can be fit, where different baseline hazards are assumed
across the problematic variable. Specifically, stratification
allows the form of the underlying hazard to vary across
levels of the stratification variable, and thus enables model
fitting without estimating the effect of the problematic cov-
ariate. However, predictors that are stratifiable usually
must be binary or categorical, and the stratification process
precludes direct assessment of the role of the predictor on
risk, except through nonparametric tests (Box 6.2).
There are two other alternatives to stratification when

faced with models failing to adhere to hazard proportion-
ality. First, the time axis can be adjusted to accommodate
shorter time periods that actually conform to the propor-
tionality assumption. Second, it may be possible to use
time-dependent variables to explicitly model nonpropor-
tionality or else develop models based on accelerated fail-
ure or additive hazards (Hosmer et al. 2008; Kleinbaum
and Klein 2011). However, such methods are rarely

invoked in ecological research, perhaps because the
assumption of hazard proportionality itself is so rarely
tested or because the complexity of such techniques tends
to exceed the quality of many survival datasets
(Murray 2006).

6.5.4 Extended CPH

In ecology, subject mortality risk is regularly influenced by
dynamic factors such as time-dependent variation in
weather, age, condition, or behavior. As described in
Section 6.3.4, time-dependent covariates open a wealth
of possibilities for evaluating the role of time-sensitive pre-
dictors on risk. Here we elaborate more formally on the
extended CPH model, which includes one or more time-
dependent variables. Recall that time-dependent variables
can be either intrinsic or extrinsic and they are adjusted
during the subject’s timeline, as it progresses through
distinct stages for the variable in question (see Id no. 5,
Ageclass and Year variables, Time-dependent section,
Table 6.1). We consider the expanded CPH model as:

hi t = h0 t exp β1xi1 + β2xi2+…+ βp1xip1 +

α1xj1 t + α2xj2 t +…+ αp2xjp2 t

6 18

where xi and xj represent time-independent and time-
dependent covariates, respectively, and β’s and α’s

Box 6.2 Testing for Equality of Survival Curves

Simple tests are available for testing the hypothesis of no
differences between two or more survival functions. These
tests have limited utility in ecology but may be used when
necessary, such as to test for differences between predic-
tors that lack hazard proportionality. Let t1 < t2 <… < tk
represent the ranked failure times, with dj being the num-
ber of deaths at tj and nj the number of subjects at risk
prior to tj; dij and nij are the same units for group i, i =
1,…, r. The equality of survivor functions leads to the test:

H0 = λ1 t = λ2 t =…= λr t , 6 16

where λ(t) corresponds to the hazard function at t versus
the alternate hypothesis that one or more λi(t) is different
for some tj. If the null hypothesis is true, the expected
number of failures in group i at tj is eij = nijdj/nj and the cor-
responding test statistic is:

u’=
k

j= 1
W tj d1j−e1j,…,drj−erj 6 17

Note thatW(tj) is a weighting function that is zero when
nij is zero. There are several different weighting functions

that give rise to different test statistics, depending on data
structure and limitations (StataCorp 2007).

Test Weight at
each death (ti) Comments

Logrank 1 Best when hazards are proportional

Wilcoxon ni Best when hazards are not
proportional and death and
censoring patterns are similar

Tarone-Ware ni Best when hazards are not
proportional and test is less
susceptible to death and censoring
patterns

Peto-Peto-
Prentice S ti

Best when hazards are not
proportional and test is less
susceptible to death and censoring
patterns

Fleming-
Harrington
S ti−1

p 1−S ti−1
q

Test is flexible, if p > q, more weight
to early deaths, if p < qmore weight
to late deaths, if p = q = 0, test
reduces to logrank test
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represent coefficients associated with time-independent
and time-dependent variables, respectively. The extended
CPH model assumes that the effect of a time-dependent
variable on hazard at t is restricted to the value of the
variable at t, and therefore does not consider its value
either before or after the specified time (Kleinbaum and
Klein 2011). Further, because the proportional hazards
assumption is no longer satisfied for all variables under
the extended CPH model, computation of the hazard
ratio for the model now involves two sets of predictors,
time-independent and time-dependent, and the hazard
ratio becomes a function of time.
Extended CPH models are both flexible and robust to

the complexities of field research, and thus should receive
greater attention when risk is dynamic. We invoked time
dependency in our earlier example of turtle nest survival
by re-estimating rainfall and local turtle nest density on a
daily basis (Wirsing et al. 2012). Similarly, Liebezeit and
Kendall (2009) studied nest survival in birds and included
temporal variability in risk by adjusting predictors
through short time intervals. Smith et al. (2010) tallied
wolf survival across three-month intervals and adjusted
age, social status, dispersal status, and habitat-related pre-
dictors for each interval. In each case, time-dependent
variables were assumed to be constant within time inter-
vals and variable across intervals.
Note that the extended CPH model mimics the

approach used for AG modeling, except that the CPH
model structure is modified directly, whereas the AG
model uses a counting process approach to accommodate
time-dependent variables. In the aforementioned study of
grizzly bear survival, dynamic variables representing age,
road density, and habitat type were used in an AG mod-
eling context to assess time-dependent mortality risk
determinants (Johnson et al. 2004). To conclude this sec-
tion, we submit that nominal additional investment in
study design, data collection, or data structure and anal-
ysis may allow researchers to provide an important time-
dependent context to studies that otherwise could yield
weak or biased survival inference. A helpful first step
would be to use simulations to clarify the optimal coding
and time interval structure to best capture the dynamic
effects of time-dependent variables on survival
estimation.

6.5.5 Further Extensions

The CPHmodel has additional features that allow further
refinements and improvements. Contemporary survival
analysis hinges on the assumption that subjects are inde-
pendent, but in reality individuals often share higher or
lower frailty based on intrinsic or extrinsic similarities.
Siblings may have related mortality risk depending on
their genetic makeup, whereas group-living subjects

may be exposed to particular mortality agents that affect
the entire unit. In such cases, it is appropriate to generate
robust standard errors that reflect shared mortality risk, a
procedure that is analogous to adding a random variable
to a regression model to explain correlation between
clustered data (Kleinbaum and Klein 2011). Because the
hazard in a shared frailty model is computed according
to the assigned clusters, the analytical context reflects
lack of independence among subjects, leading to
increased precision in the estimated error. For example,
in bird nest survival studies a frailty component can
account for differences in predation risk between clusters
of nests on the same plot (Liebezeit and Kendall 2009),
whereas in wolf studies similar adjustments can improve
the precision of estimated hazards for members of a
common pack who share comparable exposure to natural
and anthropogenic risks (Smith et al. 2010). It is also
possible to use mixed-effects CPH models to explicitly
estimate random coefficients to further refine compari-
sons between groups of subjects (Freitas et al. 2008),
and such additions may be useful when dealing with
unobserved heterogeneity that has strong effects on risk.
However, to date such refinements and extensions of the
CPH model have not gained strong traction in the
ecological literature, possibly owing to sample size or
study design limitations that constrain performance of
more complex models.

6.5.6 Parametric Models

We consider that CPHmodels are well-suited for answer-
ing most survival questions in ecology, but in rare cases it
may be appropriate to use fully parametric models to
address uncertainty about the shape of the hazard
function or to produce age-specific survival functions
(Allison 1995; Collett 2003). For instance, Griffin et al.
(2011) used parametric models to assess the role of
climate and predators on the survival of neonatal elk
(Cervus elaphus). Animals were radio-collared shortly
after birth and researchers could infer birth date and
age of individuals. Similarly, nest survival studies often
infer the age of the nest based on the timing of its first
discovery or nest and egg characteristics (Liebezeit and
Kendall 2009;Wirsing et al. 2012). Accordingly, research-
ers can estimate the baseline hazard for the group of
subjects according to age, and thereby use a parametric
approach when estimating hazards. Yet, for most
ecological studies the extent that a parametric approach
will improve on inference that could be derived from a
semi-parametric CPH analysis is not evident
(Korschgen and Kenow 1996; Olson et al. 2014). For
many field studies, researchers do not know either the
underlying shape of the hazard function or the age distri-
bution of subjects, meaning that parametric models are
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often simply not a suitable option. Thus, even when
parametric models can be applied to ecological datasets
they may not provide marked improvements in terms
of hazard estimates, parameter precision, or model fit
(Murray 2006).
In the case of predation on turtle nests (Wirsing et al.

2012), the date of nest deposition was known and there-
fore hazard functions could be estimated parametrically.
To fit a parametric model it is necessary to select an
underlying statistical distribution; the simplest of these
is the exponential distribution, which assumes constant
survival, followed by the Weibull distribution, which
allows survival to monotonically increase or decrease
(see Eq. 6.3). In the case of turtle nest predation
(Wirsing et al. 2012), our previous CPHmodels fit to each
species revealed a series of HR that are qualitatively dif-
ferent from the hazards for the same parameter estimated
using the exponential model (Table 6.3). The difference
was not surprising because we know from Figure 6.5 that
hazard varies markedly during the nesting season and
thus that the exponential distribution is an inappropriate
fit. In fact, when we fit the more flexible Weibull model to
the data, the hazard estimates for most predictors tend to
be closer to the HR from CPH. Further, we note that the
estimate for parameter p, the dimensionless shape unit
defining the trend in the survival function, is below the
value of one for either turtle species (Table 6.3). A shape
unit <1.0 indicates an overall decline in hazard with time;
we had qualitatively identified this trend earlier, after
fitting hazard functions described in Figure 6.6b. To
conclude, although fully parametric models may be
warranted in specific instances when survival functions
are known or if they serve as a basis for hypothesis testing,
in reality there are few ecological applications where
parametric approaches provide either improved
parameter estimation or novel insights into the drivers
of mortality risk.

6.6 Cause-specific Survival Analysis

6.6.1 The Case for Cause-specific Mortality Data

We began our chapter with a description of John Graunt’s
analysis of human mortality patterns in Renaissance Lon-
don. Perhaps Graunt’s most lasting contribution was the
cataloging of causes of death befalling London residents
during a time when sundry mortality agents prevailed
across Europe. Graunt’s original records report as many
as 80 mortality agents, including the rather colorful
“king’s evil” (tubercular infection of lymph nodes),
“hanged and made-away themselves,” and “lunatique”
(Graunt 1662). Yet, in retrospect one must question the
accuracy and variety of Renaissance death records given

the limited clinical and diagnostic tools available at that
time. In contrast, contemporary ecologists are more
restrained in their attribution of causes of death, with
rarely more than four to six different proximate causes
tending to be reported in a given study (Suzuki et al.
2003; Collins and Kays 2011; Tidemann and
Nelson 2011).
Proper identification of cause of death is crucial when

determining the relative importance of different risk fac-
tors for targeted mitigation. For example, if a population
is declining due to predation, targeted management
actions require an understanding of the prevalence of
predation as a cause of death and which segments of
the prey population are most vulnerable (e.g. juveniles,
malnourished, or naïve individuals). Yet, there may be
multiple predator species killing prey, but perhaps not
all individuals are equally susceptible to risk from the
same predators. Sympatric wolves and cougars (Felis
concolor) kill different age and sex cohorts in natural
populations of elk (C. elaphus, Husseman et al. 2003),
as do lynx (Lynx lynx) and red fox (Vulpes vulpes) preying
on roe deer (Capreolus capreolus, Melis et al. 2013). Note
that it is possible that mortality agents target individuals
that have higher frailty due to other factors, as is expected
when predation is directed at sick, lame, or otherwise
compromised individuals. Snowshoe hares and red
squirrels (Tamiasciurus hudsonicus) are killed by a
variety of predators. Body condition affects vulnerability
of hares to risk of predation by specific predators, whereas
for red squirrels, body condition does not influence
predation risk (Wirsing et al. 2002). It follows that in such
cases, predation is the proximate cause of death but
malnutrition or other factors can be important ultimate
causes. When both proximate and ultimate causes of
death are involved in mortality, their respective role in
population dynamics can become especially complex
and difficult to disentangle.
The onus is on researchers to adopt field protocols that

increase the likelihood of confirming proximate and
ultimate causes of death. Frequent detection of subjects
allows mortality events to be confirmed and diagnosed
shortly after their occurrence, when evidence on the
carcass itself and at the death site can be especially
informative. With the advent of satellite-based telemetry,
it is now possible to determine cause of death for migra-
tory animals that range over expansive spatial scales
(Hays 2014; Klaassen et al. 2014). But even intensive field
research inevitably includes deaths that are attributed to
unknown causes. The uncertainty reflects real-life chal-
lenges in conclusively determining cause of death from
evidence at the death site, as well as difficulties associated
with necropsy of incomplete or decomposed carcasses.
Follow-up investigation and ancillary investigation may
help discern the cause of death in instances where
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primary evidence is inconclusive. For example, Hays et al.
(2003) inferred high rates of fishing-related mortality in
leatherback turtles (Dermochelys coriacea) by focusing
on unnatural changes in the location or movements of
satellite-based radio transmitters. Alternatively, various
diagnostic, genetic, and related tests are now available
to complement traditional approaches in identifying
cause of death, and thereby help reduce the proportion
of mis-assigned or unknown mortality events (Onorato
et al. 2006; Wengert et al. 2012; Mumma et al. 2014).
In a detailed study of mortality of fishers (Pekania
pennanti), researchers used gross necropsy, histology,
toxicology, and molecular methods to distinguish among
five proximate causes of death, several of which required
multiple approaches for conclusive assessment (Wengert
et al. 2013; Gabriel et al. 2015). A number of resources are
available for diagnosis of cause of death for wildlife
species (Friend et al. 1999; Mineau and Tucker 2002;
Wengert et al. 2012; Alt and Eckert 2017).
It may also be possible to adopt field protocols to assess

the potential for misdiagnosis of cause of death: in a study
of radio-collared snowshoe hares, Murray et al. (1997)
showed that deployment of hare carcasses in the field
did not result in scavenging by predators, implying that
predation rates in radio-collared hares were unlikely to
be overestimated due to mistaking scavenging for preda-
tion. In contrast, deployment of carcasses of Ruffed
Grouse (Bonasa umbellus) revealed relatively high rates
of scavenging and carcass displacement (Bumann and
Stauffer 2002). Regardless, cause of death assessment in
field research should include prompt carcass retrieval,
necropsy, and assessment of the death site, in conjunction
with assessment of the timing of death. Ultimately,
studies seeking to develop a robust assessment of
cause-specific mortality rates and their demographic
importance are compelled to redouble efforts to confirm
the proximate and ultimate cause of death for study
individuals.

6.6.2 Cause-specific Hazards
and Mortality Rates

The quantitative analysis of cause of death allows us to
assign specific risks to different mortality agents. To that
end, we revisit our earlier expressions of survival and
hazard and consider analogues for multiple risk types.
Recalling that hazard is the instantaneous risk of death,
then if death can occur from p = 1,…, q causes and T is
the time to death from any cause, the cause-specific
hazard for cause p at time t is:

hp t = limΔt 0
Pr t ≤T < t +Δt, death fromp T ≥ t

Δt
6 19

for T equal to the time of death from any cause (Cleves
et al. 2010). Accordingly, we can consider that different
causes of death are “competing” to define T, and
therefore the total risk of any death type is h(t) = jhj(t),
with the probability of death from cause p being p(t)/h
(t). If subjects die from either risk types p or q, the prob-
ability of death (cause-specific hazard) from p is hp(t)/
{hp(t) + hq(t)} and the cause-specific hazard from q is
one minus the above probability.
In reality, risk types p and q may not act independ-

ently, for example when particularly vulnerable indivi-
duals experience high risk from more than one
mortality agent. This is an important point because
the one-to-one correspondence between cause-specific
hazard and the cumulative incidence of risk in standard
survival analysis is lost in the case of cause-specific risk.
Rather, we extend the survivor function to include mul-
tiple risks; S(t) = exp {−Hp(t) −Hq(t)}, where Hp(t) and
Hq(t) are the cumulative hazards from each risk type,
respectively. The implications of this distinction for
competing risks analysis are important, because the
cause-specific cumulative incidence (i.e. Fp(t)) requires
multiple risk types for proper calculation. If the term
(1 – KM) estimates the failure function for standard sur-
vival data across all causes of death, the analogous term
is not relevant to cause-specific failure because it
assumes independence among risk types (Cleves et al.
2010; Andersen et al. 2012).The cumulative incidence
function (CIF) is the appropriate unit in cause-specific
mortality estimation, where the cumulative failure rate
for risk type p (Fp(t)) now considers the association
between hp(t) and related covariates. The relationship
between CIFp(t) and cause-specific hazards can be sum-
marized by: p t = t

0 hp x S x dx, where x is a specified
time. Practically speaking, it is more appropriate to con-
sider a modified failure function rather than a modified
survivor function when dealing with competing risks,
and this is why researchers usually use CIF as the unit
of interest (Cleves et al. 2010). However, the CIF can be
biased low when there is staggered entry or a paucity of
early recruits due to left truncation (Woodroofe 1985;
Tsai 1988; but see Heisey and Patterson 2006). Alterna-
tively, the HF estimator can be expanded to deal with
multiple fates by considering that mip is the probability
that an individual who is alive at the beginning of interval
i dies as a result of mortality cause p (Heisey and Fuller
1985). The number of deaths in i from cause p (dip) is:

mip =
dip
ri

6 20

Collectively, the probability of death from cause p during
interval i is the sum of the probability that the subject
survives to a given day and then dies on the same day
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due to cause p, which can be calculated using the geomet-
ric progression:

Mip =mip + simip + si
2mip+ + si

Li−1 mip

=
mip

1−si
1−si

Li

6 21

It is important to recognize that the first quantity in the

second expression above,
mip

1−si
, is the relative risk of

death from cause p in interval i, whereas the second quan-
tity, 1−siLi , is the total probability of death, all sources
combined, during i (Heisey and Fuller 1985). More intu-
itively, if we accept that m represents a specific time unit
(usually days), the expression reveals how on day 1 of
interval i the subject experiences a mortality rate mip;
on day 2 the mortality rate is a product of risk from
mip and survival during the previous day (si), and so forth
(Williams et al. 2002).
Our example dataset for a wolf population in western

United States (Murray et al. 2010; Smith et al. 2010)
included 170 anthropogenic mortalities and 63 natural
mortalities, and CIFs were markedly higher for anthropo-
genic than natural risk (Figure 6.8a). Likewise, if we
assume a single interval of constant hazard through the
22-year study, which is unlikely but useful to illustrate
the point, 90-day cause-specific mortality rates are
0.029 (0.025, 0.035) for anthropogenic and 0.013 (0.010,
0.016) for natural causes where CIs were derived from
Taylor series approximation (Heisey and Fuller 1985).

Yet, both the CIF figure (Figure 6.8a) and cause-specific
mortality estimates do little to inform about the potential
inter-relation between different causes of death in the
wolf population itself, and therefore should not be the
final destination in our cause-specific mortality analysis.

6.6.3 Competing Risks Analysis

Competing or proportional risks analysis constitutes an
extension of CPH for the case of cause-specific hazards;
alternatively one could use fully parametric models to
compare CIFs, although this latter approach is tenuous
owing to the recognized limitations of parametric survival
analysis in ecology. The most practical way to implement
competing risks analysis is to use the data augmentation
approach (Lunn andMcNeil 1995), which takes advantage
of the additivity of hazard functions by duplicating the
dataset for each risk type and dummy coding within each
duplicate to identify the appropriate risk. Accordingly, for
each duplicate allmortalities from causes other than those
outside the specific risk set are functionally right-censored
(see Competing risks in Table 6.1). By stratifying accor-
ding to risk type, we perform multiple regressions
simultaneously, allowing us to deal with more than one
risk type within the same analysis and to compare covari-
ates that may relate differentially to each risk type.
There is an important note of caution when deciding on

how to functionally conduct competing risks analysis.
The number of different mortality agents affecting the
subject population and the role of each risk on hazard
should influence the number and identity of risk types
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Figure 6.8 Cumulative incidence functions (CIF) (a) and estimated hazards (b) for wolves. Hazards are estimated from a competing risks
model including wolf population density. The dataset was modified from Murray et al. (2010).
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included in the analysis. Notwithstanding the need to test
hypotheses and predictions that have been established a
priori (Chapter 2), exploratory analysis should be used
to assess the composition of risk type structure in the
dataset. If some causes of death are either uncommon
or related through proximate-ultimate linkages, categori-
cal outcomes should be pooled to achieve a more parsi-
monious risk set. Returning to the wolf mortality study,
Murray et al. (2010) used a competing risks framework
to compare factors promoting mortality from natural
causes (disease, strife, senescence) versus anthropogenic
causes (poaching, legal control, vehicle collision). To
achieve this level of detail, animals were radio-collared
and monitored regularly, and dead animals were recov-
ered and necropsied shortly after mortality was detected.
Some causes of death were relatively uncommon, and the
objective of the study was primarily to assess the role of
humans on wolf mortality risk. Thus, it was appropriate
to consolidate the various causes of death into two main
categories of risk: natural vs. anthropogenic causes.
A subset of wolves (12%) could not be assigned to either
of the two main risk types because they died of undeter-
mined causes, but exploratory analysis of survival times
and covariate influence confirmed that this group was
comparable to the other two main risk types. Wolves
dying of unknown causes probably constituted a repre-
sentative sample of the population (i.e. included animals
dying of anthropogenic and natural causes, in representa-
tive proportions) and thus could be included in the anal-
ysis as right censors. Note that inclusion of these
individuals as right censors serves to illustrate two impor-
tant reminders: (i) causes of death should be confirmed to
the fullest extent possible when anticipating competing
risks analysis to reduce the number of unknown mortal-
ities; and (ii) all subjects, regardless of their fate, should be
retained in the analysis (pending appropriate checks for
bias) to ensure that informative censoring does not com-
promise parameter estimates.
The role of a variety of predictors was examined to

identify determinants of anthropogenic and natural
deaths in the wolf population (Table 6.4). Overall, animals
that were dispersers (Disperser, 1 = yes) had qualitatively
higher risk from both anthropogenic and natural causes
of death compared to the nondispersing group, but the
HRs were comparable between the two risk types, and
in both cases CIs overlapped 1.0. However, risk of death
for animals living inMontana (Montana, coded as 1 = yes)
increased for anthropogenic causes but decreased for
natural causes. Likewise, mortality risk from anthropo-
genic causes increased by 54.3% for each unit increase
in wolf density (|1 – 1.543| × 100 = 54.3%), compared
to a concomitant decline in risk from natural causes with
increasing wolf density (|1 – 0.772| × 100 = 22.8%). The
divergence in risk is especially evident when HR

associated with each risk type are graphed against wolf
density (Figure 6.5b). However, one must take care when
comparing HR from competing risks analysis to their
corresponding CIFs, owing to the possibility that causes
of death are nonindependent (Andersen et al. 2012).
Ultimately, because anthropogenic risks were higher,
and natural risks were lower, in both Montana and across
wolf density, we infer that the two risk types were not
independent. In other words, anthropogenic mortality
was to some extent compensatory to natural mortality
(Figure 6.5b, see below). The complex relationships and
contextual subtleties between causes of death would
not have been revealed in the absence of a competing
risks analysis isolating the effects of each risk type,
specifically through inclusion of an interaction term with
predictors (Heisey and Patterson 2006). As an outcome of
this analysis, conservation efforts designed to manage
wolf deaths from anthropogenic causes should focus
primarily on the Montana population and relative to
increasing wolf numbers. In a similar scenario, Robinson
et al. (2015) used a CIF-based approach to compare
cause-specific mortality rates of Amur tigers (Panthera
tigris) to assess the role of a novel cause of death, canine
distemper virus, on the tiger population.

6.6.4 Additive Versus Compensatory Mortality

Ecologists have long been preoccupied with understanding
whetherdifferent risk typesaffectpopulationdynamics, and
in particular whether anthropogenic mortality, usually due
to human harvest, is additive to other causes of death and
thereby constrains population growth (Burnham and
Anderson 1984; Boyce et al. 1999; Sandercock et al.
2011). Alternatively, harvest or other sources of mortality
may play a compensatory role, meaning that their
demographic influence is lessened by the fact that some
mortality occurs irrespective of whether the cause of
interest is implicated. For example, earlier we discussed
instances when predators kill prey that are doomed to
die from other causes; this type of mortality requires

Table 6.4 Cause-specific hazard ratios (HR) (±95% confidence
intervals [CI]) for variables included in a multivariate competing
risks model for wolves.

Variable Anthropogenic Natural

Disperser 1.684 (0.803, 3.531) 1.662 (0.850, 3.249)

Montana 5.421 (2.668, 11.02) 0.482 (0.233, 0.995)

Wolf density 1.543 (1.234, 1.930) 0.772 (0.545, 1.094)

Source: Data adapted from Murray et al. (2010).
The analysis was restricted to wolves that were representative of the
population and thus excluded individuals captured following livestock
depredation.
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distinction between the proximate and ultimate cause of
death and constitutes compensatory mortality because
killed individuals would not otherwise contribute to
population growth. At one extreme, compensation can
be complete and all mortality replaces potential mortal-
ity from other causes; at the other extreme, mortality is
fully additive. Studies often reveal partially compensa-
tory effects (i.e. partially additive), depending on the
magnitude and individual targets of the source of
mortality. For example, power-line collisions are only
partly compensatory to other sources of mortality in
juvenile White Storks (Ciconia ciconia, Schaub and
Lebreton 2004). This means that overall mortality rates
in the stork population are higher due to such mortality.
The status of a particular mortality agent in the context
of the additive-compensatory mortality continuum will
determine its influence on the population trajectory
(Péron 2013). Interest in additive versus compensatory
mortality has dominated longstanding discussions
related to harvest management, population recovery,
and species conservation (Burnham et al. 1984; Conroy
and Krementz 1990; Pöysä et al. 2004; Cooley et al.
2009; Sandercock et al. 2011).
By allowing interaction terms between risk type and

predictors, competing risks models offer a direct and
robust individual-based tool in the assessment of additive
versus compensatory mortality (Heisey and Patterson
2006; Murray et al. 2010). However, to date few studies
have exploited this approach, preferring instead to focus
on population-level changes in different risk types
through space or time. Here, the focus is on the change
in cause-specific mortality or HR and whether different
risk types follow similar or opposite trends, which would
indicate additive or compensatory effects, respectively.
For example, in a large-scale harvest experiment,
Sandercock et al. (2011) used a cause-specific hazards
framework to show that the relative importance of
hunting mortality in Willow Ptarmigan (Lagopus
lagopus) often varied inversely with natural mortality,
indicating that hunting is partially compensatory.
Robinson et al. (2014) used changes in cause-specific
mortality following a temporal shift in cougar harvest
strategy to infer that mortality due to hunting of adult cats
was an additive source of mortality. Griffin et al. (2011)
showed that predation by grizzly bears was negatively
related to survival of elk calves and therefore constituted
additive mortality, whereas predation by other predator
species had no discernible demographic significance
and thus was compensatory. Bastille-Rouseau et al.
(2016) found that predation on caribou calves (Rangifer
tarandus) by invasive coyotes (Canis latrans) in New-
foundland was at least partly additive and therefore
potentially contributing to caribou population decline.

Traditionally, the population-level approach to the
additive–compensatory debate has involved regressing
survival against cause-specific mortality, where rates are
tallied for one or more populations, usually on an annual
basis. Here, a negative slope implies additive mortality,
with a steeper slope implying stronger additivity. For
example, using annual cause-specific mortality rates for
three separate wolf populations (Murray et al. 2010),
we infer by the qualitative difference between slopes that
anthropogenic mortality is more strongly additive in
Montana and Idaho than in the Greater Yellowstone Area
(Figure 6.9). Notably, the range of observed anthropo-
genic mortality rates is much greater in Montana, provid-
ing extra reassurance about the additive effects of
anthropogenic mortality on that wolf population. The
findings are consistent with other studies using a
regression-based approach to infer additive effects of
anthropogenic mortality on wolf populations (Creel and
Rotella 2010; Sparkman et al. 2011).
When regression-based models are used to infer the

demographic importance of a particular mortality agent,
regression slopes are compared statistically to determine
whether populations differ in the role of additive–
compensatory factors (Zar 1999). One caution is that
observations such as those in Figure 6.9 are serially auto-
correlated when collected sequentially from the same
population, leading to lack of independence. More
importantly, survival and cause-specific mortality rates
themselves are not independent, meaning that this
approach may be biased toward showing additivity. To
some extent, bias may be mitigated by calculating a cor-
rected standard error of the slope, or perhaps by using a
mixed-model design (Otis and White 2004; Schaub and
Lebreton 2004). More recently, Servanty et al. (2010)
advocated use of a state-space approach to properly
assess correlations between causes of death, whereas
Péron (2013) presented a metric for quantifying additivity
based on the variance–covariance structure of the mor-
tality rates themselves. Notwithstanding these develop-
ments, we must stress that population-level approaches
relating cause-specific mortality to survival fail to take full
advantage of continuous time information provided by
tracking individual variability through space and time.
In fact, Figure 6.8b presents a substantially more convinc-
ing case that anthropogenic mortality in wolves is partly
compensatory than does Figure 6.9. Ultimately, compet-
ing risks analysis and supporting figures allow researchers
to more fully dissect mechanisms underlying the addi-
tive–compensatory interplay than is possible with a pop-
ulation-level analysis. Thus, when combined with a study
design based on a before-after-control-impact approach
(Robinson et al. 2014) or replicated experimental treat-
ments (Sandercock et al. 2011), competing risks models
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offer an especially powerful tool for rigorously disentan-
gling additive versus compensatory effects of mortality.

6.7 Software Tools

Most advanced statistical software packages have built-in
functions for the estimation of the survival curve with
Kaplan–Meier models, and parametric and semi-
parametric regression analyses. General computing
environments or programming languages such as
MATLAB and PYTHON also have functions or modules
available for survival analysis. In SAS, the lifetest
procedure is the principal function for calculating sur-
vival curves, instantaneous hazard curves, and associated
tests. The phreg procedure is the main tool for paramet-
ric and semi-parametric regression analysis, with several
possible specifications including the use of frailty terms
and diagnostic tests. In Stata, the function sts is used
for calculating survival functions and survival curves,
whereas the functions stcox and streg can be used
for semi-parametric and parametric regression, respec-
tively. In program R, the survival package offers many
functions related to survival analysis and is the primary
reference. The survival package includes survfit
to calculate the survival curve and surv to create survival

objects that are used for semi-parametric (coxph) or par-
ametric analyses (survreg). The eha package also
offers different options for parametric and semi-
parametric regression, notably using the functions
phreg and coxreg. A distinction between survreg
and phreg is that the former uses an accelerated-failure
time model while the latter used a proportional hazards
model that will give results analogous to coxph or
coxreg. Other useful packages in R include: muhaz
for the estimation of hazard functions, coxme for the
addition of mixed-effects to CPH regression, and
cmprsk for calculation of CIFs in a competing risk
framework.

6.8 Online Exercises

In the exercises associated with our chapter, we use both
simulated and real data to illustrate some of the main fea-
tures covered herein. In Exercise 1, we use a simulated
dataset to demonstrate preparations for a survival analysis,
with particular attention given to the structure of the time
variable. Next, we show how to conduct simple hypothesis
tests for different covariates, and how to graph a variety of
survival functions. In Exercises 2 and 3, we demonstrate
how to develop more complex semi-parametric and para-
metric models to evaluate mortality risk determinants,
using an example based on predation by raccoons on
the nests of freshwater turtles.We testmodel assumptions,
and then demonstrate how to identify the best out of a
suite of candidate models. In Exercise 4, we demonstrate
the steps for conducting a competing risks analysis, and
generating corresponding graphical functions to compare
hazards across alternative risk types for gray wolves
exposed to both anthropogenic and natural mortality.

6.9 Future Directions

Understanding the factors affecting mortality risk and
fate of organisms will remain a core interest in population
ecology and conservation biology. Ecologists have largely
abandoned cross-sectional studies of populations (i.e. life
table analysis) in favor of longitudinal studies that track
individuals through time as they encounter a variety of
risks through life. However, despite a longstanding and
well-established basis for investigating continuous time
survival in observational research in other fields, several
improvements are needed to take full advantage of the
available opportunities in ecology. At its core, robust con-
tinuous time survival analysis relies on quality data con-
sisting of intensive monitoring and high detection
probability of individual subjects, prompt detection of
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mortality events, and application of contemporary diag-
nostic tools to improve cause of death determination.
Althoughmany research studies are already appropriately
designed to meet many of these needs, for others even
modest improvements in study design, data collection,
and data treatment and analysis will dramatically improve
inference. For example, we highlight the development of
new technologies like remotely triggered trail cameras,
bio-logging, or satellite-based telemetry that allow
researchers to monitor individuals much more efficiently
and with far greater detail than in the past (Naef-Danzer
et al. 2005; Cagnacci et al. 2010). It is possible to use these
devices to assign temporally or spatially explicit mortality
risk to individuals (Smith et al. 2010; Loveridge et al.
2017). Doubtless, ongoing refinement and miniaturiza-
tion of these new technologies means that the age of con-
tinuous time monitoring for all sorts of organisms is fast
approaching, perhaps even for plants and small animals,
which currently are under-represented in the continuous
time survival literature.
Semi-parametric modeling approaches shouldmeet the

survival analysis needs of the vast majority of population
ecologists. However, there remains a tendency to develop
survival models without appropriately testing for model
assumptions, in particular those related to proportional
hazards, lack of progressive sample heterogeneity, and
random censoring of subjects. These model assumptions
are treated seriously in the humanmedicine and epidemi-
ological literature (Grambsch and Therneau 1994; Leung
et al. 1997; Zens and Peart 2003; Hosmer et al. 2008), and
should receive similar attention in ecology. Additional
concerns relate to sample-size requirements in survival
analysis; observational field studies frequently include
too few subjects, too few mortalities, or too many censors
to provide robust statistical inference or to allow develop-
ment of complex survival models (Murray 2006).
Necessary steps in model diagnostics, including assessing
model parsimony and overfitting, are often overlooked
steps that relate directly to sample size and statistical
power. Adjustments concerning these issues should
include not only improved field protocols and refined sta-
tistical analysis, but also proper reporting of censoring
rates as well as the outcome of exploratory analyses
and model validation. Mixed-effects survival models,
where random effects can be assigned and explicitly mod-
eled for groups of individuals not under direct control of
the observer, add an important dimension to traditional
tools for analyzing survival in free-ranging organisms.
Our review is largely focused on survival analysis meth-

ods that are readily implemented using information-
theoretic methods, including model selection and
multimodel inference approaches (Chapter 2). Recent
efforts adapted Bayesian methods to survival analysis
(Ibrahim et al. 2005), specifically using Markov chain
Monte Carlo and Gibbs sampling algorithms to

appropriately weigh models according to their posterior
probabilities. Bayesian approaches may be an informative
solution to traditional survival analysis (Omerlu et al.
2009; Halstead et al. 2012) and thereby offer respite from
otherwise thorny issues in standard survival analysis such
as small sample size, missing values, censoring, nonpro-
portionality of hazards, and even unknown causes of
death. However, as with all Bayesian approaches, these
methods rely on representative priors that can be readily
translated from existing survival data; currently this may
be a challenging requirement given the paucity of reliable
and generalizable survival datasets for many taxa. Yet,
development and acquisition of new survival data, com-
bined with improved computational efficiency and user
interface, will make Bayesian methods increasingly
attractive for survival research in ecology.
One important extension of the suite of continuous

time survival methods involves multiple event analysis,
which is closely aligned to competing risks methods
but considers rates of nonlethal reoccurring events. This
approach takes advantage of the time-to-event origins of
the methods discussed in this chapter, and applies them
specifically to evaluate rate determinants for repeatable
events. In a simple example, Merrill et al. (2010) used
reoccurring events analyses (i.e. CPH and parametric
analogues) to illustrate how environmental factors influ-
ence rates that wolves kill prey. Because wolves were
equipped with satellite-based tracking units, monitoring
and detection was quasi-continuous and allowed estima-
tion of the number of prey kills per unit time and relative
to habitat and prey density. Reoccurring events analysis
holds possibilities for assessing rates of a variety of dem-
ographic characteristics such as breeding or dispersal or
other events that may happen multiple times in an indi-
vidual’s lifetime. To date, reoccurring events in ecology
have rarely been considered in an actual time-to-event
context or for estimating demographic rates (Bastille-
Rousseau et al. 2011; Whittington et al. 2011; McPhee
et al. 2012). The logical extension here is the potential
to adopt multistate models to evaluate the interplay
between variable subject states and corresponding risks.
For example, this approach could allow researchers to
investigate how dispersal status increases mortality risk
that is separate from natural nondispersal risk, while con-
sidering that dispersal status is reversible through time;
these methods provide a sophisticated approach for
assessing co-occurring and reoccurring risk types
(Beyersmann et al. 2012; Devineau et al. 2014; Hightower
and Harris 2017). However, we caution that these and
other advanced methods are developed primarily for
fields where sample sizes and study design tend not to
limit modeling capabilities or to raise concerns over
model complexity and model mis-specification. Thus,
the extent that these methods overextend the capabilities
of more modest ecological datasets is open for debate.
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Ultimately, more careful application of the methods
detailed in this chapter, specifically in the context of
intensified fieldwork for developing robust continuous
time datasets and the use of contemporary methods
focusing on individual variability in risk through space
and time, will serve well in raising the bar for ecological
survival analysis. When combined with more extensive
coverage of these topics in quantitative ecology courses
and workshops, these advances should improve our
capacity for robust survival analysis and thereby place
us in a better position to address future questions and
challenges related to population viability, sustainable har-
vest, or environmental impact mitigation.
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Mark-Recapture Models for Estimation of Demographic Parameters
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Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim, Norway

Summary

Population ecologists require robust estimates of survival and other demographic parameters for understanding the ecological
and evolutionary drivers of wildlife population dynamics. Live encounter data from individual animals marked with unique tags
or natural marking patterns are a key source of information for many species. Imperfect detection and losses to emigration can
be challenging issues when tracking mobile organisms under natural conditions. Mark-recapture models utilize encounter
histories for marked individuals where consecutive sampling occasions are coded with detection or nondetection data. Alter-
native models can then be fit as fixed-effect models with maximum likelihood methods in a frequentist framework, or as hier-
archical models with random effects in a Bayesian framework. The Cormack–Jolly–Seber (CJS) model conditions upon first
capture and uses forward-time modeling to estimate apparent survival corrected for the probability of encounter. More com-
plex models extend the basic CJS model to estimate additional parameters. Time-since-marking models estimate apparent
survival corrected for losses due to transients, age effects, and other factors. Temporal symmetry and Jolly–Seber models com-
bine forward- and reverse-time modeling to estimate recruitment and population change without the need to parameterize a
full matrix model. Robust design models adopt a nested sampling approach and are useful for investigating the dynamics of
temporary emigration due to regional movements, dormancy, and intermittent breeding. Multistate models extend the single-
state CJS model to multiple categorical states and provide state-specific estimates of apparent survival and transition rates
among sites, demographic classes, disease status, or other states. Extended multistate models allow for unobservable states
or situations where state classifications may be uncertain. Other models combine live encounters from marked individuals
with different types of auxiliary data. Mark-resighting models add counts of unmarked individuals to estimate total abundance.
Joint models add data on dead recoveries or supplementary resightings to estimate true survival and site fidelity. Integrated
population models combine live encounters with count and fecundity data to estimate immigration rates and population
change. Mark-recapture models are powerful tools because they correct for imperfect detection and imperfect availability, they
can control for transients, social structure, and other potential sources of heterogeneity, and they also allow joint analysis across
independent datasets. Demographic parameters are estimated with less bias and greater precision, thereby providing a stronger
foundation for addressing key questions in population biology, evolutionary ecology, and wildlife management.

7.1 Introduction

Estimation of demographic parameters is central to the
population biology of wildlife species, with important
applications for understanding the ecology of population
dynamics, the evolution of life-history strategies, and for
makingmanagement and conservation decisions. Survival
is particularly difficult to estimate for wildlife populations
because the timing and causes of mortality are usually
unknown for free-living animals, and because imperfect
detection is the rule rather than the exception inmost field
studies (Kellner and Swihart 2014). Marked animals are

often difficult to detect due to the logistics of field effort,
low densities, wide-ranging movements, or secretive
behavior (Mazerolle 2015). Despite challenges for estima-
tion, survival is often identified as thedemographicparam-
eter with the greatest impact on the finite rate of
population change (λ, Doherty et al. 2004; Schorcht et al.
2009). Adult survival is often an important driver for
long-lived vertebrates or declining populations, whereas
juvenile survival can have greater impacts in short-lived
species or growing populations (Oli and Dobson 2003;
Stahl and Oli 2006; Vélez-Espino et al. 2006). The relative
influence of survival rates and other demographic
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parameters is determined by both their mean value and
variance, and demographic parameters that have a large
effect on the rateofpopulationchangeoftenhave relatively
lowvariance (Gaillard andYoccoz2003; Rotella et al. 2012;
Péron et al. 2016). Estimation of the variance of survival
rates is complicated because the maximum variance
declines to zerowhen a probability approaches the bound-
ary value of one (Morris andDoak2004), andbecause tem-
poral variation includes the process variance of biological
interest, but also sampling variance which adds undesira-
ble statistical noise (Gould and Nichols 1998; Ryu et al.
2016). The predicted impacts of conservation or manage-
ment actions aredeterminedbyboth themeanand thevar-
iance of demographic parameters in a population model.
Hence, a central goal in population biology is to obtain
parameter estimates that are unbiasedwith estimates that
are close to the true value of a demographic parameter, but
also have good precision with a low variance.
Estimation of survival rates and other demographic

parameters for wildlife populations generally require
one of four different types of data: age ratios from
unmarked individuals, live encounters of marked
individuals, dead recoveries of marked individuals, or
intensive monitoring of animals marked with radio
transmitters or other tags (Williams et al. 2002). Age
ratios can be estimated from the standing age distribution
of a population or by tracking cohorts through time, and
may be the only demographic data available in a short-
term study (Hernández-Matías et al. 2011). Calculation
of survival from age distributions requires that the
population has a stable age distribution, the rate of
population change is either stable or stationary, and all
age classes have an equal probability of encounter. All
of these assumptions are likely to be violated in field
studies of wildlife populations (Conn et al. 2005). Dead
recovery data require that observers retrieve and report
markers from animals that are harvested or found dead
of natural causes. Dead recovery data can be a valuable
source of information for harvested species, but are less
useful for nongame species unless a large number of
markers can be retrieved and reported (Robinson et al.
2009; Arnold et al. 2016). Radio telemetry data can be
analyzed with time-to-event models to estimate survival
and hazard rates (Zens and Peart 2003; Murray 2006,
Chapter 6), and also provide insights into animal
movements and space use (Chapters 13–14). The
disadvantages of telemetry methods are mainly logistical
considerations: transmitter size may limit battery life,
attachment techniques should avoid impacts on survival,
and financial costs of transmitters and tracking may limit
sample size for a field study. Of the four sources of
information, live encounter data are arguably the most
widely used source of information for estimating survival
and other demographic parameters for wild populations
of animals and plants.

7.2 Live Encounter Data

Live encounter data include a variety of different types of
information that can be collected for wildlife populations.
In a mark–recapture study based on tagging, the field
methods start with live capture and unique marking of
individual animals. Standard techniques for physical
marking vary among different groups of animals:
numbered stickers for butterfly wings, injected tags for
fish based on PIT (passive inductance transducers) or
RFID (radio-frequency identification) technologies, toe-
clipping or branding for amphibians and reptiles, neck
collars, wing-tags or leg-bands on birds, and ear-tagging
or tattoos for mammals (Silvy et al. 2012). In some spe-
cies, natural marking patterns can be used to identify
unique individuals without application of external tags:
distinctive vocalizations of songbirds, spots of sharks
and salamanders, notches in the tail flukes of whales, or
coat patterns of wild cats (Vögeli et al. 2008; Bendik
et al. 2013; Lee et al. 2014; McClintock 2015). Another
noninvasive approach for tracking individuals is molecu-
lar genotyping based on DNA isolated from shed hair and
feathers, or scat (Lukacs and Burnham 2005).
The basic assumptions of marking techniques are that

handling and marking do not negatively affect animal
survival or behavior, marks are read without error, and
marks are retained for the duration of the field study.
Once a uniquely marked individual has been released,
observers monitor subsequent survival by attempting to
find the same individual again. Assumptions of the
detection process are that fates of marked individuals
are independent, and that all marked individuals have
the same probability of recapture. Live encounters of a
marked individual or detections can include physical
recaptures to read themark, resighting of individuals with
binoculars or a spotting scope, or registering the tag as the
animal comes near a camera or other recording device.
Detections can be recorded in several formats, including
detection only, counts of the number of detection events,
or information on the state of an individual. If an
individual is successfully detected, the true state is usually
unambiguous because the organism is observed to be
alive or dead. Uncertainty arises for nondetections of
marked individuals because they could be dead,
emigrants from a study plot, alive but not available for
encounter, or present but overlooked by the observer.
A mark-recapture study requires defining the spatial

and temporal scale of the project relative to the move-
ments and expected lifespan of the study organism
(Lindberg 2012). Population studies often have one or
more study plots of fixed size – a series of meadows for
an alpine butterfly, a systematic trapping grid for rodents,
a linear array of weirs for a stream fish, or a valley ecosys-
tem for a resident predator. In most mark-recapture
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models, marked individuals are marked and encountered
within the same network of study plots. In joint models,
individuals are marked at a study plot of fixed size, but
dead recovery data or resighting data can be taken from
the extended range of a migratory population. Mark-
recapture models that estimate number of immigrants
or probability of recruitment usually require that the
boundaries and size of the study area remain constant
for the duration of the project. If a study area is enlarged
midway through a project, newly captured individuals in
the expanded zone cannot be distinguished from new
immigrants.
Efforts to detect marked individuals are spread across

two or more occasions. The time-step might be days for
a short-lived insect, weeks or months for a rodent, or
years for most vertebrate populations. Two sampling
occasions permit estimation of return rates, but three
to four occasions are the minimum needed to use
mark-recapture models. Longer time series with six or
more occasions are needed to model temporal covariates
and to estimate the process variance of demographic
parameters without the confounding effects of sampling
variance. Mark-recapture models perform best if sam-
pling is systematic with equal intervals between consec-
utive sampling occasions. However, systematic sampling
may be impractical for remote field sites where logistics of
site access are difficult, or for ectothermic animals which
are only active during suitable environmental conditions.
Most mark-recapture models can also accommodate
unequal intervals among different sampling occasions.
In closed models, the interval between occasions is rela-
tively short, and population size is assumed to be constant
and unchanging. Closed population models offer some
advantages for estimation of abundance because encoun-
ter rates can be modeled more effectively, without a need
to estimate survival or recruitment. In open models, the
duration of the interval between sampling occasions is
long enough to accommodate the dynamic processes,
such that the number of marked individuals can increase
due to gains from recruitment or immigration, or
decrease due to losses from death or permanent emigra-
tion. Sampling should be instantaneous; gains and losses
occur within long intervals but not during the short
sampling occasions, although mark-recapture models
can be robust to violations of this assumption (O’Brien
et al. 2005).
Mark-recapture models are mainly used to estimate

demographic parameters for marked individuals in popu-
lations, but can also be applied at different ecological
levels. If encounter histories are coded for detections of
species instead of individuals, the same set of mark-
recapture models can be used to study community
dynamics including species richness, persistence, coloni-
zation, and turnover (Dorazio et al. 2006; Zipkin et al.

2010). Noninvasive methods of detection may be prefer-
able for threatened or secretive species where physical
capture is undesirable or impossible. Detections or
counts of animals from vocalizations, tracks, or other
signs of animal activity (Pellet and Schmidt 2005;
O’Connell et al. 2006; Richmond et al. 2012) can be used
to estimate occupancy, abundance, and population
dynamics (Dail and Madsen 2013; Chapters 3–4).
Mark-recapture models for unmarked individuals can
also be used to estimate survival and other dynamic rates
for open populations (Zipkin et al. 2014). Here, I focus on
mark-recapture models for estimating survival and other
demographic parameters in field projects where at least
some portion of the study population is individually
marked or otherwise identifiable.

7.3 Encounter Histories and Model
Selection

A starting point for any statistical analysis of live encoun-
ter data is to identify the mark-recapture model that best
matches the sampling design of a field project, and will
yield estimates of demographic parameters that are
corrected for imperfect detection and other sources of
heterogeneity (Horton and Letcher 2008; Lindberg
2012, Figure 7.1). The next step is to assemble encounter
histories for the sample set of uniquely marked indivi-
duals. In a matrix of encounter histories, each row corre-
sponds to a different individual and each column
corresponds to a different sampling occasion. The cells
of the resulting matrix are then coded with information
from live encounter data (L), or some combination of live
encounter and dead recovery information (LD). Live
encounters in a single state are based on the L format
and encounter histories are coded as: 1 = an observer
detected a marked individual as a recapture or resighting,
or 0 = an observer did not encounter the individual
(Box 7.1). In a multistate model, detections are coded
as categorical states: B = breeder, N = nonbreeder, and
0 = not detected. If the categorical states are the number
of unmarked young attended by a marked parent, detec-
tions might be coded as digits: 3 = three young, 1 = one
young, and 0 = no young detected. For joint models based
on an LD format, codes would include: 10 = a live
encounter, 01 = a dead recovery, 02 = a supplemental
observation, or 00 = not detected by any method.
Once encounter histories are assembled, the next step

is to select the intrinsic and extrinsic variables to be
included in the starting global model. Selection of impor-
tant covariates is conducted a priori to guard against the
possibility of spurious or irrelevant results (Chapter 2).
Covariates can be discrete or continuous, as well as
static or dynamic. Variables that affect demographic
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Figure 7.1 Conceptual diagram for open population models based on live encounter data for marked individuals. The Cormack–Jolly–Seber
model is a fundamental model that estimates apparent survival (ϕ), corrected for the probability of encounter (p). If only two sampling
occasions are available, return rates can be estimated as the product of the two parameters (R = ϕ p). A large family of mark-recapture
models are based on different extensions of the CJS model. If individuals are not detected after first capture, the time-since marking model
estimates age-specific apparent survival (ϕn), whereas the transient model estimates the probability of transience (τ). Temporal symmetry
models combine forward and reverse-time modeling to add estimates of realized population change (λ) or seniority (ζ). The Jolly–Seber (JS)
model uses the complete encounter histories and estimates the population size of marked individuals (N), and number of immigrants (B).
Spatially explicit models add spatial data on animal locations to also estimate recruitment (ρ) and density (D), adjusted for spatial detectability
(δ) and encounters per individual (λ0).Multilevel models use hierarchical approaches to model CJS data frommultiple sites or species. Robust
design models subdivide primary sampling occasions into secondary closed periods, and can be used to partition the probability of
encounter into temporary emigration (γ) and true detection (p∗).Mark-resighting models extend the robust design model by adding counts
of unmarked individuals, and estimate transitions for observable (γ ) and unobservable individuals (γ ), abundance adjusted for the number
of unmarked individuals (U), with corrections for individual heterogeneity (δ) and resighting (α). Multistate models code detections as
different categorical states (r), and provide state-specific estimates of ϕr and pr, along with the probability of changing states (ψr). If
detections are coded as counts of unmarked young attending a marked parent, the young survival model gives age-specific estimates of ϕc

and pc. Multistate models for unobservable states are possible but usually require additional constraints to avoid parameter redundancy.
Multievent models handle uncertainty in state classification, and include estimates the probability of assignment to a state (π). In the
Burnham and Barker joint models, live encounter data are combined with dead recovery data and supplementary resighting data to
decompose apparent survival into true survival (S) and movement (F, F ), corrected for the probabilities of recovery (r) and resighting (R and
R ). Integrated population models combine mark-recapture data with counts of population size, fecundity, age ratios, or other types of
demographic data to conduct an integrated demographic analysis.



Box 7.1 Encounter Histories and Parameter Index Matrices

The starting point for any capture-mark-recapture analysis
is to assemble the detection–nondetection data for
uniquely marked individuals into encounter histories.
The rows of the file are the information for individual
animals and the columns are the sampling occasions.
The status of the animal is then recorded for each individ-
ual at each sampling occasion. In the case of the Cormack–
Jolly–Seber (CJS) model for live encounter data, a single
value is recorded for animal status at each occasion
(LLLLLLL) with the two possible codes being detected
alive (1) or not detected (0). Consider the following
encounter history for one individual animal:

1101010 7 1

The field study had seven sampling occasions, which
produces an encounter history with seven columns. The
values of one in the encounter history indicate that the
animal was detected on occasions 1, 2, 4, and 6, whereas
the zeros show it was not observed on occasions 3, 5, and
7. Given detections on occasions 2 and 6, the individual
was definitely alive but was not detected on occasions 3
and 5. Inspecting the encounter histories can be a useful
starting point for an analysis. If any encounter histories
contain gaps with zeros nested within a string of ones,
then the probability of encounter will be less than one.
The fate of the animal on the last occasion is ambiguous:
the individual could have been alive but not detected, or it
might be dead.
The CJS model estimates two parameters, the probabil-

ity of apparent survival (ϕ) and the probability of
encounter (p). Depending on the data included in the
encounter histories, the latter parameter can also be
called the probability of capture or the probability of
resighting. For a sample of n occasions, the CJS model
calculates n − 1 estimates of apparent survival and n − 1
estimates of the probability of encounter.

t1 t2 t3 t4 t5 t6 t7
1 1 0 1 0 1 0

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6
p1 p2 p3 p4 p5 p6

7 2

Apparent survival is estimated for the intervals between
consecutive occasions, whereas the estimates of encoun-
ter apply to the sampling occasions. In the CJS model,
encounter rates are not estimated for the first occasion

(t1) because no animals were released before the start
of the field study and none are available for recapture.

One possible summary of this model would be to collect
all of the subscripts or parameter index numbers into sep-
arate vectors for each parameter.

ϕ p

1 2 3 4 5 6 1 2 3 4 5 6
7 3

In the above example, the index numbers correspond
to different intervals and occasions. However, apparent
survival and encounter are independent parameters and
they might be renumbered consecutively to avoid
confusion.

ϕ p

1 2 3 4 5 6 7 8 9 10 11 12
7 4

If the index numbers are different for each interval
or occasion, then the parameter estimates from the
model will be different among occasions or time-
dependent.

One row of index numbers would be sufficient if a single
batch of animals was marked and released on the first
occasion of the field study. In an open population model,
subsequent years of field work would include recapture or
resighting effort, but also new capture events with mark-
ing and release of individuals on later occasions. If we add
additional rows for animals first marked on the second
and later occasions, our summary diagrams then become
triangular matrices.

ϕ p

1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 8 9 10 11 12

3 4 5 6 9 10 11 12

4 5 6 10 11 12

5 6 11 12

6 12

7 5

The triangular matrices are known as parameter index
matrices or PIMs, and are one approach for describing
the structure of a mark-recapture model and fitting
alternative models in software packages such as Program
Mark.
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performance often include group effects such as sex, col-
ony, or breeding status, time effects for environmental
conditions that vary temporally, time-since-marking
effects that change with time since first capture such as
transience, age, or experience, and individual covariates
such as body size and other morphometric traits
(Grosbois et al. 2008; Fredericksen et al. 2014). Different
sets of variables can then be combined in additivemodels
with main effects only, or in factorial models with main
effects and their interactions. As a rule of thumb, the
maximum number of parameters in a starting model is
usually capped at n/10, where n is the effective sample
size, calculated as the number of captures and recaptures
in a set of encounter histories based on live encounters or
dead recoveries (Burnham and Anderson 2002, p. 245).
The parameter count of a model (K) can be reduced by
modeling parameters without any temporal variation,
as a temporal trend, or as a linear or nonlinear function
of explanatory covariates (Gimenez et al. 2006).
A common situation in mark-recapture analyses is that

the detection or count data may be overdispersed due to
lack of independence or heterogeneity among marked
individuals, and the starting global model may not be
a perfect fit to the encounter histories. A necessary
first step is to use goodness-of-fit (GOF) procedures to
calculate a variance inflation factor (c) to correct for
possible overdispersion caused by a lack of fit between
the starting model and the encounter histories. The
variance inflation factor approaches an asymptotic value
of one if the starting model is a perfect fit with no over-
dispersion. If an estimation procedure returns a value of
c < 1, then the parameter is usually set to one. Values of
c = 1–3 are typical for most mark-recapture datasets,
and higher values may indicate structural problems.
A variety of procedures are available to estimate c for
CJS and multistrata models, but not for more complex
models, such as multievent models (Pradel et al. 2005;
Choquet et al. 2009a; Kendall et al. 2013). Calibrated
simulations have been used to test GOF for integrated
population models, and might be an option for other
mark-recapture models too (Besbeas and Morgan
2014). Last, if GOF tests are not available to test for
overdispersion or to estimate c, sensitivity analyses for
model rankings can be conducted by varying c across a
range of plausible values (e.g. c = 1–3 by 0.5).
Mark-recapture analyses are often conducted in an

information theory framework with the tools of model
selection (Burnham et al. 2011; Lindberg et al. 2015,
Chapter 2). If alternative models are fit with maximum
likelihood estimation (MLE), model selection is based
on different variants of Akaike’s Information Criterion
(AIC, AICc, or QAICc) or Bayes Information Criterion
(BIC), which are tools for identification of parsimonious

models (Burnham and Anderson 2004; Grueber et al.
2011, Chapter 2). Picking an information criteria depends
on the goals of a study: AIC for exploratory analysis of
model complexity in an observational study, and BIC
for confirmatory analysis of the single-best model in a
controlled experiment (Aho et al. 2014). Differences in
information criterion values are used to calculate model
weights (wi), and ratios of model weights or Bayes factors
can be used to calculate relative levels of support between
different models. Caution should be taken when compar-
ing models that differ by a single parameter because the
minimum AIC model may retain an uninformative cov-
ariate (Arnold 2010). AIC and BIC are also less suitable
for comparing hierarchical models with random effects,
and tools for model selection in a Bayesian framework
are an emerging field (Barker and Link 2015; Hooten
and Hobbs 2015, Chapter 5).
Model testing starts with a global model, and pro-

ceeds by dropping variables to fit a series of reduced
models which can be viewed as a suite of alternative
hypotheses (Chapter 2). For a simple analysis, an all-
combinations approach might be used to test candidate
models that include all possible combinations of a lim-
ited set of explanatory variables. However, the number
of possible models increases exponentially as additional
explanatory variables or demographic parameters are
added to the set of candidate models. In a step-down
approach, terms are dropped from the global model
in an iterative manner starting with the encounter rates
or other nuisance parameters associated with the sam-
pling process, proceeding to the demographic para-
meters of biological interest, and then with a final
step that adds terms back to explore additional models
close to the best model (Sandercock and Jaramillo
2002). In a single-factor approach, each parameter is
modeled separately while retaining full model complex-
ity for all other parameters in the model, and then highly
ranked structures for each parameter type are com-
bined in a composite model (Grosbois and Tavecchia
2003). The order that parameters are modeled may
not be critical because model selection strategies seem
to have little effect on bias or precision of parameter
estimates (Doherty et al. 2012). Still, if computation
times or issues with convergence are a consideration,
the best approach may be to fit a concise set of 4–20 bio-
logically plausible models and be less concerned with
multimodel inference.
Once model testing has been completed, several proce-

dures can be used to obtain parameter estimates. If a sin-
gle model in the candidate set receives majority support
(wi > 0.8), then parameter estimates might be taken from
that top-ranked model. If a subset of models each receive
some support (wi > 0.3), then model-averaging can be
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used where each set of parameter estimates is combined
with the model weight, and then used to obtain a
weighted average with an unconditional variance that also
includes uncertainty due tomodel selection. An issue that
arises is that demographic parameters or covariates may
only appear in a subset of models in the candidate set
(Grueber et al. 2011). Under the natural average method,
parameters are averaged across the subset of models in
which the parameter is present, after rescaling the model
weights to sum to one. Under the zero method, missing
parameters are set to zero inmodels where the parameters
are absent, thereby shrinking predictors toward zero if
models without the effect have strong support. The rela-
tive importance of a parameter is sometimes calculated by
summing the weights across models where the parameter
appears, but simulations have shown that sums of weights
can be unreliable for assessing the importance of predictor
variables (Galipaud et al. 2014). Model averaging can also
lead to flawed parameter estimates if the predictor
variables are correlated, but can be addressed with tests
for multicollinearity and by standardizing predictor
variables for their covariance structure (Cade 2015).

7.4 Return Rates

Return rates (R) are a good starting point for understand-
ing the value of mark-recapture models. If a sample of
individuals is marked on an occasion at a sampling site,
the return rate is the proportion of marked individuals
encountered the following year, or during some block
of future years. Return rates are challenging to interpret
because the probability of capturing an individual animal
in two consecutive years is a function of four independent
probabilities: true survival (S), site fidelity (F ), site propen-
sity (δ), and true detection (p∗, Box 7.2). Return rates are a
minimum estimate of true survival because they are the
product of four probabilities (R = S × F × δ × p∗). If return
rates are high (R > 0.9), then true survival and the other
three probabilities must also be high (≥0.9). Difficulties
arise in the interpretation of low or moderate return rates
(0.2 < R < 0.6), and with comparisons of return rates
among different groups or years. If any of the last three
parameters are <1, return rates are negatively biased as
an estimate of true survival. A low return rate of 0.4 could
be the result of poor survival, weak site fidelity, or a

Box 7.2 Definitions of Demographic Parameters in Cormack–Jolly–Seber Models

Return rates have been widely used in population biology
as an index of survival. If a group of individuals are marked
one year at a sampling site, the “return rate” (R) can be cal-
culated as the proportion of marked individuals encoun-
tered the following year, or during some block of future
years. Return rates are difficult to interpret because they
are the product of four independent probabilities
(R = S × F × δ × p∗):

True survival (S): the probability that an individual sur-
vives between two sampling occasions. The comple-
ment of survival includes losses to mortality (1 − S).

Site fidelity (F): the probability that an individual returns
to the same sampling area, conditional upon true
survival. The complement of site fidelity includes losses
to permanent emigration (1 − F).

Site propensity (δ): the probability that an individual is
available for encounter in the same sampling area the
next occasion, conditional upon survival and site fidel-
ity. The complement of site propensity includes losses
to temporary emigration (γ = 1 − δ).

True detection (p∗): the probability that an observer
detects the individual under field conditions, condi-
tional upon survival, site fidelity, and availability for
encounter. The complement of true detection is imper-
fect detection (1 − p∗).

Cormack–Jolly–Seber (CJS) models are an improvement
over return rates because they use encounter histories of
marked individuals to estimate two independent
probabilities:

Apparent survival (ϕ = SF): the probability that an indi-
vidual survives between two sampling occasions and
returns to the sampling area. The complement of appar-
ent survival includes losses to mortality or permanent
emigration.

Encounter rate (p = δ p∗): the probability that an individ-
ual is detected under field conditions given that is
available for encounter in the sampling area. The com-
plement of the probability of encounter includes indivi-
duals not available for detection and individuals that
were present in the sampling area but not detected.

Extended mark-recapture models can be used to
decompose the demographic parameters even further.
Joint models combine live encounter with dead recovery
data and can be used to decompose apparent survival
into true survival and site fidelity. Conversely, robust
designmodels can be used to separate temporary emigra-
tion from the probability of true detection. An integrated
model that combines live encounter data, supplementary
observations, and a robust design framework can estimate
all four parameters separately (Kendall et al. 2013).
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variety of other combinations of the four parameters.
Given the expected problems of bias and interpretation,
return rates should be avoided if possible. On the other
hand, return rates may be the only estimator available
if the duration of a project is 2–3 years. In that case,
return rates may be used as a crude index of true survival,
but assumptions must bemade about the remaining three
probabilities. If site fidelity, site propensity, and true
detection are assumed to be equivalent among groups
or years, then differences in return rates might be due
to variation in true survival. Similarly, temporal trends
in return rates may be compared among different loca-
tions if the distributions of the other probabilities are
assumed to be stationary over time.

7.5 Cormack–Jolly–Seber Models

The Cormack–Jolly–Seber (CJS) model is a fundamental
model for analysis of live encounter data, and many other
models for live encounter data are extensions of the CJS
model (Figure 7.1). The CJS model conditions upon first
capture and uses forward-time modeling to estimate two
demographic parameters for a population of marked
individuals: apparent survival (ϕ) corrected for the prob-
ability of encounter (p, Box 7.2). Apparent survival is less
biased as an estimator of true survival compared to return
rates because it is the product of two instead of four
parameters (ϕ = S × F). Like return rates, if apparent
survival is high, then both S and F must be high. CJS
models can be used to estimate true survival for sessile
organisms if movements are limited and site fidelity is
effectively one (ϕ = S if F≈ 1). Conversely, CJS models
can also be used to estimate site fidelity if true survival
rates are expected to be high during a short-term study
(ϕ = F if S≈ 1). The probability of encounter (p = δ × p∗)
is usually regarded as a nuisance parameter because it
corrects for imperfect detection (p∗), but p can also be
of biological interest if the dynamics of temporary
emigration lead to low site propensity (γ = 1 − δ).
CJS and other mark-recapture models require live

encounter data from at least three sampling occasions
because internal gaps in the encounter histories are used
to estimate the probability of encounter (e.g. 101,
Box 7.1). Individuals that are newly marked on the last
occasion of a field study do not contribute to parameter
estimates in a CJS model (e.g. 001), and the terminal field
season of a field project is best spent trying to recapture or
resight marked individuals. CJS models can be fit to
encounter histories with a multinomial likelihood using
MLE in a frequentist framework (Lebreton et al. 1992),

or with a state-space likelihood and Markov chain Monte
Carlo (MCMC) methods in a Bayesian framework
(Gimenez et al. 2007; Royle 2008). Alternative models
with different structures can be defined with model
statements, parameter index matrices (PIMs), or design
matrices (DM) in the different software tools (Box 7.3).
One issue that arises with the CJSmodel andmany other

mark-recapture models is that the intrinsic model struc-
ture may prevent estimation of a desired parameter. In a
fixed-effects CJS model with time-dependence in both ϕ
and p, it is not possible to estimate p for the last sampling
occasion because no capture data are available from occa-
sions following the end of the project. If ϕ and p cannot be
estimated separately for the last interval in a time series,
then the product of the last two transition rates is esti-
mated as a single parameter (ϕp). The terminal parameters
of ϕ or p are nonidentifiable because they cannot be esti-
mated separately, and the model is then considered
parameter redundant because the likelihood is expressed
as a function of fewer parameters than the original count
(Gimenez et al. 2003; Hubbard et al. 2014). The terminal
product of ϕp can be decomposed if some constraint is
applied to the CJS model: by modeling ϕ or p as constant
over time or as a random effect in a hierarchical model.
Nevertheless, n years of study may yield n – 2 estimates
of apparent survival, and each additional year adds another
annual estimate. Longer time series are needed to model
apparent survival as a function of annual covariates, to esti-
mate components of variance, and to estimate additional
demographic parameters in more complex models.

7.6 The Challenge of Emigration

Capture, marking, andmonitoring of individually marked
animals for a population study are labor-intensive activ-
ities. Logistics and cost often constrain field projects to
sampling on a fixed-area study plot that encompasses a
random or representative sample of individual territories
or home ranges. Marked individuals may be detected with
intensive area-search sampling (Efford 2011; Royle et al.
2011), or with grids or webs of live traps, hair snares,
or camera stations (O’Connell et al. 2006; Monterroso
et al. 2014). If a fixed-area study plot is located in contig-
uous habitat, the plot boundaries may not be a barrier to
movements. Movements can lead to permanent emigra-
tion where marked individuals disperse away from the
study plot and never return, whereas during temporary
emigration, the dispersing individuals may leave or be
unavailable for encounter for some period but then
return again to the study plot in the future.
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Box 7.3 Alternative Approaches to Fitting Candidate Models in RMark and Program Mark.

Fitting mark-recapture models with formulae in RMark, or
with parameter index matrices (PIM) and design matrices
(DM) in Program Mark. Model effects are constructed with
model statements in RMark. With PIMs, shared or different
index numbers are used to pool or separate estimates for

different groups or times. Each row is a cohort that was first
captured on different sampling occasions. In DMs, dummy
variables are used to code separate effects for the intercept,
groups, time,or interactions. Theexample isbasedonsix tran-
sitions for seven sampling occasions, and two groups for sex.

RMark PIMs DM

Constant model
formula =
~1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1

1 1

1

1

1

1

1

1

1

Group model
formula =
~sex

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1

1 1

1
2 2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2

2 2

2

1 1

1 1

1 1

1 1

1 1

1 1

1 0

1 0

1 0

1 0

1 0

1 0

Time model
formula =
~time

1 2 3 4 5 6

2 3 4 5 6

3 4 5 6

4 5 6

5 6

6

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

1 0 0 0 0 0

Factorial model
formula =
~sex ∗ time

1 2 3 4 5 6

2 3 4 5 6

3 4 5 6

4 5 6

5 6

6
7 8 9 10 11 12

8 9 10 11 12

9 10 11 12

10 11 12

11 12

12

1 1 1 0 0 0 0 1 0 0 0 0

1 1 0 1 0 0 0 0 1 0 0 0

1 1 0 0 1 0 0 0 0 1 0 0

1 1 0 0 0 1 0 0 0 0 1 0

1 1 0 0 0 0 1 0 0 0 0 1

1 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0
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Emigration can lead to bias in the demographic
parameters estimated with CJS models. If emigration is
temporary and random, only the probability of encounter
is biased, whereas nonrandom temporary emigration
leads to bias in both apparent survival and the probability
of encounter (Schaub et al. 2004a). If emigration is
permanent, apparent survival is biased low as an estimate
of true survival because losses to mortality cannot be dis-
tinguished from losses to permanent emigration (Ergon
and Gardner 2014; Schaub and Royle 2014). Emigration
limits the utility of CJSmodels for estimating true survival
for any group of animals with low site fidelity, such as
juvenile age classes with strong natal dispersal or species
that use ephemeral habitats (Paradis et al. 1998;
Zimmerman et al. 2007; Roche et al. 2012). If long-
distance dispersers cannot be detected, measures of
dispersal distance are truncated by the longest axis of a
fixed-area study plot, and dispersal distance will also be
underestimated (Cunningham 1986; Koenig et al. 1996).
A variety of mark-recapture models and study designs

have been proposed for estimation of true survival
instead of apparent survival. In some cases, the size of
the study plot remains fixed and the different types of
emigration are handled with model structure or auxiliary
data. If dispersing individuals are transients or migratory
individuals that permanently emigrate from a study plot,
time-since-marking or transient models can be used to
estimate apparent survival that is corrected for losses of
individuals that are never encountered after first capture.
If dispersing individuals are temporary emigrants that are
likely to return, robust design models can be used to
estimate apparent survival corrected for losses to
temporary emigration (Horton and Letcher 2008).
Marked individuals with home ranges close to the bound-
ary of a study plot may be more likely to emigrate, and
modeling ϕ or p as a function of distance to plot edge
may improve parameter estimates from CJS models
(Boulanger and McLellan 2001; but see Marshall et al.
2004). Losses to emigration may be less important in
linear habitats such as streams or coastal beaches. In
terrestrial habitats, circular or square study plots that
minimize perimeter-area ratios may help to reduce losses
to emigration. Estimation of survival can also be
improved if a subset of the marked population is marked
with radio transmitters or transponders to track
movements (Powell et al. 2000). Multistate or robust
design models can be used for joint analysis of encounter
data for marked individuals with or without radio
transmitters to model survival corrected for imperfect
detection and emigration from a fixed-area study plot
(Devineau et al. 2010; Horton et al. 2011; Bird et al. 2014).
Movements of marked individuals within a study plot

are another source of data that can be used to estimate
true instead of apparent survival. One approach is to

make post hoc corrections to adjust apparent survival
for losses due to local movements. Area-ratio methods
correct for bias by comparing observed movement dis-
tances vs. random pairs of locations within the study plot
to estimate a probability of detection for different disper-
sal distances (Zeng and Brown 1987; Baker et al. 1995).
Area-ratio methods are flexible and can accommodate
study plots of diverse sizes and shapes, or various disper-
sal distributions. Unfortunately, area-ratio methods can
perform poorly for survival estimation if adjustments
for rare long-distance dispersal events cause survival to
be overestimated (Cooper et al. 2008). Still, Taylor et al.
(2015) showed that post hoc corrections for local breed-
ing dispersal led to less-biased estimates of apparent sur-
vival for arctic-breeding sandpipers. Spatially explicit
models include information on locations of marked ani-
mals in analyses of demographic parameters (Borchers
2012). Most attention has been on use of closed popula-
tion models for estimation of abundance (Efford 2004;
Royle and Young 2008), but new applications for open
populations have also been developed (Gardner et al.
2010, Chapter 5). Last, spatial CJS models (sCJS) allow
joint analysis of capture and spatial data, and may yield
estimates of true survival if local dispersal movements
are relatively short compared to the spatial scale of a
fixed-area study plot (Schaub and Royle 2014; Weiser
et al. 2018).
Losses to emigration can also be reduced by expanding

the size of a fixed-area study plots. One study design is to
conduct captures and marking in a core study area but
search for marked individuals in an expanded buffer zone
(Marshall et al. 2004). Inclusion of additional detections
from an expanded buffer zone can increase return rates
and estimates of apparent survival (Reed and Oring
1993; Cilimburg et al. 2002; McKim-Louder et al.
2013). The challenge with buffer zones is that the total
search area increases exponentially with potential disper-
sal distance and quickly becomes unmanageable. Zim-
merman et al. (2007) modeled the effects of plot size
on bias in CJS models and found that apparent survival
of juvenile owls increased linearly among plots ranging
in area from approximately 80 to 1400 km2, suggesting
unbiased estimates of survival would require even larger
plots.
Another possible sampling design is to use a distributed

network of study plots that can potentially detect both
short and long-distance dispersal movements. Inclusion
of spatial data on animal captures allows survival and
emigration to be jointly estimated from movements both
within and among fixed-area study plots (Schaub and von
Hirschheydt 2009; Gilroy et al. 2012; Ergon and Gardner
2014; Lagrange et al. 2014). A network approach has been
successfully used for birds of conservation concern where
multiple research groups are working with the same
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species, populations are small with a high proportion of
marked individuals, and patches of suitable habitat are
discrete (Cooper et al. 2008; Gilroy et al. 2012; Roche
et al. 2012). Distributed networks of study plots are also
a feature of national programs for constant effort banding
of landbirds in Europe and North America (Saracco et al.
2008; Robinson et al. 2009). Repeated captures and
information from neighboring stations can be combined
in a hierarchical model to investigate spatial variation in
survival and residency on the study plots (Saracco et al.
2012). Moreover, correction factors for the difference
between apparent and true survival can be calculated as
the difference between estimates of the finite rate of
population change based on demographic rates versus
population counts (Ryu et al. 2016). At the broadest
possible spatial scale, joint models can be used to decom-
pose apparent survival into true survival and site fidelity if
the live encounter data come from a fixed-area study plot,
but other sources of information such as dead recovery or
supplementary resighting data are taken from a larger
geographic area such as a regional flyway (Bacheler
et al. 2009; Bowerman and Budy 2012; Kendall et al.
2013; Lok et al. 2013).

7.7 Extending the CJS Model

The CJS model provides the foundation for most mark-
recapture models for live encounter data. Time-since-
marking and transient models are also CJS models, but
use a different model structure to estimate apparent
survival separately for different intervals after first cap-
ture. Temporal symmetry and Jolly–Seber models are
based on the same set of encounter histories as the CJS
model but do not condition upon first capture, and
include both forward- and reverse-time modeling. Other
mark-recapture models for open populations extend the
CJS model by including various kinds of auxiliary data in
the encounter histories. Use of auxiliary data usually
requires additional sampling but allows apparent survival
and other demographic parameters to be estimated with
less bias and greater precision (Kendall et al. 2006, 2013;
Schaub and Abadi 2011).
Multilevel models use data from multiple populations

of one species or multiple species at a single site in a ran-
dom effects framework, thereby expanding CJS models
based on a single population of one species to multiple
higher levels. Spatially explicitmodels incorporate spatial
data with the locations where marked individuals are
encountered, allowing joint analysis of movement and
capture-recapture data. The auxiliary data in a robust
design model come from dividing the primary occasions
of a CJS model into shorter secondary periods when the
population is assumed to be closed to gains or losses. CJS

models are based on live encounters of marked indivi-
duals, butmark-resightmodels incorporate auxiliary data
with counts of unmarked individuals. The CJS model is a
single-state model that is coded with detections and non-
detections, and the young survival model extends the
detections to include counts of young. Similarly, multi-
state models include categorical information about the
state of an individual when it is detected, such as informa-
tion about site, breeding status, physiological condition,
or different methods of detection. Multistate models with
unobservable states handle the special situation where
individuals in some states cannot be encountered,
whereas multievent models address situations where an
individual cannot be assigned to a state with certainty.
Joint models are based on CJS models but also allow
inclusion of auxiliary data on dead recoveries or supple-
mental resightings that are recorded during the intervals
between sampling occasions. Last, integrated population
models are a flexible approach for development of
customized models that allow joint modeling of mark-
recapture data with population counts, and other demo-
graphic data on the components of fecundity, age ratios in
harvest bags, or known fate survival data.

7.8 Time-since-marking and
Transient Models

A common feature of live encounter data is that a subset
of marked individuals are never detected again after first
capture, with encounter histories characterized by detec-
tion at only one occasion (e.g. 1000, 0100, Box 7.1). In
this case, apparent survival of newly marked individuals
will be lower in the interval after first capture (ϕ1) than
returning individuals detected in subsequent intervals
(ϕ2+). In a sample of animals marked as young, apparent
survival may be lower after first capture if juveniles have
lower true survival or site fidelity than adults (ϕ1 < ϕ2+).
The same difference can occur in a sample of animals
marked as adults, if capture and handling negatively affect
survival or site fidelity, if a sample includes transients, or
if capture rates are heterogeneous. If any of these effects
are present, ϕ2+ from a time-since-marking model may be
less biased as an estimate of true survival than ϕ from a
standard CJS model where ϕ1 and ϕ2+ are pooled
(Johnston et al. 1997; Korfanta et al. 2012).
Time-since-marking and transient models are CJS

models that control for losses to mortality or permanent
emigration that occur during the interval after the first
capture occasion. The encounter histories are coded in
the same manner as for standard CJS models, but the
model structure is more complex to estimate additional
parameters. The model structure is set up so that ϕ1

and ϕ2+ are estimated separately, along with the
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encounter rate (p). The structure can be termed a time-
since-marking model if a sample includes individuals of
unknown age, or an age model if the sample is known-
aged individuals. A transient model can be applied in
situations where losses after first capture are likely due
to inclusion of transients captured as unmarked indivi-
duals (Pradel et al. 1997). The probability that an
unmarked individual is a transient at time t (τt) is then
estimated as a derived parameter: τt = 1−ϕ1

t ϕ2 +
t . The

proportion of transients in the population (Tt) can then
be estimated as Tt = τt Nt Nt +mt , where Nt and mt

are the numbers of newly marked and recaptured indivi-
duals at time t (Jessopp et al. 2004). Multistate versions of
the transient model include τt as a parameter in the
likelihood (Schaub et al. 2004b), allowing greater flexibil-
ity for modeling transient dynamics as a response to
temporal covariates.
A common pattern in time-since-marking models is

that apparent survival rates are often ranked: juveniles
after first capture < adults after first capture < adults in
subsequent intervals (Sandercock 2006). Unfortunately,
the ecological causes are often difficult to distinguish
because age, handling effects, and capture heterogeneity
are all expected to produce the same general pattern of
ϕ1 < ϕ2+. Thus, a prudent approach before starting any
CJS analysis is to examine the relative frequency of
individuals that were encountered on one versus multiple
sampling occasions. If a set of encounter histories is
dominated by individuals encountered on only one
sampling occasion, time-since-marking effects should
probably be included in the set of candidate models.
A minimum of four occasions are needed to estimate
the extra parameters of the time-since-marking or
transient models, and the terminal parameters of each
age class may be nonidentifiable in models with full time
dependence (Hubbard et al. 2014).

7.9 Temporal Symmetry Models

CJSmodels condition upon first capture and proceed for-
ward in time, whereas temporal symmetry models ana-
lyze the encounter histories with both forward- and
reverse-time modeling (Pradel 1996; Nichols and Hines
2002; Nichols 2016). Temporal symmetry models do
not require additional sampling and can be based on
the same set of encounter histories as standard CJSmod-
els. With addition of reverse-time modeling, temporal
symmetry models use the complete encounter histories
and can be considered an alternative parameterization
of a Jolly–Seber (JS) model (see below, Cooch and
White 2018). Forward-time modeling yields estimates
of apparent survival (ϕ) and encounter rates (p).

Modeling of the same encounter histories from the last
capture backwards gives a seniority probability (ζ) as a
reverse-time analogue of ϕ, which is defined as the prob-
ability that an individual did not enter the population
between the previous and current occasion. Forward-
time modeling assumes that capture probabilities are
homogeneous among marked animals. In the temporal
symmetry and JSmodels, reverse-timemodeling extends
the assumption of equal catchability to marked and
unmarked individuals.
The temporal symmetry model has three alternative

parameterizations. The seniority or ζ-parameterization
(ϕt, pt, ζt) yields separate estimates of ϕ and ζ corrected
for p. Alternatively, the lambda or λ-parameterization
is perhaps the most useful model (ϕt, pt, λt), where ϕ
and ζ are combined to estimate the finite rate of popula-
tion change λt =ϕt ζt + 1. Here, λ can be modeled as a
function of environmental covariates, and the variance
of λ can be used to estimate risk of extinction (Nichols
andHines 2002). In the recruitment or f-parameterization
of the temporal symmetry model (ϕt, pt, ft), ϕ and ζ are
again combined but instead to estimate the per capita rate

of recruitment f t =ϕt 1−ζt +1 ζt + 1. Bayesian versions
of the temporal symmetry model allow the parameters
to be modeled as random effects (Saracco et al. 2008;
Tenan et al. 2014).
Temporal symmetry models allow estimation of λ from

live encounter data alone, without the need to determine
abundance from population censuses or estimate
demographic rates to parameterize a matrix model
(Sandercock and Beissinger 2002; Pradel and Henry
2007; Currey et al. 2011; Schorr 2012). In temporal sym-
metry models, λ is a realized estimate of population
change that includes gains from recruitment and is based
on the demographic classes included in the encounter
histories. Seniority parameters are comparable to elastic-
ity values from a matrix model in identifying sensitivity of
λ: survival has a greater effect on λ if ζ > 0.5, whereas
recruitment has a greater effect on λ if ζ < 0.5 (Nichols
et al. 2000; Korfanta et al. 2012).
Temporal symmetry models require longer time series

than CJS models to estimate ζ as an additional parameter.
Time dependence in ϕ and p creates inestimable terms in
the first and last intervals, and n occasions yields n – 3
estimates of λ (Dreitz et al. 2002). Modeling can be tricky
because model fit for p affects parameter estimates for ϕ
and ζ, and vice versa. Modeling p as a trend or a function
of a covariate may induce a pattern in λ or the other
model parameters (Tenan et al. 2014). Estimates of λ from
temporal symmetry models are also sensitive to changes
in sampling area. An increase in the size of a fixed-area
study plot could increase the numbers of newly marked
individuals which would affect estimates of recruitment
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into the population. Last, numerical simulations suggest
that λ is robust to the effects of individual heterogeneity in
capture, but behavioral responses to trapping and failure
to account for losses at capture can bias estimates (Hines
and Nichols 2002; Marescot et al. 2011).

7.10 Jolly–Seber Model

The JS model is an open population model that estimates
four demographic parameters from the encounter
histories: the probability of apparent survival (ϕ = S ×F ),
the probability of encounter (p = δ × p∗), abundance or
population size (N), and net recruitment or the number
of new individuals entering the population (B, Pollock
et al. 1990). The JS model is similar to a CJS model
but is an unconstrained model, and the apparent sur-
vival and encounter parameters are not equivalent
between the two classes of models. CJS models
condition upon first capture and assume that marked
individuals have the same probability of capture. Like
a temporal symmetry model, the JS model uses the
complete encounter histories including the leading
zeros before first capture. The JS model extends the
assumption of equal probability of capture to both
marked and unmarked individuals, which allows the
complete encounter histories to be used in the estima-
tion of N and B. Thus, ϕ and p from a CJS model apply
to marked individuals only, but to both marked and
unmarked individuals in a JS model. The difference
between the parameters in the CJS and JS models is
subtle but has practical implications for study design.
In a CJS model, different field methods can be used
for marking and recapture, and individuals marked on
the last occasion can be discarded because they do not
contribute to the parameter estimates. If capture and
marking are costly, the final season of a field project
might be devoted to resighting efforts only. In a JS
model, the same field methods should be used for
marking of unmarked individuals and detections of
marked individuals to meet the assumption of equal
catchability. Individuals should still be captured for
marking on the last occasion because leading zeros in
the encounter histories will also contribute to parameter
estimation in the analysis.
Several parameterizations of the JS model are available

but differ in number of sources of data, how recruitment
is modeled, and whether estimation is conditional upon
individuals detected in the study area (Madon et al.
2011; Cooch and White 2018). Criteria for choosing a
particular model include whether or not losses at cap-
ture are present, and what combination of demographic
parameters are desired as model output, including

abundance, net recruitment, per capita recruitment
(f ), and the finite rate of population change (λ). JS mod-
els can be useful for modeling patterns of recruitment
into a population, and for separating gains from in situ
recruitment vs. immigration (Collier et al. 2013). Unfor-
tunately, individual heterogeneity and other issues often
lead to bias in estimates of N and B from JS models
(Chapter 5). If estimation of abundance is the goal of a
mark-recapture analysis, mark-resight or closed popula-
tion models may be better methods with additional
options for control of problems due to heterogeneity
of capture (Abadi et al. 2013).

7.11 Multilevel Models

Mark-recapture data collected from natural populations
are often structured at multiple levels: individuals in a
population with different probabilities of survival or
capture, different populations of the same species, or
related species in the same guild or community. Here,
replication among sites or species provides a type of aux-
iliary data that can be used for parameter estimation.
Under a frequentist framework, groups are either pooled
in a constant model or treated as a fixed effect with a
separate parameter estimates for each population or
species. An assumption of homogeneity is required if
groups are pooled, whereas fixed-effect models can be
problematic if data are sparse for a subset of groups.
Multilevel models offer a useful compromise because
groups retain their individual identity but information
is shared among groups during the estimation process
(Cam 2012). A Bayesian framework allows groups to
be modeled as random effects and at different ecological
scales: individual heterogeneity, multipopulation, or
multispecies.
If individual identity is treated as a random effect, het-

erogeneity in survival can be used to investigate patterns
of senescence or other questions with frailty models
(Marzolin et al. 2011; Cam et al. 2013). Individual heter-
ogeneity in catchability can affect bias and precision of
estimates of apparent survival and abundance, but may
be handled with finite-mixture models or as a random
effect in multilevel models (Cubaynes et al. 2012; Abadi
et al. 2013; Péron et al. 2016). Multipopulation studies
can treat time as a random effect to investigate spatial
patterns of synchrony (Grosbois et al. 2009), or site as a
random effect to calculate overall estimates of survival
from multiple populations of a single species
(Papadatou et al. 2011; Jansen et al. 2014; Weiser et al.
2018). Last, multilevel models can be used to treat species
as a random effect to investigate patterns of synchrony
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in apparent survival among species in a community
(Lahoz-Monfort et al. 2011; Papadatou et al. 2012), or
to compare different communities (Lloyd et al. 2014).

7.12 Spatially Explicit Models

Spatially explicit capture-recapture models provide a
robust methodology to combine live encounter data with
location of capture information for joint estimation of
demographic parameters (Efford 2011; Borchers 2012).
Encounters can be based on standard methods for live
capture or resighting, or alternatively, camera traps or
other devices that record proximity of marked individuals
to a sampling location. Location data for encounters can
be recorded with different sampling designs, including
coordinates of a site within a trap grid, angle, and distance
from a point count station or line transects, or as a
location within the boundaries of a fixed-area study plot.
A general feature of spatially explicit models is that the
spatial scale of a trap grid or study plot should be larger
than the home range of the study organism.
Closed population models estimate abundance (N) cor-

rected for the probability of capture (p). In spatially
explicit models for estimation of abundance, detections
of individuals at known sampling sites provide informa-
tion on the probability of detection at the center of a
home range (g0). Animal distributions can be viewed as
a point process model where range centers are assumed
to be distributed at some density (D). The locations of
individual activity centers are usually unknown but the
mean distances between recaptures on different occa-
sions can provide information on the scale of spatial
movements (σ). For example, Gardner et al. (2010) gen-
eralized a JS model to include spatial data for a grid of
camera traps, and estimated abundance of activity centers
(Nt), density per unit area (Dt), and the per capita recruit-
ment rate (ρ), adjusted for detectability (δ), and the
expected number of encounters per individual at a given
trap station (λ0). Spatially explicit models can be fit in
either a MLE or Bayesian framework, or with other meth-
ods (Efford 2004). Another challenge for spatially explicit
models is that estimates of N are required for the likeli-
hood but the true abundance is unknown. This issue
can be addressed by data augmentation where the data
set is supplemented with a large number of encounter
histories for individuals that were never captured and
have all zeros. These additional encounter histories are
used to calculate recruitment, and thereby estimate the
proportion of additional individuals that were present
but never captured.
Spatially explicit models for open populations allow

inclusion of spatial data of locations in the individual

encounter histories. Schaub and Royle (2014) developed
a sCJS model that includes a kernel for dispersal
movements, which allows estimation of apparent survival
corrected for local movements within a fixed-area study
plot. Raabe et al. (2014) extended the CJS model to
include spatial data for detections of stream fish in a
linear array of weirs. A spatial version of a robust design
model has also been proposed by Ergon and Gardner
(2014). Spatial CJS models can be effective at correcting
for bias due to permanent or temporary emigration
(Weiser et al. 2018), but simulations suggest that param-
eter estimates may be sensitive to the statistical distribu-
tions used to model dispersal movements (Ergon and
Gardner 2014). Estimates of dispersal kernels from
mark-recapture data suggest that use of Gaussian kernels
can lead to parameter bias (Fujiwara et al. 2006). Never-
theless, spatially explicit models for open populations
have great potential for improving demographic analyses
because auxiliary data on animal locations are often
recorded in population studies but the information is
not typically included in mark-recapture analyses.

7.13 Robust Design Models

Robust design models differ from CJS models in that
additional sampling is required at the outset of a field
project, and primary sampling periods are subdivided into
shorter secondary sampling occasions. Robust design
models assume that the population is open to gains and
losses among primary sampling periods but closed to
change within secondary sampling occasions (Kendall
et al. 1997; Fujiwara and Caswell 2002; Schaub et al.
2004a). Like CJS models, encounter histories are coded:
1 = detected and 0 = not encountered. Robust design
models control for both imperfect detection and imper-
fect availability by modeling a superpopulation with
marked individuals moving in and out of the sampling
area where they can be encountered. Survival rates are
assumed to be the same for individuals both inside and
outside of the sampling area. Standard robust design
models can perform well if the assumption of closure is
not met (Kendall 1999). Open robust design models relax
the assumption of geographic closure to allow staggered
entry and exit of individuals from a breeding population
(Schwarz and Stobo 1997; Kendall and Bjorkland 2001),
or the assumption of demographic closure to allow
mortality between the secondary sampling occasions
(Bailey et al. 2004a).
In a CJS model, the probability of encounter (p) is the

product of site propensity (σ) and the true probability of
detection (p∗). If true detection is close to unity, then the
encounter rates are effectively an estimate of site
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propensity (p = σ if p∗ = 1). In a robust design model, the
open population part of the model gives the same p as a
CJS model, whereas the closed captures provide estimates
of p∗ and abundance (N), or alternatively, the number of
individuals never captured (f0). Closed population models
were first used to estimate abundance for a single closed
period and the original notation used a capital M to
denote different model structures (Otis et al. 1978).
A variety of closed population models can be used to
model p∗ during the secondary occasions of a robust
design model, including a null model (p or M0), time
dependence (pt or Mt), behavioral effects (p vs. c, or
Mb), heterogeneity of capture with finite-mixture models
(pπ sensu Mh), or different combinations of the effects.
Robust design models usually estimate the probability
of temporary emigration as the complement of site
propensity (γ = 1 − δ, but see Kendall et al. 2013).
A variety of alternative models can be used to model

the probability of temporary emigration. If movements
are random and not affected by previous events, tempo-
rary emigration at occasion t is calculated as:
γt = 1−pt p∗t . If movements are nonrandom, the proba-
bility of temporary emigration is modeled as a function
of an individual’s status on the previous occasion. Tem-
porary emigration is estimated separately for absent indi-
viduals that remained unavailable for capture (γt) versus
individuals that were present but dispersed away from the
sampling area (γt , Kendall et al. 1997). Individuals may be
unavailable for capture either because they have dis-
persed away the sampling area, such as marine animals
that have left breeding sites to be at sea, or because
marked individuals are hidden in refugia where they can-
not be sampled, such as fossorial animals in belowground
burrows. The parameter γt has been termed
“immigration,” but the probability that an absent individ-
ual re-enters the sampling area is calculated as the com-
plement: δ = 1 − γ . Alternative models for movement
among the different segments of a superpopulation
include no temporary emigration (γ = γ = 0), random
emigration (γ = γ ), nonrandom emigration (γ γ ), or
even-flow models with balance between immigration
and emigration (1 − γ = γ , Cooch and White 2018).
Depending on model structure, robust design models
quickly become complex with estimation of multiple
parameters for the transitions between primary periods
in the open part of the model (ϕ, γ ,γ ), and also for the
secondary sampling occasions in the closed part of the
model (p, c, N or f0). Estimation of these additional para-
meters may require long-term datasets with large samples
of marked individuals.
Robust design models have two advantages compared to

the CJSmodel. One issue for bothmodels is parameter esti-
mation during the last interval if demographic parameters

are time-dependent. Under random temporary emigration,
robust design provides estimates of ϕ and p for all intervals
in a time series because p∗ is available for all occasions. If
temporary emigration is nonrandom, then the last move-
ment parameters γt and γt are still confounded with sur-
vival (Peñaloza et al. 2014). As in the CJS model,
constraints would have to be applied to the robust design
model to estimate survival for the last interval. Robust
design models can yield estimates of ϕ and pwith less bias
and greater precision than CJS models if temporary
emigration is present. Temporary emigration causes
heterogeneity in encounter rates because individuals that
are present have a nonzero probability of encounter,
whereas temporary emigrants are unavailable for capture
and probability of encounter is zero. Under random
temporary emigration, estimates of ϕ and p from CJS
models are relatively unbiased but precision is reduced.
Under nonrandom temporary emigration, estimates of
ϕ and p from standard CJS models can be strongly biased
if γt γt (Kendall et al. 1997, Peñaloza et al. 2014).
The demographic processes that lead to temporary emi-

gration remain poorly understood in ecology. Empirical
applications of robust designmodels include investigations
of regional movements and partial migration (Dinsmore
et al. 2003; Jahn et al. 2010; Cantor et al. 2012), dormancy
or use of refugia where animals are not available for cap-
ture (Schaub and Vaterlaus-Schlegel 2001; Bailey et al.
2004b), as well as variation in breeding propensity among
animals at reproductive sites (Kendall and Nichols 1995;
Kendall and Bjorkland 2001; Sedinger et al. 2001; Schmidt
et al. 2002). Breeding propensity can be imperfect (σ < 1)
because of delayed maturity among juveniles or subadults,
intermittent breeding among adults, or early reproductive
failure that causes emigration before detection. The closed
portion of a robust designmodel also provides estimates of
abundance, and can be used to estimate population gains
from in situ recruitment vs. immigration (Nichols and
Pollock 1990). However, estimates of abundance from
the closed part of the model are restricted to the number
of marked individuals available for capture in the fixed-
area study plot (N or f0). Thus, estimates of abundance
from robust design models may be an underestimate of
total population size unless a high proportion of the
population has been marked, or in the special case where
individuals have been identified by natural marks (Cantor
et al. 2012; Lee et al. 2014).

7.14 Mark-resight Models

Mark-resight models take their name from early field
studies where marked individuals were released on one
occasion and then resighted on multiple occasions.
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A single release event might be more cost-effective if
capture and marking are expensive procedures, and less
invasive if capture events pose a risk to sensitive species
of wildlife. “Mark-resight” is a confusing term because
the CJS and joint models can also be based on encounter
histories with resightings of marked animals. The funda-
mental difference among different types of models is that
counts of unmarked individuals are included as inputs for
the likelihood function in mark-resight models. Mark-
resight models can also allow batch marking, where all
captured individuals are marked with the same tag as a
group, instead of marking each individual with a unique
tag. Even if individual tags were used, mark-resight
models can include partial information for individuals
that were seen as marked but were not individually
identified. Mark-resight models improve upon closed
population and robust design models by allowing estima-
tion of the total abundance for the marked and unmarked
individuals that are observable in the fixed-area study plot
(N), and also the nonobservable individuals that are part
of a larger superpopulation (N∗). A hybrid model that
combines mark-resighting and closed population models
has been used to estimate abundance of bobcats (Lynx
rufus, Alonso et al. 2015). Similarly, a combined mark-
resighting and robust design model has been used to
estimate survival and total abundance for open popula-
tions (McClintock and White 2009).
Three estimators for mark-resight data include the logit-

normal estimator (LNE), the immigration–emigration
logit-normal estimator (IELNE), and the zero-truncated
Poisson log-normal estimator ([Z]PNE, McClintock and
White 2012). The LNE and IELNE estimators can be used
with batch marks instead of individually marked animals,
but have the restrictive requirements that the total number
of marked individuals must be known, and sampling with
replacements is not allowed. Number of marks is rarely
known in field studies of open populations, with the pos-
sible exception of situations where all animals are marked
immediately before release, or if all marked individuals
receive radio collars with mortality switches. Double-
counting of individualsmay be difficult to avoid if sampling
is partitioned into multiple occasions and animals are
mobile. Still, if the model assumptions can be met, the
IELNE estimator produces estimates of the total superpo-
pulation because geographic closure is not required.
The robust design version of the (Z)PNE estimator is

perhaps the most useful model for open populations.
The (Z)PNE estimator requires individually identifiable
marks and geographic closure, but is a better fit to mod-
eling of open populations because it does not require the
number of marks to be known and allows sampling with
replacements within secondary occasions. Ideally, indi-
vidual identity should be obtained on most encounters
of marked individuals in the field (>90%). If partial sight-
ings are common, extended mark-resight models allow

for individual heterogeneity in detection and control
for uncertainty in individual identification (McClintock
et al. 2014). Encounter histories for marked individuals
do not condition upon distinct secondary occasions
and instead tally the total number of individual sightings
per primary occasion (Cooch and White 2018). If a
marked individual is not detected on a primary occasion,
separate codes are used if the animal is known to be alive
(+0) or of unknown fate (−0). Additional input includes
counts of unmarked animals, marked individuals sighted
but not identified, and number of marked individuals in
the population (if known). Like the robust design model,
the (Z)PNE estimator provides estimates of ϕ, γ , and γ ,
but also provides estimates of the number of unmarked
individuals (U) and total population size (N=U + n) that
are corrected for variation in resighting rates (α, σ, and λ).
The (Z)PNE estimator has been used to estimate demo-
graphic parameters for sharks (Lee et al. 2014), migratory
sandpipers (Lyons et al. 2016), and river dolphins (Ryan
et al. 2011).

7.15 Young Survival Model

The young survivalmodel extends the CJS model by cod-
ing detections as counts of group size (Lukacs et al. 2004;
Cooch and White 2018). Like the CJS model, the young
survival model estimates apparent survival (ϕ) corrected
for probability of encounter (p). The young survival
model was developed to monitor groups where one or
more individuals are individually marked but the remain-
der of the group is unmarked. Group size must be known
at the start of the encounter history, but if group size is
one, then the young survival model is equivalent to a
CJS model. Survival rates of the different unmarked indi-
viduals within each group are assumed to be equivalent.
Groups should be independent, and the model cannot be
used in field situations where fission or fusion of social
groups leads to changes in numbers that are not due to
mortality.
The young survival model has been to model chick sur-

vival for precocial birds where an individually marked
parent attends a brood of unmarked young (Dreitz
2009; Brudney et al. 2013). Detection is often imperfect
because broods are mobile and young can escape obser-
vers by hiding or moving away. However, hatchlings may
be too small to be marked, tags might affect risk of mor-
tality, or individual tags may be too expensive. Thus, an
advantage of the young survival model is that chick sur-
vival can still be estimated even if the young are not indi-
vidually marked. If the dependent young are unable to
survive without parental care, then the model will esti-
mate true survival because all losses result in mortality.
A high maximum group size leads to many possible tran-
sitions between groups of different size, which can reduce
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the precision of parameter estimates (Cooch and White
2018). It may not be possible to use the model if the max-
imum group size is large but the sample size of family
groups is relatively small. Still, the young survival model
can be useful for estimating juvenile survival for species
where litter or brood sizes are small (≤3–4 young) and
detection of mobile young is imperfect (Kendall et al.
2003; Ryan et al. 2011; Tarwater et al. 2011).

7.16 Multistate Models

Multistate models provide a particularly flexible model-
ing approach that have been widely used in population
ecology (Sandercock 2006; White et al. 2006; Lebreton
et al. 2009), and can be set up as mark-recapture
(Boxes 7.2 and 7.3) or multievent models (Box 7.4).
The term multistate refers to the coding of detections
as dynamic categorical states that potentially change
between consecutive occasions. The Arnason–Schwarz
(AS) model is a multistate version of a CJS model because
both models are conditional on first capture, but multi-
state versions of the JS model can also be unconditional
(Brownie et al. 1993; Lebreton et al. 2009; Pledger et al.
2013). Many types of survival models, including the
CJS, transient, robust design, dead recovery, and time-

to-event models can also be set up as multistate models
(Lebreton et al. 1999; Schaub et al. 2004a, 2004b;
Gauthier and Lebreton 2008; Lebreton et al. 2009;
Devineau et al. 2014).
A CJS model is a single-state model because the

encounter histories are coded as 1 = detected, or 0 = not
encountered. In a multistate model with two states (r),
detections might be coded as A = state A versus B = state
B, and 0 = not encountered. The estimates of apparent
survival from a CJS model (ϕ) can then be decomposed
into state-specific estimates of apparent survival and
changing states (ϕ = ϕrψr). A multistate model with two
states will have a minimum of six parameters: state-
specific estimates of apparent survival (ϕA and ϕB) and
probability of encounter (pA and pB), as well as the
transitional probability of changing states, such as from
state A to B (ψA − B) or from B to A (ψB −A). The total
number of parameters increases rapidly with addition
of more states (K = r2 + r), with 12 parameters for r = 3
states, 30 parameters for r = 5 states, and so forth.
Standard assumptions of multistate models are that
apparent survival does not depend on a previous state,
all individuals make the transition at the end of the
interval, individuals do not temporarily emigrate to states
where they cannot be detected, and that observers can
correctly assign individuals to states. The different

Box 7.4 Fitting Multistate Models with Elementary Matrices

Multievent models are defined by elemental matrices that
specify three sets of probabilities: initial states (Π), transi-
tions (Φ), and conditional events (B). Initial states are a
vector but Φ and B can each be one or more matrices
in a Markov chain. Multievent models differ from standard
mark-recapture models because the dead state (D) is
explicitly included as a terminal state even if dead indivi-
duals are never observed. The usual conventions are that
the dead state is the last column in Π andΦ, whereas not
detected is the first column in B. Intermediate states may
not be the same as initial states, and elementary matrices
need not be square but each matrix row sums to one and
is row-stochastic.
A standard multistate model might include two observ-

able states for breeders (B) and nonbreeders (N). Initial
states (Π) for the B, N and D states would be:

Πt = πB 1−πB 0 , 7 6

where πB and 1 − πB are the probabilities that an individual
is a breeder or nonbreeder at first encounter, and 0 indi-
cates that none of the individuals are dead at the start.
Two transition matrices (Φ) summarize the state-specific
rates for the B, N, and D states:

Φr ϕ
t =

ϕB 0 1−ϕB

0 ϕN 1−ϕN

0 0 1

and

Φr ψ
t =

ψBB 1−ψBB 0

1−ψNN ψNN 0

0 0 1

,

7 7

where ϕr is the state-specific probability of apparent sur-
vival and ψr is the probability of changing states. The top
rows indicate that an individual must survive, remain in
the same state, or change states. The right column absorbs
individuals that die or permanently emigrate, whereas the
bottom row indicates that lost individuals never return to
the population. The columns of the conditional events
matrix (B) summarize the state-specific probabilities of
encounter for three possible events: not detected,
detected as a nonbreeder, or detected as a breeder:

Βr
t =

1−pN pN 0

1−pB 0 pB

1 0 0

7 8
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assumptions are relaxed in modified multistate models
that model transitions as a function of states previously
occupied (Rouan et al. 2009), subdivide events during
transitions (Grosbois and Tavecchia 2003), include
temporary emigrants as an unobservable state (Kendall
2004; Schaub et al. 2004a), or account for uncertainty
in state assignment (Pradel 2005).
Dynamic categorical states have been used to investi-

gate four basic types of information: location, age or stage
classes, disease or physiological state, and alternative
sources of encounter data. Location data are based on
detections of marked individuals at discrete geographic
sites such as ecoregions, islands, breeding colonies, or
core vs. peripheral habitat patches. In these cases, state-
specific estimates of apparent survival might be used to
identify the habitat strata with the best demographic
performance (Serrano et al. 2005; Low et al. 2010).
Movement rates can bemodeled as a function of distance,
colony size, or habitat conditions to better understand the
effects of connectivity in spatially structured populations
(Brown et al. 2003; Breton et al. 2006; Roche et al. 2012).
Movement rates can also be estimated for a core study
plot with a contiguous buffer zone (Powell et al. 2000;
Devineau et al. 2010; Horton et al. 2011), or between
staying in a site or moving elsewhere in a network of sites
(Lagrange et al. 2014). If a network of study sites
represents the entire known distribution for a metapopu-
lation, apparent survival may approach true survival
because losses will be due to mortality and not permanent
emigration.
Multistate models can also be used to model demo-

graphic variation among different age or stage classes.
Demographic classes are important sources of heteroge-
neity that can be treated separately in a multistate model
but are pooled in a CJS model. In the case of breeding
status, encounter histories might be coded as B = breeder,
N = nonbreeder, and 0 = not detected (Sandercock et al.
2000). With sufficient data, strata might be extended to
multiple classes: juveniles, nonbreeders, inexperienced
breeders, or experienced breeders (Schaub et al. 2011;
Rotella et al. 2012), or to a combination of breeding status
and site (Anderson et al. 2012). Alternatively, stage
classes might be based on social dominance (subordinate
vs. dominant, Cohas et al. 2007), reproductive output
(unsuccessful vs. successful, Schaub and von Hirschheydt
2009), migratory status (resident vs. migrant, Grayson
et al. 2011), or sociality (solitary vs. groups, Genton
et al. 2015). Multistate models based on stage classes yield
state-specific estimates of ϕ and p, and ψ becomes the
probability of maturation or changing stage class. If age
or experience accrue over time, the transitional probabil-
ities of returning to a younger or inexperienced state can
be fixed to zero. Multistate models based on breeding
status have been used to test for the cost of reproduction,

as a life-history tradeoff between reproduction and
survival (Nichols et al. 1994; Nichols and Kendall
1995). Observational methods are not the best approach
to test for tradeoffs because breeders or experienced
individuals may have high reproductive success, high sur-
vival, and strong site fidelity (Sandercock et al. 2000;
Sanz-Aguilar et al. 2008; Schaub and von Hirschheydt
2009). Multistate models can also be used to test for
demographic responses to manipulated treatments in
an experimental context, but relatively few studies have
used this approach (Doligez et al. 2002; Lyet et al. 2009).
Multistate models are a useful tool for investigating

disease dynamics in wild populations (Cooch et al.
2012). Here, encounter histories might be coded as
U = uninfected, I = infected, and 0 = not detected. Deter-
mination of disease state can be determined by external
appearance, immunoassays, or molecular tests of differ-
ent tissues. Depending on disease latency and test sensi-
tivity, the U-state can be a heterogeneous mixture of
uninfected individuals and individuals that are infected
but still asymptomatic (Conn and Cooch 2009). If disease
negatively impacts survival or activity, infected indivi-
duals may have lower state-specific estimates of apparent
survival (ϕI < ϕU) or encounter (pI < pU, Faustino et al.
2004). Alternatively, encounter rates might be higher
for infected individuals if behavioral changes increase
detection by observers (Senar and Conroy 2004). Here,
the transition rates provide estimates of the probability
of infection (ψU − I) and potential recovery (ψI −U),
and asymmetry between the infection and recovery rates
can provide an index of disease virulence (ψU − I >ψI −U).
Multistate models allow the transitions to be modeled as
a function of environmental covariates, such as the
relationship between infection rates and prevalence of a
disease in a population (Lachish et al. 2007; Ozgul
et al. 2009).
Multistate models have also been used to investigate

the effects of body mass or size on survival. Body mass
and size are usually continuous variables which must
be converted to states based on quartiles or standardized
scores (i.e. z-values, Letcher and Horton 2008; Boulanger
et al. 2013; Monticelli et al. 2014). Ordinal covariates such
as rank scores of body condition are often pooled to a few
states too (Miller et al. 2003). Multistate models based on
size or mass classes yield state-specific estimates of ϕ and
p, and larger, mobile individuals might be predicted to
have higher survival or a lower probability of encounter.
The transition ψ becomes the probability of growing or
regressing into a different stage class. Multistate models
were a useful method for modeling mass and size because
early mark-recapture models could not handle continu-
ous covariates that were also dynamic (Nichols and Ken-
dall 1995). However, pooling is potentially problematic
because information may be lost when continuous
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variables are collapsed into categorical bins. Improved
methods for including individual covariates in CJS
models now allow ϕ and p to be modeled as a function
of covariates that are both continuous and dynamic
(Cooch and White 2018).
A final application for multistate models is for combin-

ing multiple sources of information such as different
marker types, live encounter with dead recovery data,
or both (Kendall et al. 2006; Besnard et al. 2007; Juillet
et al. 2011). Different marker types might include a stand-
ard mark (band, tag, or molecular identity) vs. an addi-
tional auxiliary mark such as a neck collar (Reed et al.
2005) or a radio tag (Powell et al. 2000; Boulanger et al.
2004). Here, the encounter histories might be coded as
M = detected with a standard mark, A = detected with
an auxiliary mark, or 0 = not detected. If neck collars or
radio tags negatively impact animal performance, appar-
ent survival or encounter rates may be lower for indivi-
duals with auxiliary marks (ϕA < ϕM). Additionally, the
transition rates can provide an estimate of marker loss
(ψA −M). In the case of combining live encounter and
dead recovery information, encounter histories might
be coded as A = alive, D = newly dead, or 0 = not detected
(Lebreton et al. 1999; Gauthier and Lebreton 2008;
Devineau et al. 2014). A third possible state of dead for
multiple years is unobservable and not necessary to
include. To investigate competing risks of mortality,
codes for dead recoveries can be expanded to multiple
sites (Kendall et al. 2006), or to different causes of
mortality such as predation, harvest, or collisions
(Schaub and Pradel 2004). The transition rates of the
multistate model then become estimates of cause-specific
mortality rates for the different sources of mortality
(ψA −D) and encounter rates are calculated separately
for the live encounters (pA) and cause-specific dead
recoveries (pD or r, Bischof et al. 2009). For example,
Besnard et al. (2010) used multistate models to show that
monthly risks of harvest mortality were up to three times
higher than natural mortality in hunted populations of
Gray Partridge (Perdix perdix).
The main limitation of multistate models is that the

number of state-specific parameters and transitions
increases exponentially with the number of states, espe-
cially in memory models where the parameters are also
dependent on previous states. In practice, most multistate
models are limited to ~2–4 categorical states, although
networks with multiple sites can still be modeled with
two states for staying at a site (“here”) or dispersing
(“elsewhere,” Lagrange et al. 2014). Model complexity
can also be reduced by fixing parameters to zero for
any impossible transitions that cannot occur, such as
regression of adults to juveniles (ψA − J) or resurrection
from dead to alive (ψD − A). Complex multistate models
can have problems with parameter redundancy as an

intrinsic function of model structure, or due to extrinsic
problems with sparse data if the encounter histories do
not include all possible transitions (Fujiwara and Caswell
2002; Gimenez et al. 2003; Bailey et al. 2010; McCrea et al.
2012). Complexmultistrata models can also be difficult to
fit with MLE methods due to problems with convergence
and multiple solutions for the likelihood function
(Lebreton and Pradel 2002; Pradel et al. 2008). Problems
with model fitting can be addressed by using different sets
of random values as starting values, or by using simulated
annealing as an optimization algorithm that uses
random jumps to sample the likelihood function
(White et al. 2006).

7.17 Multistate Models with
Unobservable States

One challenge for multistate models is when one or more
states are unobservable (Kendall and Nichols 2002; Ken-
dall 2004; Schaub et al. 2004a). Unobservable states are a
feature of herbaceous plants where belowground rhi-
zomes or corms may be dormant (Shefferson et al.
2003; Kéry et al. 2005), and among long-lived vertebrates
where nonbreeders are unobservable due to delayed
maturity among juveniles or intermittent breeding
among adults (Fujiwara and Caswell 2002; Kendall et al.
2009; Stauffer et al. 2013). Two states might be coded
as O = observable and U = unobservable, and more com-
plex models may have multiple observable or unobserva-
ble states (Converse et al. 2009; Bailey et al. 2010). By
definition, pO > 0 but pU = 0, and the state U does not
appear in the encounter histories. The multistate model
has the potential to give state-specific estimates of appar-
ent survival (SO and SU), but the two parameters may not
be identifiable unless constrained to be equal (Henle and
Gruber 2018). The transition rates are equivalent to a
robust design model with non-random movements
where ψU −O is immigration (or 1 − γ ) and ψO −U is tem-
porary emigration (or γ , White et al. 2006). If ψU −O = 0,
then emigration is not temporary but is permanent.
Conceptually, multistate models with unobservable states
can be used to model temporary emigration as absent
(ψU −U and ψO −U= 0), random (ψU −U =ψO −U), nonran-
dom (ψU −U ψO −U), or balanced in a model with even-
flow dynamics (ψU −O =ψO −U). One potential advantage
is that multistrata models can still be used even if a field
study lacks the secondary sampling periods needed for a
robust design model (Schaub et al. 2004a). Unfortunately,
unobservable states can cause problems with intrinsic
parameter redundancy, such that not all parameters
may be identifiable in multistate models (Hunter and
Caswell 2009; Bailey et al. 2010; Cole 2012), and may
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affect bias and precision for the parameter estimates
(Henle and Gruber 2018).
Issues of parameter redundancy can be resolved by set-

ting constraints on the structure of multistate models
(Kendall and Nichols 2002; Kendall 2004). Three alterna-
tives include setting survival to be equal for the different
states (SOt = SUt ), setting transitional probabilities to be
time-constant (ψU −O

c ψO−U
c ), or by placing constraints

on a subset of the transitions, for example if breeders
become obligate nonbreeders when interbirth intervals
are greater than a year (ψO −O≡ 0, Fujiwara and Caswell
2002; Reed et al. 2003; Monk et al. 2011). Alternatively,
constraints on p may be preferred if the probability of
encounter has less biological interest. Multistate models
for herbaceous plants have included three states: dormant
(D), vegetative (V), and flowering plants (F). Dormant life-
stages are unobservable (pD ≡ 0), and the dormant state is
not included in the encounter histories. Encounter rates
for aboveground life-stages of a sessile plant can be
arbitrarily set to one (pV = pF≡ 1, Kéry et al. 2005),
or can be estimated with closed population models (pV

and pF > 0.97, Shefferson et al. 2003). Encounter rates
of mobile animals are unlikely to be close to unity, and
different methods are required.
One approach for investigating dynamics of unobserv-

able states is a combined multistate open robust design
model for open populations (MSORD) with a multistate
framework for estimating state-specific demographic
parameters coupled with a robust design component
for estimating encounter rates. Encounters on secondary
occasions can include repeated recaptures in the robust
gateway model (Bailey et al. 2004a; Church et al. 2007),
or resightings only in the less-invasive robust design
(Kendall et al. 2009). Problems with parameter redun-
dancy can still arise with these models, and survival of
individuals in the observed and unobserved states is usu-
ally constrained to be equal (Kendall and Bjorkland 2001;
Bailey et al. 2009). Despite the increased complexity of the
combined MSORD models, empirical applications have
provided insights into the sex-specific costs of breeding
(Muths et al. 2013; Stauffer et al. 2013; Rendón et al.
2014), reproductive strategies of failed and successful
breeders (Converse et al. 2009), and the key environmen-
tal drivers that affect these life-history transitions
(Church et al. 2007; Grayson et al. 2011).

7.18 Multievent Models with
Uncertain States

Another challenge for multistate models arises when
individuals cannot be assigned to categorical states with
confidence. Uncertain states differ from unobservable

states because uncertain states can still be detected,
whereas unobservable states are not available for cap-
ture (δ or p∗ < 1). Uncertain states can arise for two non-
exclusive reasons (Conn and Cooch 2009). Under
misclassification errors, marked individuals may be
assigned to an incorrect state, such as a genotype or spe-
cies (Lukacs and Burnham 2005; Runge et al. 2007).
Under partial observability, marked individuals are
detected but states remain ambiguous because of diffi-
culties in determining sex (Nichols et al. 2004), disease
status (Conn and Cooch 2009), breeding status (Sanz-
Aguilar et al. 2011), or association with dependent off-
spring (Kendall et al. 2003; Taylor and Boor 2012). Early
attempts to deal with uncertain states included adding
an additional unknown state to the encounter histories
(Wood et al. 1998; Conroy et al. 1999; Faustino et al.
2004), or using auxiliary data to develop state assign-
ment matrices that could be used as model constraints
(Fujiwara and Caswell 2002; Lebreton and Pradel
2002). Censoring of unknown observations or including
unknowns as an additional state are undesirable solu-
tions because both procedures affect the bias and preci-
sion of parameter estimates from multistate models
(Faustino et al. 2004; Nichols et al. 2004; Conn and
Cooch 2009).
Like unobservable states, uncertain states can also be

handled with a combined MSORD. In mammals, large-
bodied females can be relatively easy to detect but it be
harder to determine if a female is attending dependent
offspring. In a population study of manatees (Trichechus
manatus), Kendall et al. (2003) sampled marked females
twice per year and recorded three states: female with calf
(C), lone female with no calf (N), or undetected (0).
Females had imperfect detection (p = 0.48), but if a female
was detected, then the probability of detecting her calf
was also imperfect (δ = 0.72). Estimates of the transitional
probability of becoming a breeder were biased low in a
standard multistate model (ψN −B = 0.31) compared to a
model controlling for uncertain states (ψN −B = 0.61).
Nichols et al. (2004) used a similar model to address
uncertainty in sex determination. One feature of these
models is that probability of classification is often
hierarchical; a female with a calf cannot be misclassified
as a lone female, and unsexed juveniles mature to
become known sex adults, but cannot regress to an
unknown state.
Uncertain states can also be handled with multievent

models, which belong to the family of hidden Markov
models (HMM, Pradel 2005, 2009; Choquet et al.
2009b; Conn and Cooch 2009). The models are hidden
because the latent state dynamics are only partially
observable and Markov because individuals move inde-
pendently among a finite set of states in an ordered series
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of events. Multievent models are defined by elemental
matrices that specify three sets of probabilities: initial
states (Π), transitions (Φ), and conditional events (B,
Box 7.5). Like the challenges for multistate models with
unobservable states, multievent models face problems
of parameter redundancy and the possibility of multiple
optima. Multievent models provide a flexible framework
for developing custom models to investigate capture
heterogenity (Crespin et al. 2008; Péron et al. 2010),
memory models for movements (Rouan et al. 2009), or
patterns of breeding propensity and mate fidelity
(Cubaynes et al. 2011; Sanz-Aguilar et al. 2011; Culina
et al. 2013; Desprez et al. 2014).

7.19 Joint Models

Joint models combine live encounter data collected at
sampling occasions with auxiliary data on dead recoveries
or supplemental resightings taken from intervals between
occasions (Burnham 1993; Barker 1997, 1999). Live
encounters are usually taken from a fixed-area study plot
at set sampling occasions, whereas dead recoveries and
supplemental resightings are collated opportunistically
from other sites and at any time of year. In Program

Mark, the encounter histories are coded in a LD format
where each type of information is recorded separately for
each occasion (Cooch and White 2018). Thus, the code
11 is released alive but recovered dead in the following
interval, 12 is released alive and resighted in the following
interval, 10 is a live encounter only, 01 is a dead recovery
only (not allowed on the first occasion), 02 is an observa-
tion only, and 00 is not detected. A key advantage of using
information from dead recoveries and supplemental
observations is that losses to permanent emigration are
reduced if the auxiliary data are taken from a large geo-
graphic area (Horton and Letcher 2008). Many mark-
recapture models require systematic sampling at discrete
occasions with regular intervals to meet the assumption
of instantaneous sampling. A second advantage is that
auxiliary data can be collected at any time, which may
be a better sampling design for field projects where
marked individuals are sampled opportunistically at
irregular or continuous intervals instead of discrete occa-
sions (Ruiz-Gutiérrez et al. 2012; Barbour et al. 2013;
Kendall et al. 2013).
The Burnhammodel combines live encounter and dead

recovery data to estimate four parameters: true survival
(S), site fidelity (F), probability of encounter for live indi-
viduals (p), and the probability of reporting (r) for dead
individuals. Similarly, the Barker model combines live

Box 7.5 Fitting Multievent Models with Elementary Matrices

Multievent models can also handle situations where the
state assignments are uncertain in a multistate model.
Desprez et al. (2014) used a multievent model to investi-
gate costs of first-time breeding in an animal population
with three latent states: prebreeders (P), new breeders
(N), and experienced breeders (E). Dead (D) was also
included as a state in the elementary matrices. In the field,
individuals were observed in four possible states: not
detected, detected as a prebreeder, detected in an
unknown state, or detected as an adult (new or experi-
enced combined). All individuals were first marked as pre-
breeders and the initial states (Π) for the P, N, E, and D
states were then:

Πt = 1 0 0 0 7 9

The transition matrices (Φ) summarized the state-
specific rates for the P, N, E, and D states:

Φr ϕ
t =

ϕP 0 0 1−ϕP

0 ϕN 0 1−ϕN

0 0 ϕE 1−ϕE

0 0 0 1

and Φr ψ
t =

1−ψPN ψPN 0 0

0 0 1 0

0 0 1 0

0 0 0 1

,

7 10

where ϕr and ψr are the state-specific probabilities of
apparent survival and the probability of changing states.
Prebreeders had an imperfect probability of becoming a
new breeder (ψPN) whereas new or experienced breeders
automatically transitioned to becoming experienced
breeders.

The model had two conditional events matrices (B). The
columns of the first matrix summarized probabilities of
encounter (pr) for the four latent states as three possible
events: not detected, detected as a prebreeder, or
detected as an adult. The columns of a secondmatrix then
summarized the probability of classification (δr) for each of
the three events as four possible observation codes: not
detected, detected and classified as a prebreeder,
detected in an uncertain state, or detected and classified
as an adult:

Βr p
t =

1−pP pP 0

1−pA 0 pA

1−pA 0 pA

1 0 0

and Βr δ
t =

1 0 0 0

0 δP 1−δP 0

0 0 1−δA δA

7 11
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encounters, dead recoveries, and auxiliary observations to
estimate S, p, and r, and four additional parameters: the
probabilities of resighting for individuals that survive or
die during an interval (R, R ), and probabilities that an
individual in the population is at risk of capture or not
(F, F ). Joint models can also be parameterized as
multistate (Lebreton et al. 1999; Kendall et al. 2006) or
multievent models (Kendall et al. 2013). If dead recoveries
are not available, the reporting parameters can be fixed to
zero (r ≡ 0) and the Barker model can be based on live
encounters and auxiliary observations alone (Collins
and Doherty 2006; LeDee et al. 2010). If most data are live
encounters with relatively few auxiliary observations,
then site fidelity and resighting parameters might
be modeled as constants without time dependence
(Ruiz-Gutiérrez et al. 2012). Extended versions include
models that allow for continuous covariates (Bonner
2013), control for marker loss (Conn et al. 2004), and
include a robust design framework (Lindberg et al.
2001; Barker et al. 2004; Kendall et al. 2013).
The main challenge for use of joint models is that

multiple sources of information must be available for
individually marked animals. Burnham and Barker
models have been widely used with harvested species
where live and dead individuals are routinely encountered
(Doherty et al. 2002; Blums et al. 2005; Sandercock 2006),
but applications to nongame species are also possible
(LeDee et al. 2010; Lok et al. 2013; Cohen et al. 2014).
Joint models effectively decompose apparent survival into
the component probabilities, thereby providing separate
estimates of true survival (S) and site fidelity (F). Thus,
joint models have also allowed for variation in the two
demographic parameters to be modeled as a function
of demographic classes, environmental conditions, and
other explanatory factors.

7.20 Integrated Population Models

Integrated population models provide a powerful model-
ing approach for joint analysis of live encounters with
counts or abundance from population surveys, along with
other available sources of demographic data, such as
productivity data from nest monitoring, dead recoveries
or age ratios from harvest monitoring, or known fate
survival models (Gauthier et al. 2007; Schaub and Abadi
2011; Zipkin and Saunders 2018). In a traditional
population model, each dataset might be analyzed
separately with different statistical models, and the esti-
mates of fecundity, survival, and recruitment would then
be combined in a matrix population model (Chapter 8).
Integrated population models can be more efficient
because they allow simultaneous analysis of all available
information, explicitly handle uncertainty, and can be

used to estimate immigration and other demographic
parameters that are not part of the input datasets
(Abadi et al. 2010a; Schaub et al. 2013; Chapter 9). Inte-
grated models are also flexible enough to cope with messy
features of long-term monitoring programs such as gap
years of missing data, datasets that vary in temporal over-
lap or duration, as well as predictions into the future.
Integrated population models are developed in three

steps: defining an age- or stage-structured population
model that links population size to demographic rates,
defining separate likelihood functions for each available
dataset, and creating a joint likelihood for an integrated
model as the product of all component likelihoods
(Schaub and Abadi 2011). The population model is usu-
ally a projection matrix where the matrix elements are
comprised of lower-level demographic parameters
including fecundity, apparent survival, and immigration.
Individual likelihoods can be simple for parameters meas-
ured without error such as direct counts of number of
young. To control for imperfect detection in survey
counts or apparent survival, state-space formulations
split the likelihood for each dataset into separate compo-
nents for the latent state dynamics and the observation
process. If input datasets are independent, the joint like-
lihood for the integrated model is then calculated as the
product of the component likelihoods. If input datasets
are not independent, simulations suggest parameter esti-
mates may still be robust (Abadi et al. 2010b) or could be
tackled with spatially explicit integrated population mod-
els (Chandler and Clark 2014). The joint likelihood can be
illustrated conceptually as a directed acyclic graph
(DAG), with nodes and arcs similar to the life-cycle dia-
gram of a matrix population model (Schaub and Abadi
2011; Chapter 9).

7.21 Frequentist vs. Bayesian
Methods

Mark-recapture models can be fit to encounter histories
with different modeling approaches, including MLE in a
frequentist or information theory framework, or MCMC
methods in a Bayesian framework. The methods have dif-
ferent advantages and disadvantages but often converge
to identical results given the same set of encounter his-
tories and mark-recapture model. Maximum-likelihood
models are usually limited to fixed-effects models but
have the advantage that less computation time is needed
and a suite of alternative models can be fit to a dataset rel-
atively quickly. Fitting mark-recapture models in a Bayes-
ian framework can be challenging but offers several
advantages. Hierarchical models in a Bayesian framework
are a good framework for modeling explanatory factors as
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random instead of fixed effects, and may perform better
with sparse data (Gimenez et al. 2007; Calvert et al.
2009). Random-effect models can be used to investigate
individual heterogeneity (Cam et al. 2013), calculate the
process variance of a demographic parameter (Rotella
et al. 2012), examine the functional relationship between
two demographic parameters without the confounding
effects of sampling variance (Link and Barker 2005;
Sedinger et al. 2010), or jointly analyze data frommultiple
sites or species (Papadatou et al. 2011, 2012; Jansen
et al. 2014).
Another advantage of Bayesian models is greater flexi-

bility in developing customized models that may be a bet-
ter fit to the sampling design of a field study, such as cases
where states are unobservable or uncertain (Pradel 2005),
or integrated population models that combine live
encounter data with population counts and other demo-
graphic information (Gauthier et al. 2007; Schaub and
Abadi 2011; Zipkin and Saunders 2018). Early integrated
population models were analyzed with MLE methods
based on complex integrals and process equations that
had to be approximated by normal distributions
(Gauthier et al. 2007). Integrated population models are
now usually fit with MCMC in a Bayesian framework
(Schaub andAbadi 2011, Chapter 9). The Bayesian frame-
work requires definition of prior distributions for model
parameters but allows use of binomial distributions for
probabilities and Poisson or negative binomial distribu-
tions for count data, and may be more efficient for sparse
datasets (Véran and Lebreton 2008; Schaub et al. 2012).
MLE and Bayesian methods differ in model selection

procedures. In MLE methods, model selection proce-
dures can be based on AIC (or AICc or QAICc) or BIC.
In Bayesian models, model selection can be based on
the Deviance Information Criterion (DIC) where a model
with a low DIC value is a better approximation of the
underlying biological processes than other models with
higher values (Barnett et al. 2010). Unfortunately, model
selection based on DIC sometimes works poorly with
Bayesian models because of challenges in counting the
effective number of parameters in hierarchical models
with random effects (Millar 2009; Barker and Link
2015). Hooten and Hobbs (2015) reviewed alternatives
for Bayesian model selection, and recommend the Wata-
nabe-Akaike Information Criterion (WAIC) as an alter-
native for model selection with hierarchical models,
Bayes factors for conducting Bayesian model averaging,
and model-based methods such as stochastic search var-
iable selection for an integrated approach to model fitting
and selection.
In a MLE analysis, parameter estimates can be taken

from the minimum AIC model as the most parsimonious
model that contains the variables of interest, or by model
averaging across the candidate models via multimodel

inference. One potential disadvantage of MLE methods
is that the 95% confidence intervals (CI) of the parameter
estimates are based upon asymptotic assumptions which
may be not be appropriate for small datasets. If a
parameter is not included in the likelihood, it cannot
bemodeled butmust be calculated as a derived parameter
once a model has been fit. For example, abundance is
treated as a derived parameter in some closed population
models, and is calculated as the number of uniquely
marked individuals plus an estimate of the number never

caught: N =Mt +1 + f 0. Derived parameters can also
include real parameters that are projected to a different
time period or combined in a function. For example,
expected longevity might be extrapolated from apparent
survival: L= −1 lnϕ. In an MLE framework, confidence
intervals for derived parameters must be calculated
analytically with the delta method, or numerically with
bootstrapping methods (Powell 2007; Cooch and
White 2018).
In a Bayesianmodel, estimates of variance and 95% cred-

ible intervals (CRI) for parameter estimates are taken
directly from the posterior distributions after the model
has converged. The CRI from the posterior distribution
are exact for any arbitrary sample, which may be an
advantage if sample sizes are small (Gardner et al. 2010).
Moreover, posterior distributions can be calculated for
any real or derived parameter, and use of the delta method
or bootstrapping are not required. One drawback for
Bayesian models is that computational times to reach con-
vergence can be considerably longer than MLE methods,
potentially restricting the number of alternative models
that can be tested. Implementation of Bayesianmodels also
requires programming expertise with specialist software,
but available textbooks with sample code provide a useful
starting point (Kéry and Schaub 2012; Royle et al. 2014).

7.22 Software Tools

A growing number of software tools are available for ana-
lyses of mark-recapture data for marked individuals with
imperfect detection (Mazerolle 2015). Two widely used
software packages with a wide range of alternative models
and extensive documentation include Programs MARK
(White and Burnham 1999; Cooch and White 2018),
and E-SURGE (Choquet et al. 2009a; Choquet and Gime-
nez 2012). The U-CARE software provides tools for asses-
sing GOF tests for CJS, multistate, and other models
(Choquet et al. 2009a). The R software environment
offers a suite of specialized packages for mark-recapture
analyses including: the R2ucare package for GOF tests
(Gimenez et al. 2017), the RMark package as an interface
to Mark (Cooch and White 2018: Appendix C), the
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marked package for fitting basic mark-recapture models
with MLE or Bayesian MCMC methods (Laake et al.
2013), the secr package for spatially explicit capture-
recapture models (Efford 2017), and the multimark
package for modeling encounters of individuals identified
by natural marks (McClintock 2015). The unmarked
package offers a range of hierarchical models for
unmarked individuals, including distance sampling,
occupancy models, and count-based models (Fiske and
Chandler 2011). Bayesian mark-recapture models can
be run from an R environment with the R2WinBUGS
package as an interface to WinBUGS or OpenBUGS, or
with the rjags or R2jags packages as an interface to
JAGS (Kéry and Schaub 2012; Royle et al. 2014). Many
of these software tools are open-source programs availa-
ble as free downloads, and have online support from ded-
icated communities, including the phidot forum, or the
unmarked forum at Google Groups.

7.23 Online Exercises

Creating the encounter histories for marked individuals is
a necessary first step for any mark-recapture analysis.
Exercise 1 is an example of an R script for a songbird
dataset that shows the steps for converting a vertical file
with captures on different occasions into a horizontal
encounter history with ones and zeros for detection
and nondetection events. Another common input format
for mark-recapture analyses is the m-array. Exercise 2 is
an R script that can be used to summarize encounter
histories into a standard m-array for input to different
software packages. Last, Exercise 3 provides an example
of a basic CJS analysis for a classic dataset on European
Dippers (Cinclus cinclus) using the RMark software
package as an interface to Program MARK.

7.24 Future Directions

Many questions in population biology, evolutionary
ecology, and wildlife management require robust esti-
mates of demographic parameters and their variance.
Mark-recapture analyses based on live encounter data
are often cost effective, and provide estimates of apparent
survival and other parameters that are unbiased with
good precision. Fundamental models such as the CJS,
Jolly–Seber, and multistate models will remain important
as stand-alone tools and as building blocks for more com-
plex models. Mark-recapture methods are an area of
active research among quantitative ecologists and major
advances continue to be made in five areas. One area has
been development of new models that relax the

assumptions of standard mark-recapture models, such
as multistate models that allow for unobservable or
uncertain states. A second area has been integration of
live encounter data with other sources of auxiliary data,
such as movement data in spatial CJS models, dead recov-
ery data in joint models, or population counts and fecun-
dity data in integrated population models. Third, tests for
model fit and corrections for overdispersion are standard
procedures for fundamental models like the CJS andmul-
tistate models. GOF tests have not yet been developed for
multistate models with unobservable states, integrated
population models, and other complex models but
remain an area of active research. Fourth, continuing
development of new software tools with comprehensive
documentation has led to widespread adoption of
mark-recapture methods, including hierarchical models
in a Bayesian framework which provide flexibility for
model design. Last, open data and open source software
are quickly becoming the new standards for ecological
research. Archiving of long-term datasets will facilitate
retrospective analyses of existing datasets as new statisti-
cal tools become available, and will provide the necessary
baseline for understanding future patterns of ecological
change. Documentation of software code will allow the
next generation of ecologists to continue to use mark-
recapture models to tackle the most challenging ques-
tions in population biology.
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Summary

Population dynamics models allow us to predict, explain, or remedy population trends given the biology of the species and the
characteristics of its environment. In the approach proposed here, the key concept is the life cycle graph, a representation of the
life history of a given species, parameterized by the demographic parameters, the fecundity and survival rates. I describe how
deterministic systems in discrete time are built from the life cycle graph, and how demographic descriptors (growth rate,
generation time, sensitivities) can be computed. Regulation by population density and the spatial component (metapopulation)
are introduced. Stochastic models are then constructed from the deterministic models, to account for fluctuations in the
environment and for demographic stochasticity, that is, random population drift. Though the chapter contains many
mathematical formulas, it mostly relies on biological intuition.

8.1 Introduction

The aim of this chapter is to provide a broad overview of
population dynamics methods that are useful for practical
applications. These methods rely on solid theoretical
grounds, andthisnecessitates theuseofmathematical con-
ceptsandequations.Thereader shouldnotbeputoffby the
presence of mathematical formulas, and can skip some of
them (in particular Boxes 8.3–8.5) and rely on the intuitive
meaninggiven in the text. Experience shows that biological
intuition is enough to develop pertinent population mod-
els without being mathematically inclined. I however
believe that mathematical formulas remain the most con-
cise and universal way of transmitting information.
The key concept of the chapter is the life cycle graph,

introduced in Section 8.2. It is a simple concept which
has far-reaching consequences. Once mastered, it goes
well along with biological sense, but its construction
and interpretation are crucial first steps. Then, matrix
algebra and the theory of stochastic processes are conven-
ient tools to analyze the properties of a given life cycle.
Population dynamics is the study of population trajec-

tories or variation in population sizes over time, which is
necessary for predicting, explaining, or managing popula-
tion trends. In the framework of population dynamics, a
population is defined as a set of individuals of the same
genotype, living in the same environment. Accordingly,

all individuals in a population are considered identical
to an average individual. The average individual is
described by the life cycle graph, a schematic description
of the stages traversed by an organism during its life. The
life cycle graph, whose parameters are determined from
individual data (survival rates, fecundities, life span), is
constructed according to the biology of the species and
the question of interest.
From the life cycle graph, matrix population models

and variants thereof are built, allowing to project the pop-
ulation in discrete time t = 0, 1, 2,… Discrete time is well
suited because many organisms reproduce seasonally.
Also, demographic parameters, survival and fecundity
rates, are measured in the field or in the laboratory at
regular dates, in relation with the periodical schedule of
the species.
Matrix population models provide pertinent demo-

graphic descriptors: growth rate, generation time, and the
most sensitive parameters, those that contribute most to
the dynamics. These models can also account for environ-
mental characteristics such as limitation of resources lead-
ing to population regulation or environmental fluctuations,
as well as other specific features such as spatial structure or
harvesting, thereby leading to demographic predictors
like the probability of extinction. Matrix models form a
multipurpose toolbox for the management and conserva-
tion of species, and can also address evolutionary issues.
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8.2 The Life Cycle Graph

8.2.1 Description

All organisms traverse different stages during their life,
typically immature stages where they develop followed
by mature stages where they reproduce. This scheme is
represented by the life cycle graph, a directed graph
whose nodes describe the stages, and whose arcs describe
transitions from one stage to the next. Demographic
parameter values (vital rates) are associated with the
transitions, representing the contribution of a stage to
the next (Figure 8.1). The life cycle graph can be seen
as a simplification and quantification of the developmen-
tal process and of the contribution of one generation to
the next. The same duration is associated with each
transition. It will be the time step of the discrete time
dynamical system built from the life cycle graph.
To project a population, first construct the life cycle

graph of the species. All population dynamics models
are based, explicitly or not, on such a representation.
The life cycle graph accounts for the biology of the
species, depends on the available individual data, and is
constructed to address the question of interest.
The life cycle is in general assumed to be female-based:

the population is considered to be constituted of females
only. It means that there are always enough males to
fertilize the females, and that the male life cycle does not
differ from the female life cycle. These two assumptions
are not always met, and will be relaxed when considering
two-sex models (Section 8.8.2).
Figure 8.1b represents the life cycle graph of a short-

lived species such as a small songbird or a small lizard.
This example will be used throughout the text and
referred as the passerine model (Legendre et al. 1999).
In this example, the population census occurs shortly
before reproduction (prebreeding census). There are
two age classes: individuals aged one year (subadults),
and individuals aged two years or more (adults). Suba-
dults reproduce with fecundity f1 and become adults with
subadult survival rate s1. Adults reproduce with fecundity
f2 and stay in the adult class according to the survival rate
s2, as expressed by the self-loop in the adult stage. Because
of the prebreeding census, a newborn will be censused the
following year, when it is (almost) one year old: it
survives with juvenile survival rate s0 before entering
the one-year-old age class. This is why the juvenile
survival rate s0 multiplies the fecundities in the reproduc-
tive transitions. As the life cycle is female-based, only
females giving birth to females are considered: the pri-
mary female sex ratio σ (the proportion of females at
birth) multiplies the fecundities. In many species the
primary sex ratio is balanced: σ = 0.5.
In a postbreeding census, the population census occurs

shortly after reproduction, and the first stage consists of

zero-year-old individuals. In the passerine model, there
are now three age classes instead of two. The age-0 indi-
viduals are descendants of the juveniles, subadults, and
adults censused the previous year, which survived (for
almost one year) at rates s0, s1, and s2 respectively
(Figure 8.1c). To summarize, in the prebreeding census
the juvenile survival rate s0 multiplies the fecundities,
whereas in the postbreeding census there is a supplemen-
tary stage (age-0 individuals), and age-specific survival
rates multiply the fecundities (Figure 8.1b). Both repre-
sentations lead to the same demographic descriptors
(Section 8.3.2).

8.2.2 Construction

The life cycle graph is constructed in three steps:

1) Determine the largest time step compatible with the
biology of the species and the observations. Typically,
the time step might be a year for birds and large mam-
mals, a month for small mammals, or a day for insects.
Recall that all arcs in the life cycle graph correspond to
the same time step.

2) Determine the pertinent stages. For many organisms,
the convenient stages are age classes, with the identi-
fication of the age at first reproduction. However, sev-
eral organisms are better classified according to other
criteria, like size. Size classes are often preferred for
plants whose development is much more plastic than
animals, because growth can be delayed until suffi-
cient light exposure is met, and because observations
are more conveniently performed in terms of size
rather than age. Size-classified models (Figure 8.1f )
are also used for animal species like turtles, fish, and
reptiles (Morris and Doak 2002; Crouse et al. 1987).
In Figure 8.1f, gi is the probability to grow from a size
class to the next.
In general, any structure can be used for the stages,

provided that they are biologically relevant. In fact, life
cycles are very diverse across plant and animal taxa
(Jones et al. 2014). In many cases, it is convenient to
incorporate in an age- or size-classified model stages
that account for biological specificities or for the ques-
tion of interest. For example, the life cycle of the wolf
Canis lupus (Figure 8.1c2, Chapron et al. 2003) is not
strictly age-classified. We have pups (0–6 months),
juveniles (6–18 months), subadults (18–30 months),
adults (30+ months), and two more stages that
account for characteristics of this social species: dis-
persers (dispersing juveniles must wait one year before
looking for a mate), and pack leaders. In stage-
classified models, a same duration is still associated
with each transition. However, individuals in a stage
are of different ages, and individuals of the same age
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may be in different stages, which can make the results
more difficult to intuit.

3) Determine the demographic parameters associated
with the transitions of the life cycle from individual
data. For wild populations, survival rates are usually
estimated using known fatemodels (Chapter 6), or with
capture-mark-recapturemethods (Lebreton et al. 1992;
Sandercock 2006; Chapter 7). Uninformed parameters
may be left as variables that can be explored using dif-
ferent scenarios, or filled with guess values taken from
the literature for a related species. It will be seen that
some demographic parameters have little influence
on population dynamics (sensitivities, Section 8.3.3),
so that accurate estimation is not crucial.

8.3 Matrix Models

8.3.1 The Projection Equation

The simplest life cycle graph has a single class
(Figure 8.1a). In this unstructured model, population size
n grows by a constant multiplicative factor from one time
step to the next:

n t + 1 = λn t 8 1

The population growth rate (λ) describes the (average)
contribution of each individual alive at time t to popula-
tion size at time t + 1. The contribution involves survival
and fecundity: λ = s + f. We have nonoverlapping genera-
tions when, in a time step, individuals give birth to f off-
spring and then die (s = 0). In this case, a time step
corresponds to a generation, and the generation time is
T = 1. Otherwise, generations overlap.
Population size is given by a geometric series in

Eq. (8.1), so that

n t = λtn 0 , 8 2

where n(0) is initial population size. From Eq. (8.2), we
deduce that population size grows exponentially to infinity
when λ > 1, and decreases exponentially to 0 when λ < 1.
Let us consider a general life cycle graph with k stages

(e.g. Figure 8.1b where k = 2, or Figure 8.1d–f ). A square
matrixA = (aij) of size k × k is associated with the life cycle
graph: the entry aij of A describes the contribution of an
individual from stage j to stage i during a time step when
there is an arc from j to i, and is 0 otherwise. Thus a non-
zero entry aij ofA corresponds to the arc j i. Its value is
the demographic parameter associated with the transition
j i. Let ni(t) denote the number of individuals in stage
i at time t, then summing contributions,

ni t + 1 =
k

j=1

aijnj t 8 3

Introducing the column population vector n(t) = (n1(t),
, nk(t)), we recognize in Eq. (8.3) the product of the

matrix A by the vector n(t). Hence, the population vector
is updated from a time step to the next according to

n t + 1 =An t , 8 4

which gives

n t =Atn 0 8 5

A convention in matrix algebra is that boldface type is
used to denote matrices and vectors.
Let us describe the procedure for the passerine model.

Let n1(t) be the number of one-year old individuals at
time t, n2(t) the number of individuals aged two years
or more at time t. Inspection of the life cycle graph
(Figure 8.1b) tells us that population sizes in the stages
are updated from one time step to the next according to

n1 t + 1 = σs0f1n1 t + σs0f2n2 t , 8 6
n2 t + 1 = s1n1 t + s2n2 t

These equations can be written in matrix form:

n1

n2 t + 1

=
σs0 f1 σs0 f2

s1 s2

n1

n2 t

8 7

For an age-classified life cycle with k stages and pre-
breeding census, the associated k × k matrix is shown in
Figure 8.1e, where a is age at first reproduction and it
is assumed that reproductive individuals have constant
survival sk and constant fecundity fk from age k. When
all individuals die at age k, sk = 0, we obtain the Leslie
matrix (Figure 8.1d).
The total population size at time t is n(t) = n1(t) + +

nk(t). The population structure at time t is defined as the
column vector of proportions of individuals in the stages:

w t =
n1 t
n t

, ,
nk t
n t

8 8

In fact, the dynamical properties of the discrete time
system (Eq. 8.4) depend entirely on algebraic properties
of the matrix. The main result is that the population
grows (or decreases) at an exponential rate. More pre-
cisely, the population first goes through a transient
regime of damped oscillations, followed by an asymptotic
regime of exponential growth where

n t + 1 ≈λn t for large t 8 9

Hence, the expected behavior of the structured model
(Eq. 8.4) is close to that of the unstructured model
(Eq. 8.1). The growth rate λ is the dominant eigenvalue
of the matrix (Boxes 8.1 and 8.4). The asymptotic regime
is reached concomitantly with the stabilization of the
population structure:

w t w
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Here, the stable stage distribution w = (wi), normalized
wi = 1, is the right eigenvector associated with the

eigenvalue λ. The proportion of individuals in stage i
tends to wi geometrically fast. The transient fluctuations
depend on the initial population structure w(0). In fact, if
w(0) equalsw, the asymptotic regime is attained instantly.
The transient behavior is easily understood for an age-
classified model. For example, if the initial condition is
100 individuals in the first (newborn) stage, and 0 indivi-
duals in the other stages, these 100 individuals traverse
the pre-reproductive stages step by step (population size
decreases); the surviving ones then reach the reproduc-
tive stages, from which the newborn stage is alimented
again (population size bursts). We thus have oscillatory
behavior until the number of individuals homogenize
across stages to eventually meet the stable stage
distribution.
Equation (8.2) generalizes into

n t ≈C λtn 0 for large t 8 10

Here, the constant term C = vw(0) is the dot product
of the reproductive value, the left eigenvector associated
with the eigenvalue λ, a row vector v = (vi), normalized

vi = 1, and the initial population structure w(0).

The interpretation of the reproductive value can be
understood from Eq. (8.10). The population grows
exponentially at rate λ by Eq. (8.9), independently of
the initial condition n(0). However, according to
Eq. (8.10), population size depends on the initial struc-
ture w(0) and on the reproductive value v: the stages i
with large reproductive values vi contribute most to
population size (but not to the growth rate), weighted
by the initial structure, as expressed by the dot product.
For the Leslie matrix (Figure 8.1d), the typical pattern is
that vi increases up to age at first reproduction, because
individuals have an increasing potential to contribute to
future population size, and decreases thereafter.
The transient oscillatory behavior of the model should

not be overlooked (Koons et al. 2007; Gamelon et al.
2014). Indeed, even if the population is at the demo-
graphic equilibrium, where the population structure is
stationary, perturbations from the environment may alter
the structure and drive the population into transient
fluctuations.
Taking logs on each side of Eq. (8.10) provides an

estimate of the growth rate:

λ≈exp
ln n t − ln n 0

t
8 11

Box 8.1 The Life Cycle Graph and Dynamical Behavior

The existence of the dominant eigenvalue λ > 0 (a unique
real eigenvalue of largest modulus), and the associated
left and right positive eigenvectors v andw, is guaranteed
under conditions pertaining to the structure of the life
cycle graph, its stages and arcs, and not to the values asso-
ciated with the arcs (the demographic parameters). The
discrete dynamical system described by Eq. (8.4) is equiv-
alent to performing paths of length t in the life cycle
graph, traversing cycles from newborn stages via survival
arcs and back to newborn stages via reproductive arcs.
The condition of existence of the dominant eigenvalue
λ is that the life cycle graph should be irreducible and
aperiodic:

A) Irreducibility means the existence of an oriented path
from any stage to any other. Reducibility occurs, for
example, when postreproductive stages are included
(Figure 8.1g; see also the case of source-sink metapo-
pulations, Section 8.7). Such stages do not belong to
reproductive cycles since newborn stages cannot be
reached from them. They do not contribute to growth
and can be omitted. In case of reducibility, there may
nevertheless exist a dominant eigenvalue, in which
case the main results still hold, but this is not

guaranteed, and the vectors v and w usually have
some zero entries.

B) Aperiodicity means that the lengths of cycles in the life
cycle graph have no common divisor >1. Periodicity
occurs, for example, with the life cycle of Figure 8.1h,
which produces survival-reproduction cycles of length
2, 4, 6, …, when the life cycle is traversed 1, 2, 3…
times: the common divisor is 2. The Leslie matrix is ape-
riodic (Figure 8.1d, assuming mi > 0, but see also
Figure 8.1i) because the cycle lengths have 1 as com-
mon divisor, hence are relatively prime. In case of peri-
odicity, the population trajectories present periodic
oscillations that are not damped, though the growth
is still exponential on average. Aperiodicity is guaran-
teed when there is a self-loop (a cycle of length 1) in
the life cycle graph, i.e. a nonzero entry on the diagonal
of the matrix, a condition that is often met (e.g.
Figure 8.1e, f ).

Conditions (A)and (B) areequivalent to thematrixAbeing
primitive: there exists a positive integerq such thatAqhas all
entries positive. To summarize, the generic behavior
(primitive matrix) is the rule, with exceptions to be aware
of: reducibility and periodicity, the latter being rare.
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According to Eq. (8.11), if you observe a population at
date t0 and later on at date t1 and measure population
sizes nobs(t0) and nobs(t1), then the growth can be esti-
mated by

λ= exp
ln nobs t1 − ln nobs t0

t1− t0
8 12

8.3.2 Demographic Descriptors

We have already encountered the growth rate λ which
tells us if the demographic parameters of the population
lead to increase (λ > 1) or decrease (λ < 1). The stable
stage distributionw and the reproductive value v describe
stage-specific contributions to the dynamics. For exam-
ple, the population structure of introduced individuals
should be chosen close to the stable stage distribution
to avoid initial population fluctuations which could put
the program at risk. If individuals in a single stage are
introduced, those with the largest reproductive value
should be preferred, since they contribute more to future
population size.
In the age-classified model, let us consider an individual

that survives up to age i and produces fi offspring. The tra-
versal of a survival-reproduction cycle in the life cycle
graph can be associated with the cumulated rate

ϕi = s0s1 si−1fi 8 13

The net reproductive rate

R0 =
i

ϕi 8 14

represents the per individual contribution to the renewal
of the population. The conditions R0 > 1 and λ > 1 are
equivalent.
The dominant eigenvalue λ is the largest root of the

characteristic equation iϕiX
− i = 1, so that the terms

pi =ϕiλ
− i 8 15

satisfy pi = 1, hence constitute a probability distribu-
tion. A measure of the generation time is then defined
as the mean of the distribution:

T =
i

ipi 8 16

By construction, T is the mean age of the mothers,
assuming the population at the stable age distribution.
Entropy, the Shannon diversity index of the pis,

S = −
i

piln pi , 8 17

is ameasure of the complexity of the life cycle: it is linearly
related to the logarithm of body size, metabolic rate, and

maximal life span (Demetrius et al. 2009). A semelparous
life cycle has an entropy of zero (Figure 8.1h).
For the passerine model (Figure 8.1b, model file

pass_0.ulm), the demographic parameter values are
s0 = 0.2, s1 = 0.35, s2 = 0.5 for survival, and f1 = f2 = 7
for fecundity, with primary sex ratio σ = 0.5. We obtain
the growth rate λ = 1.1050 and generation time
T = 1.67. For the wolf, survival rates are not known pre-
cisely in this population: various scenarios can be consid-
ered, from pessimistic to optimistic, leading to growth
rates ranging from λ = 0.93 to λ = 1.16 (Figure 8.1c2,
model file wolf_0.ulm).
Demographic descriptors can also be computed for

models that are not age-classified. The analysis of the
cycles subtending the life cycle graph allows us to com-
pute the characteristic equation (of which λ is the largest
root), and expressions for the eigenvectors w and v, and
the net reproductive rate R0 in terms of the demographic
parameters (Caswell 2001). For size-classified models
(Figure 8.1f ), it can be convenient to translate the size
currency into the more intuitive time currency. Simple
formulas exist in this case, allowing, for example, to com-
pute the average residence time in a stage (Barot et al.
2002). The general case for any nonnegative matrix that
has relevant biological meaning is more complicated
(Cochran and Ellner 1992). However, generation time
has a simple expression (Bienvenu and Legendre 2015).

8.3.3 Sensitivities

When a parameter of the life cycle varies due to some
condition, will the population still grow, or will it
decrease? What change in a parameter will ensure the
restoration of a declining population? These questions
can be addressed using sensitivity analysis. The impact
of small changes in the parameter x on the growth rate
is measured by the sensitivity of λ to changes in x:

sλ x =
∂λ

∂x
8 18

Themeaning of the partial derivative is that if x changes
by an amount Δx, then λ changes by an amount
Δλ = sλ(x)Δx. The sensitivity sij of λ to changes in the
matrix entry aij is computed from the left and right eigen-
vectors by the formula

sij =
viwj

vw
8 19

where the denominator is a dot product. From the sij
values, the sensitivity to changes in a lower level param-
eter x is obtained using the chain rule:

sλ x =
i, j

∂λ

∂aij

∂aij
∂x

=
i, j

sij
∂aij
∂x

8 20
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Sensitivities of other demographic descriptors (e.g. T)
or of the population vector entries can also be computed.
A related quantity is the elasticity, which measures pro-

portional changes in a lower-level parameter (x):

eλ x =
x
λ

∂λ

∂x
8 21

If x changes by α% then λ changes by β%with β = αeλ(x).
The elasticities eij of λ to changes in the matrix entries
sum to 1. Zero entries in the population matrix usually
have nonzero sensitivities, reflecting the impact a small
change in these entries would have on λ, even if it is not
biologically meaningful, but their elasticities are zero, as
seen from the definition. Sensitivities and elasticities are
generally positive, but may be negative. Indeed, as the
growth rate obviously increases with an increase in sur-
vival or fecundity, these parameters have positive sensi-
tivity. But if survival is written s = 1 −m, where m is
mortality (Chapter 6), the parameterm has negative sen-
sitivity. Sensitivities and elasticities provide similar
information, that of a perturbation analysis: sensitivities
reflect (linearly) the effects of additive perturbations;

elasticities reflect (nonlinearly) the effects of propor-
tional perturbations.
Sensitivities or elasticities allow us to determine the

relative contribution of the demographic parameters to
population growth (Box 8.2). In consequence, the most
sensitive parameters should be determined with the
greatest accuracy. Such parameters should be targeted

to restore the growth of a population. Moreover, sensitiv-
ities quantify the change in specific parameters to reach a
desired goal. Conversely, parameters with low sensitiv-
ities require less accuracy, as they contribute little to pop-
ulation dynamics.
Changes in matrix entries can be described by random

variables Aij with expectations given by the constant ref-
erence matrix A, E(Aij) = aij. The dominant eigenvalue of
the corresponding random matrix is a random variable Λ
such that E(Λ) = λ (capital letters are used for random
variables). Using the methods of Box 8.3, its variance is
approximated using the sensitivities of A:

Var Λ ≈
i, j,k, l

sijsklCov Aij,Akl 8 28

Box 8.2 Short-lived Versus Long-lived Species

The elasticity of λ to changes in a parameter cmultiplying
all reproductive transitions of the life cycle – the entries
involving fecundities – is given by the inverse of the gen-
eration time (Houllier and Lebreton 1986; Bienvenu and
Legendre 2015):

eλ c =
1
T

8 22

This is the case of the primary sex ratio σ, or the juvenile
survival s0 in the age-classified model with prebreeding
census (e.g. Figure 8.1b). As the elasticities sum to 1, the
elasticity of λ to changes in a parameter d multiplying
all nonreproductive transitions is given by

eλ d = 1−
1
T

8 23

The formula provides a rationale for the classification of
species along the so-called fast-slow continuum. It leads
to a useful dichotomy between short-lived and long-lived
species. Typically, short-lived species (small T) with a fast
life history (short life spans, large progeny sets, low adult
survival) invest in reproduction, whereas long-lived spe-
cies (large T) with a slow life history (long life spans, small
progeny sets, high adult survival) invest in survival. In gen-
eral, the most sensitive parameters of short-lived species

are the fecundities and the juvenile survival rate. The most
sensitive parameters of long-lived species are the adult
survival rates.
The generation time also reflects the tempo of bio-

chemical reactions within the organism, measured by
the metabolic rate P, and related to body mass W by
the Kleiber allometric relation (Brown et al. 2004):

P W 3 4 8 24

Hence, the metabolic rate per unit mass,

P
W

W −1 4, 8 25

decreases with increasing body mass. This is consistent
with short-lived species having small body size and
long-lived species, large body size. In a related way, it is
observed that the rate of increase r = ln(λ) of natural popu-
lations verifies

r≈
ln R0

T
8 26

where R0 is the net-reproductive rate, leading to the allo-
metric relation:

r T −1 8 27
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If the matrix entries vary independently:

Var Λ ≈
i, j

sij
2Var Aij 8 36

Similarly, if some lower level parameters xi vary inde-
pendently, the variance in growth rate is

σλ
2≈

i

∂λ
∂xi

2

σxi
2 8 37

The formula allows us to compute confidence intervals
on λ, given confidence intervals on measured parameter
values. The distribution ofΛ, which can be estimated using
resampling methods (bootstrap; Caswell 2001), is gen-
erally skewed, but can often be approximated by a normal
distribution. Under this assumption, the growth rate
belongs to the interval

λ± 1 96σλ withaprobability of 95 ,

and more generally,

λ± zασλ withaprobability of α ,

where zα is the upper α/2 percentage point of the standard
normal distribution.
For the passerine model (file pass_0.ulm), the sensi-

tivities of the growth rate to changes in the demographic
parameters are sλ(s0) = 3.309, sλ(s1) = 0.693, sλ(s2) = 0.401
for survival, s(f1) = 0.060, sλ(f2) = 0.035 for fecundity. Juve-
nile survival s0 is the most sensitive parameter in this
short-lived species. It is checked for the elasticities,
eλ(s0) = eλ(σ) = 1/T = 0.599 (Box 8.2). We can also infer
that if s0 is known within σs0 = 0 05 then 0.78 ≤ λ ≤ 1.43
with 95% confidence.
For the long-lived wolf (model file wolf_0.ulm),

under the intermediate scenario (λ = 1.085), the parame-
ter with the largest elasticity is the survival rate of the pack
leaders, eλ(s5) = 0.46. The elasticity of fecundity is
lower: eλ(f) = 0.14.

8.4 Accounting for the Environment

The constant matrix model allows us to project the pop-
ulation if the conditions under which the demographic
parameters have been measured were to be maintained.

Box 8.3 Environmental Stochasticity

Denoting λ(M) the function associating to a matrix M its
dominant eigenvalue, a Taylor expansion to the first order
gives

λ M+ΔM ≈λ M +
i, j

∂λ M
∂mij

ΔM ij 8 29

where we recognize the sensitivities sij =
∂λ
∂mij

under the

sum. To account for environmental noise, we write

A=A+E with E A =AandE E = 0 8 30

where the matrix E= Eij represents a small deviation ΔA
from matrix A. Using the Taylor expansion above, the
growth rate Λ= λ A = λ A+E is a random variable such
that

Λ≈λ+
i, j

sijEij 8 31

We have E(Λ) = λ and

Var Λ ≈
i, j,k, l

sijsklCov Eij,Ekl =
i, j,k, l

sijsklCov Aij,Akl

8 32

Tuljapurkar’s formula (Tuljapurkar 1990) quantifies the
impact of environmental noise on population growth
depending on characteristics of the environmental process:

re≈r−
σe2

2λ2
+

θ

λ2
8 33

Here, r = ln(λ) is the rate of increase in absence of sto-
chasticity. The stochastic rate of increase re decreases
linearly with the environmental variance σe2. The environ-
mental variance is identified with the variance of Λ from
variations in the matrix, as given by Eq. (8.32). It depends
on changes in the entries of the mean matrix, quantified
by the sensitivities, and on the covariance across matrix
entries. Positive covariance is more detrimental than no
covariance, whereas negative covariance is less. The alter-
ation is (quadratically) less important with increasing λ.
The term θ quantifies the contribution of temporal auto-
correlation to stochastic growth. When there is no auto-
correlation (iid environment), θ = 0, and

re≈r−
σe2

2λ2
8 34

When environmental variance is defined on the loga-
rithmic scale as ωe

2 = Var(ln(Λ)), we can write Eq. (8.32)

with logarithms and use
∂r
∂aij

=
1
λ
∂λ
∂aij

. Then Eq. (8.34)

becomes.

re≈r−
1
2
ωe

2, with ωe
2 =

σe2

λ2
8 35
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The life cycle graph represents the genotype and part of
the phenotype of an average individual. The part of the
phenotype that is not accounted for in the constant
matrix model depends on the influence of the biotic
and abiotic environment on the life cycle. Three main
phenomena are involved: (i) density dependence coming
from the regulation of the demographic parameters by
the limitation of resources; (ii) environmental stochasti-
city as the impact of variation in the environment on
the demographic parameters, considered as random
processes; and (iii) spatial structure, where subpopula-
tions are connected by dispersal.

8.5 Density Dependence

All populations have the potential to grow exponentially,
which is what the constant matrix model shows
(Section 8.3.1). However, exponential growth cannot be
sustained forever because living organisms depend on
finite resources. Density dependence – the fact that pop-
ulation growth has to decrease with increasing population
density – comes from intra-specific competition for
resources (nutriment, space, mate), but may also come
from inter-specific competition for shared resources, or
even from predation (more prey sustain more predators,
in turn decreasing the growth of the prey). Here, we
restrict ourselves to the point of view of the population,
and density dependence is basically described by a unique
parameter, the carrying capacity K.

8.5.1 Density-dependent Scalar Models

A continuous time formulation of the unstructured
model (8.1) is

1
n
dn
dt

= r 8 38

The increase of the population is
dn
dt
, and the per

individual rate of increase,
1
n
dn
dt
, is the constant r. The

differential equation is integrated as

n t = ertn 0 8 39

By identification with Eq. (8.2), we obtain a relation
between the rate of increase r and the growth rate:

λ= exp r 8 40

The increase versus decrease criterion, λ > 1 versus
λ < 1, translates into r > 0 versus r < 0.
To account for density dependence, one assumes that

the rate of increase is maximal, equal to r, when

population size is 0, decreases linearly with increasing
population size, and is < 0 when population size is above
the carrying capacity K, the largest number of individuals
that the environment can accommodate. Hence,

1
n
dn
dt

= r 1−
n
K

8 41

The integration of the differential equation leads to the
so-called logistic equation. Here, in our discrete time con-
text, using Eq. (8.40), wemay write the density-dependent
growth rate as

λK n = exp r 1−
n
K

, 8 42

which leads to the Ricker equation:

n t + 1 = λexp −
r
K
n t n t 8 43

(I do not claim that this equation is equivalent to the
logistic equation.)
More generally, to account for density dependence, we

make the growth rate decrease with increasing popula-
tion size via some function f:

n t + 1 = λf n t n t 8 44

8.5.2 Density-dependent Matrix Models

In a density-dependent matrix model, some of the matrix
entries are regulated by population sizes in the stages.
The projection equation is

n t + 1 =A n t n t 8 45

For example, the demographic parameter x regulated
by the Ricker function is

xreg = exp − α1n1+ + αknk x 8 46

where the coefficients α1,…, αk, some of which may be 0,
express the relative contribution of the stages to resource
consumption. Contrarily to the unstructured model, the
carrying capacity K is not apparent in this formulation.
The coefficients αi must be adjusted in order to match
a pre-defined carrying capacity.
The Ricker function f (n) = exp(−αn) is overcompensa-

tory in the sense that a population overshooting the
carrying capacity will be penalized by a large decrease.
Other regulation function can be used, for example, the

compensatory function f n =
1

1 + βn
, for which decrease

will compensate the increase.
Under density dependence, the long-term growth rate of

the regulated population is 1 on average. The expected
dynamical behavior is that the population increases up
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to the carrying capacity and then stabilizes (single point
equilibrium). The trajectory then presents an S-shaped
(sigmoid) pattern. However, complex dynamics can occur,
and more easily when the growth rate λ (in absence of reg-
ulation) is large. Indeed, when λ is large, the populationwill
overshoot the carrying capacitymore importantly, creating
a stronger feedback regulation. For not-too-large λ,
damped oscillations result, and population size equili-
brates back to the carrying capacity. For large λ, oscilla-
tions may not damp because of strong growth as soon as
density-dependent regulation is relaxed. This can produce
periodic, quasi-periodic, or chaotic dynamics.
Density dependence can also be incorporated without

altering the matrix, but considering the carrying capacity
K as a ceiling. If the model predicts n(t + 1) > K, then we
set n(t + 1) = K: the population sizes in the stages are
reduced in some proportion (for example, proportion-
ately to the stable stage distribution) so that they sum
up to K.
It is often assumed that small populations are far from

the carrying capacity, so that density dependence need
not be modeled. This is, however, not always the case
(Mugabo et al. 2013). For example, observed probabilities
of extinction in small populations of spiders could not be
recovered without incorporating density dependence
(Schoener et al. 2003). It was also shown in this study
that population structure cannot be disregarded at small
population sizes.

8.5.3 Parameterizing Density Dependence

Using the observed population sizes n(t) along time, the
model of population regulation can be fit to the data using
linear or nonlinear regression of the growth rate at time t:
λt = n(t + 1)/n(t) against n(t). The procedure gives the best
function f such that λt = λf(n(t)) (Morris and Doak 2002).
For the Ricker model, f(n) = exp(−αn).

8.5.4 Density-dependent Sensitivities

It is possible to compute the sensitivity or elasticity of the
equilibrium population size neq, or of an average of pop-
ulation size over some time period in case of complex
dynamics, to changes in a parameter x (Grant and Benton
2000, 2003; Caswell et al. 2004).

8.6 Environmental Stochasticity

Environmental stochasticity refers to the impact of
the environment on the population due to biotic inter-
actions (e.g. competing species, predators) or abiotic
factors (e.g. temperature), considered as a random

process. Models for the environment range from envi-
ronmental noise, repeatedly deviating the vital rates
from their average values, to rare catastrophic events
significantly altering these values. The demographic
parameters affected by the environment are now consid-
ered as random variables, defined according to the
model chosen for the environment. Population size is
a random variable, N, and the population matrix a ran-
dom matrix A. Under generic conditions of ergodicity,
which essentially means that past events are progressively
forgotten by the process so that initial conditions are
not determinant for the long-term dynamics, population
size N admits an asymptotic distribution whose mean
and variance bring information on the influence of the
environment on the dynamics.

8.6.1 Models of the Environment

I) In the simplest form of a stochastic environment, the
values along time of a parameter impacted by the envi-
ronment are drawn from a fixed probability distribu-
tion, with mean the reference value of the parameter.
Each value is drawn independently of the previous
values with no temporal autocorrelation. Hence, the
random variables Xt describing the variations of the
parameter x over time t are independent and identically
distributed (iid). For example, the impact of the envi-
ronment on fecundity f is modeled by drawing the sto-
chastic fecundities along time according to the normal
distribution:

fe N+ f ,σf 8 47

Here, the + sign indicates that only nonnegative
values are kept (as fecundity cannot be negative),
and σf is the standard deviation, measuring the
impact of environmental stochasticity on f. A similar
approach is taken for survival rates, where the random
values are constrained in the interval [0,1]. A beta
distribution can be used in this case.

II) A Markovian environment accounts for temporal
autocorrelation where the outcome of an event at a
given date depends on previous outcomes. In the iid
environment, no memory is kept of previous out-
comes of the random parameters, as when casting a
die. However, environmental variables often exhibit
positive autocorrelation. For example, temperatures
in May in one year tend to follow temperatures in
May the previous year. To give an example of the
Markovian environment, assume that there are good
years (G) and bad years (B), and that the parameter X
has value xG in G-years and value xB in B-years (with
xG > xB). Assume that G-years and B-years are equi-
probable. We parameterize positive autocorrelation
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in the environment (i.e. G-years are more likely to
be followed by G-years) by α, 0 ≤ α ≤ 0.5, and use a
two-states Markov chain. The states occur with the
same frequency, 0.5. Switching states occurs with
probability α, and remaining in the same state occurs
with probability 1 − α, as described by the Markov
matrix:

1−α α

α 1−α
8 48

Hence, a low value of α means a strong autocorrela-
tion. As α increases, the strength of autocorrelation
decreases, and α = 0.5 corresponds to no autocorrela-
tion. For α > 0.5, we have negative autocorrelation
(switching states is more likely). More generally an
autocorrelatedenvironment canbemodeledby a finite
stateMarkov chain and a populationmatrix associated
with each state (Cohen 1977; Caswell and Kaye 2001;
Tuljapurkar and Haridas 2006). At each time step, an
environmental state is drawn using theMarkov chain,
and the correspondingmatrix is used in the projection
equation.
A simple way to implement temporal autocorrela-

tion is to use an autoregressive process of order 1 to
update a parameter X with mean μ and variance σ2:

X t + 1 = α X t −μ +B t , 8 49

where B(t) is iid with mean μ and variance σ2(1 − α2).
Autocorrelation is parameterized by α, −1 ≤ α ≤ 1,
with positive autocorrelation for α > 0 (see model file
pass_ea.ulm).

III) Catastrophic events can bemodeled by an occurrence
frequency and a given impact. For example, when a
catastrophe occurs, some parameters are reduced to
50% of their reference value, or total population size
is reduced to a given proportion. Catastrophes may
also present temporal autocorrelation. Population
dynamics under catastrophic regimes (large devia-
tions) are less known theoretically, but can be easily
simulated (Lande 1993).

At a given time step, different demographic parameters
affected by the environment may covary due to joint
effects of environmental conditions, or to life-history tra-
deoffs. For example, a random reduction in survival is
associated with a reduction in fecundity (positive covari-
ance), or, less likely, with an increase in fecundity (nega-
tive covariance).

8.6.2 Stochastic Dynamics

Under environmental stochasticity, the population
matrix is stochastic, depending on t, so that the

deterministic model for constant conditions (Eq. 8.4) is
now written with a stochastic population vector as:

N t + 1 =AtN t 8 50

A population trajectory is a realization of this random
process. Underlying the process is the constant matrix
Α, with E A =Α in case of environmental noise (environ-
ments I and II above).
Population growth is a multiplicative process, here

affected at each time step by random events. It can be
shown by the multiplicative version of the central limit
theorem that the distribution of total population size,
N(t), is lognormal meaning that ln(N(t)) is normally dis-
tributed. Hence, it is convenient to use the logarithmic
scale. Eq. (8.11) shows that, for a constant matrix Α:

λ= lim
t ∞

n t
1
t ,giving r = ln λ = lim

t ∞

1
t
ln n t

8 51

The formula indicates that the stochastic rate of
increase can be defined as

re = lim
t ∞

1
t
E ln N t , 8 52

and the environmental variance can be calculated as

ωe
2 = lim

t ∞

1
t
Var ln N t . It can be demonstrated that

these are indeed the relevant descriptors (Caswell
2001). The rate re is in general less than the rate r = ln
(λ) in absence of environmental stochasticity, the differ-
ence increasing with variance in the environment
(Box 8.3). The logarithm of population size, ln(N(t)), is
normally distributed with mean ret and variance ωe

2t.
Thus, the mean of ln(N) increases or decreases linearly
with time, depending on re > 0 or re < 0, and the distribu-
tion of ln(N) spreads over time, with linearly increasing
variance (Morris and Doak 2002). Consequently, the
mean of population size N(t) increases or decreases
exponentially with time, and its variance increases
exponentially.
To summarize, the stochastic matrix model keeps on

average the exponential behavior of the underlying con-
stant model, at rate λe = exp(re) < λ, but random fluctua-
tions create opportunity for extinction. Stochasticity may
entail negative growth, hence certain extinction in the long
run even when the underlying constant model has positive
growth. In this latter case, the mean values of the demo-
graphic parameters entail positive growth, but fluctuations
around these valuesmay produce negative growth on aver-
age: the threshold depends on the intensity of the fluctua-
tions, namely on the environmental variance (Box 8.3).
If the probability of extinction is plotted against time,

the typical pattern is an S-shaped curve. The curve starts
from 0 at t = 0, then increases to eventually plateau at the
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ultimate probability of extinction for large t. The portion
of the curve where the probability of extinction increases
sharply corresponds to the mean time to extinction. An
important feature of environmental stochasticity is that
the ultimate probability of extinction where the extinc-
tion curve plateaus does not depend on the initial popu-
lation size n(0). However, the mean time to extinction
does, the extinction curve shifting to the left with decreas-
ing n(0) so that the ultimate probability of extinction is
reached sooner (Figure 8.2a).
Froma computational point of view, stochastic processes

are best studied using Monte Carlo simulation (Box 8.6).
A large numberm of trajectories (e.g.m = 1000) are drawn
uptosometimehorizon, andstatistics areperformedonthe
set of trajectories. The trajectories that go below a prede-
fined thresholdh at time τ (i.e.n(τ) < h) are declared extinct,
with associated extinction time τ. Usually the threshold
h = 1 is used. Larger values of h (e.g. h = 50) define a
quasi-extinction threshold. The probability of extinction
at time t, pext(t), is estimated as the proportion of them tra-
jectories going extinct at time τ ≤ t. The extinction time is
estimated as the mean value of the extinction times of the
extinct trajectories. Quasi-extinction thresholds and prob-
abilities provide estimates of minimum viable population
sizes, a mainstay of Population Viability Analysis (PVA,
Boyce 1992). Denoting n(i)(t) the i-th trajectory of the
MonteCarlosimulation, theexpectedpopulationsizealong
time, E(N(t)), is estimated by the average trajectory

n t =
1
m

m

i= 1

n i t 8 53

Themean population size over non-extinct trajectories,
E(N(t)|N(t) > h), can also be computed. The stochastic
rate of increase is estimated using:

re =
1
m

m

i=1

ln n i t − ln n 0

t
8 54

Underlying this computation is the meaning of ergodic-
ity: the long-term time average of a quantity over a single
trajectory can be estimated using the short-term average
over a large number of trajectories.
For the passerine model, let us consider that juvenile

survival s0 is subjected to random fluctuations under an
iid model of the environment. We use a beta distribution,
here parameterized according tomean and standard devi-
ation: s0e Beta s0,σs0 , with the reference value s0 = 0.2
and σs0 = 0 15. Monte Carlo simulation up to time 50 is
run over 10,000 trajectories with 20 individuals as initial
population size, 10 subadults and 10 adults, close to the
stable age distribution. At time 50, the stochastic growth
rate is λe = 1.008, the probability of extinction (threshold
h = 1) is pext(50) = 0.25, the mean time to extinction is
text(50) = 7 years, the mean time to extinction over non-
extinct trajectories is text

∗(50) = 28 years. We observe that
small fluctuations in the most sensitive parameter s0
reduce the growth rate by 10% (from λ = 1.1050 to
λe = 1.008) and produce a large probability of extinction
with important disparity across trajectories. The proba-
bility of quasi-extinction with threshold h = 10 at time
50 is qext(50) = 0.73 (model file pass_e.ulm).

Time Time

Probability
of 

extinction

0

1

pext

t’exttext

n(0) n’(0)

Probability
of

extinction

0

1

pext

t’exttext

n(0)

n’(0)

p’ext

(b)(a)

Figure 8.2 Schematic representation of the probability of extinction along time: pext is the ultimate probability of extinction, text the mean
time to extinction, and n(0) < n’(0) is the initial population size. (a) Environmental stochasticity: the ultimate probability of extinction is
independent of initial population size, the mean time to extinction increases with increasing initial population size. (b) Demographic
stochasticity: the probability of extinction increases with decreasing population size, the mean time to extinction increases with increasing
population size.
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Box 8.5 Environmental Variance and Demographic Variance

Engen et al. (1998) apply the law of total variance to the
stochastic contribution W of a female individual to popu-
lation size at the next time step, given the environment Z:

Var W =E Var W Z +Var E W Z 8 55

This can be interpreted as

Var W = σd
2 + σe

2, 8 56

where demographic variance σd
2 = E(Var(W|Z)) is the

mean through time of the variance of individual contribu-
tions to population size from a time step to the next, and
environmental variance σe

2 = Var(E(W|Z)) is the variance
through time of the mean individual contribution to pop-
ulation size from a time step to the next.

The stochastic population matrix can be decomposed
A=A+E+D according to two sources of stochasticity,
the environment represented by E and demographic sto-
chasticity represented by D. It is assumed that there is no
covariance between E and D, and that they have 0
expectation. The methods of Box 8.3 lead to (Engen et al.
2005):

σe
2 =Var E N ≈

i, j,k, l

sijsklCov Eij,Ekl , 8 57

σd
2 =Var D N ≈

i, j,k, l

sijsklCov Dij,Dkl 8 58

The total variance in the stochastic growth rateΛ is then

Var Λ N = σe
2 +

σd2

N
8 59

The formula highlights the 1/N dependency of the var-
iance in Λ with respect to demographic stochasticity. The
corresponding variance in population size is

Var N t + 1 N t =N = σe
2N2 + σd

2N 8 60

Hence, although environmental variance is usually
smaller than demographic variance, the environmental
term dominates for large populations. Demographic sto-

chasticity can in fact be neglected when N >>
σd2

σe2

(Lande et al. 2003).
The stochastic rate of increase (environmental plus

demographic stochastitity) can be written:

s N ≈r−
σe2

2λ2
−

σd2

2λ2N
, 8 61

where the negative impact of the environment agrees
with Eq. (8.34). The environmental and demographic var-
iances can be estimated from individual data, provided
that the dataset is large enough (Engen et al. 2005). The
preceding results also hold when demographic stochasti-
city is replaced by demographic heterogeneity (Vindenes
et al. 2008).

Box 8.4 Computing the Growth Rate

The algorithm uses the fact that n t + 1
n t λ is geometrically

fast when iterating Eq. (8.4) (power method). In the follow-
ing,w,w are vectors for the population structure, v, v are
vectors for the reproductive value, and A is the k × k pro-
jection matrix, assumed primitive (Box 8.1). The norm of a
vector u is defined as u = i ui . The algorithm stops
when successive values of λ are within ε = 10−9 (or when
t is above some time horizon tmax = 10 000, in which case
it fails).
w [1/k, , 1/k] initial value of population structure
v [1/k, , 1/k] initial value of reproductive value

λ 1

t 0

repeat

t t + 1 increment time
w’ Aw update population structure
norm |w | compute norm
w w /norm rescale population structure
λ1 λ memorize previous value of λ
λ norm update λ
v vA update reproductive value
norm |v | compute norm
v v /norm rescale reproductive value

until |λ − λ1| < ε or t > tmax.

At the end of the algorithm, λ contains the dominant
eigenvalue, w the stable population structure, and v the
reproductive value.
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8.6.3 Parameterizing Environmental
Stochasticity

The value of the variance σX
2 of a random parameter X

can be estimated from the observed time series of the
parameter, and put in relation with known environmental
conditions on the site, such as a time series of tempera-
tures. Environmental variance σe

2 can also be recovered
from individual data using the methods of Engen et al.
(2005) (Box 8.5).
More generally, environmental stochasticity can be

introduced to test the robustness of the species and
estimate its probability of extinction, without precise
reference to the environment. The strength of environ-
mental noise can be parameterized from low to high
to produce various scenarios. A rule of thumb is that
σX≈ 0.3E(X) in natural populations (Mills et al. 1996).

8.7 Spatial Structure

Populations are in general not closed, but subject to
immigration and emigration. A metapopulation is a set
of populations of the same species living on separate sites
connected by dispersal from one site to another (Morris
and Doak 2002). In a metapopulation, a local population
going extinct may start again through recolonization
from neighboring sites, ensuring the persistence of the
metapopulation (rescue effect). The metapopulation
framework can, to a certain extent, be studied using
matrix models. Demographic descriptors generalizing
those of Section 8.5 can be computed for constant age-

classified multisite matrix models (Lebreton 1996).
A simple example is given in Figure 8.1j, where an age-
classified model is connected from a stage I representing
the pool of immigrants, and to a stage E representing the
pool of emigrants. To account for space, matrix popula-
tion models can also be incorporated into diffusion mod-
els, for example, to study expanding waves of invading
species (Neubert and Caswell 2000). They could also
underlie the local rules of cellular automata.
We use the passerine model to show counterintuitive

features of metapopulation demography (model file
pass_ab.ulm). Figure 8.1k presents the life cycle graph
of two passerine populations living on sites A and B, with
juveniles dispersing fromA to B at ratemAB and from B to
A at rate mBA.
We first assume that the two populations have the

same reference demographic parameters so that their
growth rates are identical: λA = λB = 1.1050. With the
dispersal rates mAB = 0.2, mBA = 0.2, the growth rate
of the metapopulation is λ = 1.0978, slightly lower than
in absence of dispersal. The A-entries and the B-entries
of the metapopulation age structure and reproductive
value vector are identical and positive. When the disper-
sal rates aremAB = 0.2,mBA = 0 (no dispersal from B to A,
the matrix is reducible, see Box 8.1), the growth rate of
the metapopulation is λ = λA = 1.1050. In this case, the
A-entries of the metapopulation structure are 0 because
the A-population is depopulated; the entries of the
metapopulation reproductive value are all positive,
those of the B-population being larger than those of
the A-population.

Box 8.6 Monte Carlo Simulation

The Monte Carlo simulation casts m trajectories up to
some time horizon tmax. We compute the average popula-
tion size n t along time, the stochastic rate of increase re,
and the probability of quasi-extinction pext with threshold
h at time tmax.
In the following, n is the population vector, n = i ni is

population size, A is a trajectory-specific realization of the
stochastic projection matrix A, and n is a vector of size at
least tmax for computing the average population size
along time.
for t 1 to tmax do n t 0 initialize average trajectory
ext 0 initialize number of extinctions
re 0 initialize stochastic rate of increase
for i 1 to m do loop over trajectories
SetSeed(i) set random generator seed to trajectory-
specific value
n n0 initialize population vector

n0 |n| memorize initial population size
for t 1 to tmax do loop over time

n An update population vector
n |n| compute population size
if n < h then ext ext + 1 quasi-extinction

endloop
re re + (ln(n) − ln(n0))/tmax update stochastic rate of

increase
endloop
for t 1 to tmax do n t n t m compute average
trajectory
pext ext /m probability of extinction
re re/m stochastic rate of increase

Note that a trajectory declared quasi-extinct is never-
theless computed up to tmax, hence contributes to the
average trajectory n, and to the stochastic rate re.
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We now assume that the B-population is decreasing,
with reduced fecundities (fB1 = 5, fB2 = 6, leading to
λB=0.9582).When thedispersal rates aremAB=mBA=0.2,
the metapopulation growth rate is altered, λ = 1.0651, the
A-entries of the metapopulation structure are larger than
the B-entries, and a similar pattern holds for reproductive
values. When the dispersal rates are mAB = 0.2, mBA = 0,
we are in the case of a source-sink metapopulation. The
metapopulation growth rate is further altered, λ = 1.0539,
the A-entries of the metapopulation structure are larger
than the B-entries, and the B-entries of the metapopula-
tion reproductive value are 0 because the B-population
does not contribute to growth. When the dispersal rates
are mAB = 0, mBA = 0.2, juveniles disperse from the
decreasing population to the increasing one. Themetapo-
pulation growth rate is λ = λA = 1.1050, the B-entries of
the metapopulation structure are 0, and the A-entries
of the metapopulation reproductive value are larger than
the B-entries.

8.8 Demographic Stochasticity

Demographic stochasticity is the chance realization of the
transitions in the life cycle graph by individuals. Demo-
graphic stochasticity is an intrinsic feature of the demo-
graphic process, independent of the environment.
Moreover, it is unavoidable. As we shall see, the effects
of demographic stochasticity are only sensible when pop-
ulation size is small, but the contribution to the extinction
risk can be important for small populations.

8.8.1 Branching Processes

We still assume the individuals are identical, but account
for heterogeneity in their fates; that is, different realizations
of their vital rates. Demographic heterogeneity, where indi-
viduals are not assumed to be identical, accounts for differ-
ent realizations of heterogeneous life cycles (Section 8.9).
In the life cycle graph, when n individuals survive from

one stage to the next, say with rate s, some of them may
either survive (with probability s) or die (with probability
1 − s). The number n of survivors is the sum of n draws of
the Bernoulli (head and tail) distribution with parameter
s, or equivalently, a single draw according to the binomial
distribution:

n Binom n,s 8 62

Every 0/1 transition (sex determination, dispersal sta-
tus) can be treated in the same way. Similarly, when n
individuals reproduce with fecundity rate f, the number
n of offspring is the sum of n draws of the Poisson distri-
bution with parameter f, which we denote as

n Poisson n, f 8 63

Integer distributions other than the Poisson distribu-
tion can be used for reproduction.
The above described randomization of the life cycle

events amounts to constructing a branching process on
the relations associated with the life cycle graph
(Eq. 8.3). For the passerine model, the relations of the
branching process built from the matrix relations are:

n1 t + 1 =Binom Poisson n1 t , f1 + Poisson n2 t , f2 ,σs0 ,

8 64

n2 t + 1 =Binom n1 t ,s1 + Binom n2 t ,s2
8 65

In the framework of demographic stochasticity, popu-
lation sizes are integer numbers. The population is
extinct as soon as its size is 0. Even when λ > 1, the prob-
ability of extinction is nonzero. Indeed, there is a nonzero
probability that all individuals in a stage do not survive or
do not reproduce. Such an event is rare when population
size is large. Hence, demographic stochasticity mostly
plays at small population sizes. This moreover suggests
that at large population size, with or without demo-
graphic stochasticity, dynamical behaviors will be close.
When incorporating demographic stochasticity, the aver-
age behavior of the random process is that of the constant
underlying model, with exponential growth or decrease at
rate λ and average population structure w. The behavior
differs for the probability of extinction. In the constant
model, the probability of extinction is 1 when λ < 1, and
0 when λ ≥ 1. Under demographic stochasticity, the prob-
ability of extinction is 1 when λ ≤ 1, and has a definite
nonzero value when λ > 1.
Denoting qi(t) the probability of extinction at time t

when the initial population consists in a single individual
in stage i, the probability of extinction at time t when the
initial population consist in ni(0) individuals in stage i is

p t = qi t
ni 0 8 66

If qi(t) = 1, certain extinction occurs. If qi(t) < 1, the
above relation shows that the extinction risk from dem-
ographic stochasticity decreases exponentially with
increasing population size. The overall probability of
extinction at time t is

p t = q1 t n1 0 qk t nk 0 , 8 67

depending on initial population size and structure. The
ultimate probability of extinction is

p= lim
t ∞

p t 8 68

When λ ≤ 1 in the underlying constant matrix model,
we have certain extinction under demographic

8.8 Demographic Stochasticity 209



stochasticity (in finite time for λ < 1, and in infinite
expected time for λ = 1). The probability of extinction
along time presents an S-shaped pattern, as for environ-
mental stochasticity. However, under demographic sto-
chasticity, for λ > 1 the curve plateaus at a value which
depends on initial population size, whereas this is not
the case for environmental stochasticity (Figure 8.2b).

8.8.2 Two-sex Models

When population size is small (say less than 50–100
individuals), each individual behavior matters, and dem-
ographic stochasticity can be an important factor of the
extinction risk. Individual fitness may decrease at low
population density due to the deterioration of social
bonds or cooperative behavior, a phenomenon known
as the Allee effect (Courchamp et al. 1999, 2008). An
important driver of the Allee effect comes from the mat-
ing system which relies on behavior (sexual selection,
Andersson 1994), but it is also sensitive to demographic
stochasticity acting on the number of males and females
(Bessa-Gomes et al. 2004).
Consider a population of males and females with

monogamous pair formation and primary 1 : 1 sex ratio
where the proportion of females at birth is 0.5. Computa-
tion shows that, because of demographic stochasticity
alone, the probability of an individual being mated is
0.9 when there are 100 individuals, but drops to 0.75
when there are 10 individuals. The probability drops even
further if females are choosy due to sexual selection, and
to 0.55 when population size is 10 (Møller and Legendre
2001). For small populations with sexual reproduction,
the male portion of the population cannot be ignored,
even if the male and female life cycles are identical.
The population is doomed to extinction when there are
either no males or no females left, a situation which
can occur because of demographic stochasticity. Hence,
for small populations, two-sex models are recommended.
For example, observed probabilities of extinction in the
polygynous bighorn sheep Ovis canadensis could not be
reconstructed using a model based on females only
(Legendre 2004).
Two-sex models incorporate the life cycle of males,

which may differ from the life cycle of females, notably
in the case of sexual dimorphism. In the two-sex life cycle
(Figure 8.1l), the male and female parts are coupled by the
pair formation process. The mating process is modeled
using a function giving the number of matings at a given
time. For example, the monogamous mating function

μ f ,m =min f ,m 8 69

counts the maximum number of monogamous pairs that
can be formed given the number of reproductive males
(m) and females (f). The polygynous mating function:

μ f ,m =min f ,hm 8 70

gives the number of matings when each male mates on
average with h females, h being harem size. The breeding
sex ratio is the proportion of reproductive females in the
reproductive population at a given time:

ρ=
f

m+ f
8 71

We have
min f ,hm

f +m
=min

f
f +m

,
hm
f +m

=min

ρ,h 1−ρ , so that the optimal breeding sex ratio is
obtained when ρ = h(1 − ρ), or

ρopt =
h

h+ 1
8 72

For monogamy, ρopt = 0.5, as expected. Care must be
taken to appropriately design the mating function
(Bessa-Gomes et al. 2010).
The mating function introduces a nonlinearity in the

underlying constant model which becomes frequency
dependent, depending on the relative proportions of
each sex (Caswell and Weeks 1986). The generic behav-
ior is nevertheless that of exponential growth after tran-
sient fluctuations. However, in the two-sex model,
transient fluctuations come from both the convergence
toward the stable stage distribution and toward the sta-
ble sex structure, where the breeding sex ratio becomes
constant. The transient fluctuations in sex structure
superimposed on those in stage structure suggest that
the two-sex model under demographic stochasticity
leads to a larger extinction risk than the corresponding
female-based model (although fluctuations could cancel
one another in some instances). This is indeed the case,
and the effect is more pronounced for short-lived spe-
cies (Legendre et al. 1999), in which parameters associ-
ated with reproductive transitions are more sensitive
(Box 8.2). Moreover, the growth rate λμ of the two-sex
model with mating function μ verifies λμ ≤ λ. The differ-
ence between the two-sex growth rate λμ and the female-
based growth rate λ depends on how far the realized
breeding sex ratio ρ is from the optimal one ρopt
(Legendre 2004). A two-sex model for passerines with
monogamous pair formation (Figure 8.1l), and incor-
porating demographic stochasticity, is given in model
file pass_2d.ulm.

8.9 Demographic Heterogeneity

Demographic heterogeneity accounts for the fact that
individuals in a population are not identical. Individuals
can differ genetically, by their ontogenic trajectories,
and by the plastic adaptation of their phenotypes to het-
erogeneous environmental pressures, possibly involving
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epigenetics. In addition, social status and behavior may
vary over time. Figure 8.1m displays a simple example:
newborn individuals j in stage 1 can mature according
to two pathways depending on a given developmental
function J(j).
Within demographic heterogeneity, demographic sto-

chasticity is at play as the chance realization of heteroge-
neous demographic parameters, or heterogeneous life
cycle trajectories as in Figure 8.1m. Thus, demographic
stochasticity is a component of demographic heterogene-
ity, but demographic heterogeneity also has an intrinsic
component which can be deterministic or random, and
is termed individual heterogeneity. Exploration of demo-
graphic heterogeneity is relatively recent, and the termi-
nology is not yet standardized.
Demographic heterogeneity can bemodeled by individ-

ual based models (IBM, Chapter 9). Insight is neverthe-
less gained from mathematical models (Box 8.5).
A notable feature is that, under demographic heterogene-
ity, the relation between individual variation and popula-
tion variation is complex: demographic variance may be
either larger or smaller as compared to the corresponding
homogeneous case (Kendall and Fox 2002, 2003; Vin-
denes et al. 2008). Individual heterogeneity is more likely
to play a role in long-lived species than in short-lived spe-
cies, where there is less correlation from one generation
to the next.
Another insight is that more accurate models can be

built when using total reproductive value instead of total
population size (Engen et al. 2009). The total reproductive
value at time t is calculated as V t = vn t = i vini t ,
where the reproductive value v is normalized such that
vw = 1. The metric is less sensitive than total population
size N to fluctuations in population structure w(t) over
time, and nevertheless verifies a similar relation-
ship (Box 8.5):

Var V t + 1 V t =V ≈σe
2V 2 + σd

2V 8 73

The total reproductive value is the sum of individual
reproductive values, which can be computed from indi-
vidual data. Environmental variance σe

2 and demographic
variance σd

2 can then be estimated. Fluctuations in pop-
ulation growth are affected by heterogeneity in individual
reproductive values rather than heterogeneity in survival
and reproduction.
A general framework is that, on top of the life cycle,

individuals go along with their lives through a finite num-
ber of states with probabilities of switching between states
given by a Markov matrix. The diversity of the individual
trajectories or the successive states taken by an individual
during its life reflects the demographic heterogeneity in
the population.
Tuljapurkar et al. (2009) exemplify the case using cap-

ture-mark-recapture data with states corresponding to

offspring number. For example, if the states labeled 1, 2,
3, correspond to offspring number 0, 1–3, 4+, a possible
individual trajectory is (1, 2, 2, 1, 3,…). These authors quan-
tify the degree of heterogeneity in the population (called
dynamic heterogeneity) using the entropy of the Markov
matrix.
Caswell (2009) built a Markov matrix u from the stage-

classified life cycle graph by removing reproductive arcs
and incorporating an absorbing state corresponding to
death. The states of this Markov chain are all transient,
and probabilities to switch between states are given by
the Markov matrix:

z=
∞

i= 0

ui = 1−u −1 8 74

Sensitivities of demographic descriptors can be com-
puted from the matrix z to quantify demographic heter-
ogeneity (called individual stochasticity).
Physiologically structured population models (PSPM,

González-Suárez et al. 2011) work in a continuous-time
continuous-state framework. The models rely on the bio-
energetic mechanisms conditioning the vital rates, and
allow us to finely track dynamics of cohorts, that is, sets
of individuals born at the same time step, and to detect
heterogeneous phenotypes in a population (Claessen
et al. 2000).

8.9.1 Integral Projection Models

Some traits, like size, are best represented by continuous
variables. Variations over time may follow smooth func-
tions which can be parameterized using regression tech-
niques. Integral projection models (IPM, Easterling et al.
2000; Ellner and Rees 2006, 2007; Briggs et al. 2010;
Merow et al. 2014) use continuous states instead of the
discrete stages or age-classes of matrix models. IPMs
are good where sample sizes are small, or if discrete
age- or size-classes are difficult to identify. They should
sometimes be preferred to matrix models (Ramula et al.
2009). Projection equations analogous to Eq. (8.3) are
obtained by summing over the space Ω of continuous
states:

n y, t + 1 =
Ω
k y,x n x, t dx 8 75

Here n(x, t) is the distribution at time t of the number of
individuals bearing the value (state) x of the trait. The
kernel k(y, x), which is an analogue of the projection
matrix, can in practice be replaced by a large finite matrix.
Integral projection models can also be used to account
for demographic heterogeneity (Vindenes et al. 2011;
Vindenes and Langangen 2015).
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8.10 Software Tools

Matrix population analyses can be conducted with the
popbio and IPMpack packages in Program R, or with
general purpose programs for mathematical analyses
such as Matlab or Mathematica. For this purpose
of the online exercises, I demonstrate how matrix
population modeling can be conducted with the ULM
computer program (Legendre and Clobert 1995; Ferrière
et al. 1996; Legendre 2008).

8.11 Online Exercises

The online exercises include example projection matrices
for songbirds and wolves. Seven exercises illustrate
models based on constant deterministic matrices, models
with environmental stochasticity (with and without
autocorrelation), a two-site model, and a two-sex model
with demographic stochasticity.

8.12 Future Directions

I conclude by reviewing the main steps to construct a
population dynamics model in a user-specific case. The
principal advice is to keep themodel as simple as possible,
using the most basic assumptions, and analyzing different
effects first separately, then in conjunction.

1) Construct the life cycle graph (Section 8.2) from what
is known about the biology of the species of interest
(life history, demographic parameter values), and
according to the questions the biologist wants to
answer concerning his case study. For unknown dem-
ographic rates, use data from the literature on a related
species, or leave the entry as a parameter and explore
several values (e.g. as in model file wolf_0.ulm).
Here are examples of specific situations: Harvesting,
poaching can be modeled by reducing appropriately
the survival rates of the classes that are affected; Immi-
gration, emigration, introductions can be dealt with by
adding classes to the life cycle of the closed population
(Figure 8.1j, Sarrazin and Legendre 2000). For uncer-
tainty in demographic parameter values, or observa-
tion errors, see Morris and Doak (2002).

2) Build the associated matrix population model
(Section 8.3.1) and compute the main demographic
descriptors (growth rate, stable age distribution,
reproductive value, generation time; Section 8.3.2).

3) Always perform a sensitivity analysis (Section 8.3.3). It
provides insights into the demographic parameters
that matter the most in the organism’s life cycle
(Box 8.2). Sensitivity analysis helps to determine the
dynamical behavior when more complex dynamics

are introduced, such as density dependence, environ-
mental stochasticity, and demographic stochasticity.
Life-table Response Experiments (LTRE) are not dis-
cussed in this chapter, but can also be useful for
decomposing the contributions of different demo-
graphic rates and their covariances to the overall var-
iance of the population growth rate (Caswell 2001).

4) An alternative to matrix models is the use of IPMs for
which there exists a convenient R package (IPMpack,
Metcalf et al. 2013).

5) For small populations, say less than 100 individuals, it
is recommended to introduce demographic stochasti-
city, and build two-sex models with a mating function.
Two-sex models are necessary for the PVA of dimor-
phic species with mating systems that feature strong
sexual selection (Section 8.8.2).

6) For metapopulations, spatial modeling comes into
play (Section 8.7). Matrix models can be used as a first
step toward more elaborate models of dispersion.

7) In many cases, an analysis based on a deterministic
matrix model without variation in environmental con-
ditions is enough to get a good idea of the demography
of the studied population (Section 8.3). One must,
however, recall that the constant matrix model mainly
reveals potential short-term trends under a constant
environment.

8) Density dependence requires the demographic data to
be parameterized by a function, acting on the right
classes and with the right parameters (Section 8.5).
This is rarely met, but density dependence can be
modeled for exploratory purposes with guessed
parameter values.

9) Environmental stochasticity requires information on
demographic parameter values over time, for example,
in good and bad years (Section 8.6). Like density
dependence, environmental stochasticity can be intro-
duced for exploration, for example, to test the resil-
ience of the species and get an estimate of its
probability of extinction in an environment that is
more realistic than the constant conditions assumed
by the deterministic model (Section 8.3).

References

Andersson, M. (1994). Sexual Selection. Princeton, NJ, USA:
Princeton University Press.

Barot, S., Gignoux, J., and Legendre, S. (2002). Stage-classified
matrix models and age estimations. Oikos 96: 56–61.

Bessa-Gomes, C., Legendre, S., and Clobert, J. (2004). Allee
effects, mating systems and the extinction risk in
populations with two sexes. Ecology Letters 7: 802–812.

Bessa-Gomes, C., Legendre, S., and Clobert, J. (2010).
Discrete two-sex models of population dynamics: on

8 Projecting Populations212



modelling the mating function. Acta Oecologica 36:
439–445.

Bienvenu, F. and Legendre, S. (2015). A new approach to the
generation time in matrix population models. American
Naturalist 185: 834–843.

Boyce, M.S. (1992). Population viability analysis. Annual
Review of Ecology and Systematics 23: 481–506.

Briggs, J., Dabbs, K., Riser-Espinoza, D. et al. (2010).
Structured population dynamics and calculus: an
introduction to integral modeling. Mathematics
Magazine 83: 243–257.

Brown, J.H., Gillooly, J.F., Allen, A.P. et al. (2004). Toward a
metabolic theory of ecology. Ecology 85: 1771–1789.

Caswell, H. (2001). Matrix Population Models –
Construction, Analysis, and Interpretation, 2e.
Sunderland, Massachusetts: Sinauer Associates.

Caswell, H. (2009). Stage, age and individual stochasticity in
demography. Oikos 118: 1763–1782.

Caswell, H. and Kaye, T.N. (2001). Stochastic demography
and conservation of an endangered perennial plant
(Lomatium bradshawii) in a dynamic fire regime.
Advances in Ecological Research 32: 1–51.

Caswell, H., Takada, T., and Hunter, C.M. (2004). Sensitivity
analysis of equilibrium in density-dependent matrix
population models. Ecology Letters 7: 380–387.

Caswell, H. andWeeks, D.E. (1986). Two-sex models: chaos,
extinction, and other dynamic consequences of sex.
American Naturalist 128: 707–735.

Chapron, G., Legendre, S., Ferrière, R. et al. (2003).
Conservation and control strategies for the wolf (Canis
lupus) in western Europe based on demographic models.
Comptes Rendus Biologies 326: 575–587.

Claessen, D., de Roos, A.M., and Persson, L. (2000). Dwarfs
and giants: cannibalism and competition in size-structured
populations. American Naturalist 155: 219–237.

Cochran, M.E. and Ellner, S. (1992). Simple methods for
calculating age-based life history parameters for stage-
structured populations. Ecological Monographs 62:
345–364.

Cohen, J.E. (1977). Ergodicity of age structure in populations
with Markovian vital rates, III: finite-state moments and
growth rate; an illustration. Advances in Applied
Probability 9: 462–475.

Courchamp, F., Berec, L., and Gascoigne, J. (2008). Allee
Effects in Ecology and Conservation. Oxford: Oxford
University Press.

Courchamp, F., Clutton-Brock, T., and Grenfell, B. (1999).
Inverse density dependence and the Allee effect. Trends in
Ecology and Evolution 14: 405–410.

Crouse, D.T., Crowder, L.B., and Caswell, H. (1987). A stage-
based population model for loggerhead sea turtles and
implications for conservation. Ecology 68: 1412–1423.

Demetrius, L., Legendre, S., and Harremöes, P. (2009).
Evolutionary entropy: a predictor of body size, metabolic

rate and maximal life span. Bulletin of Mathematical
Biology 71: 800–818.

Easterling, M.R., Ellner, S.P., and Dixon, P.M. (2000). Size-
specific sensitivity: applying a new structured population
model. Ecology 81: 694–708.

Ellner, S.P. and Rees, M. (2006). Integral projection models
for species with complex demography. American
Naturalist 167: 410–428.

Ellner, S.P. and Rees, M. (2007). Stochastic stable population
growth in integral projection models: theory and
application. Journal of Mathematical Biology 54:
227–256.

Engen, S., Bakke, Ø., and Islam, A. (1998). Demographic and
environmental stochasticity – concepts and definitions.
Biometrics 54: 840–846.

Engen, S., Lande, R., Sæther, B.-E., and Dobson, F.S. (2009).
Reproductive value and the stochastic demography of
age-structured populations. American Naturalist 174:
795–804.

Engen, S., Lande, R., Sæther, B.-E., and Weimerskirch, H.
(2005). Extinction in relation to demographic and
environmental stochasticity in age-structured models.
Mathematical Biosciences 195: 210–227.

Ferrière, R., Sarrazin, F., Legendre, S., and Baron, J.-P. (1996).
Matrix population models applied to viability analysis and
conservation: theory and practice with ULM software. Acta
Oecologica 17: 629–656.

Gamelon, M., Gimenez, O., Baubet, E. et al. (2014). Influence
of life-history tactics on transient dynamics: a comparative
analysis across mammalian populations. American
Naturalist 184: 673–683.

González-Suárez, M., Le Galliard, J.-F., and Claessen, D.
(2011). Population and life-history consequences of
within-cohort individual variation. American Naturalist
178: 525–537.

Grant, A. and Benton, T.G. (2000). Elasticity analysis for
density dependent populations in stochastic
environments. Ecology 81: 680–693.

Grant, A. and Benton, T.G. (2003). Density-dependent
populations require density-dependent elasticity analysis:
an illustration using the LPA model of Tribolium. Journal
of Animal Ecology 72: 94–105.

Houllier, F. and Lebreton, J.-D. (1986). A renewal equation
approach to the dynamics of stage grouped populations.
Mathematical Biosciences 79: 185–197.

Jones, O.R., Scheuerlein, A., Salguero-Gomez, R. et al.
(2014). Diversity of ageing across the tree of life. Nature
505: 169–173.

Kendall, B.E. and Fox, G. (2002). Variation among
individuals and reduced demographic stochasticity.
Conservation Biology 16: 109–116.

Kendall, B.E. and Fox, G. (2003). Unstructured individual
variation and demographic stochasticity. Conservation
Biology 17: 1170–1172.

References 213



Koons, D.N., Holmes, R.R., and Grand, J.B. (2007).
Population inertia and its sensitivity to changes in vital
rates and population structure. Ecology 88: 2857–2867.

Lande, R. (1993). Risks of population extinction from
demographic and environmental stochasticity and
random catastrophes. American Naturalist 142: 911–927.

Lande, R., Engen, S., and Sæther, B.E. (2003). Stochastic
Population Dynamics in Ecology and Conservation.
Oxford University Press.

Lebreton, J.-D. (1996). Demographic models for subdivided
populations: the renewal equation approach. Theoretical
Population Biology 49: 291–313.

Lebreton, J.D., Burnham, K.P., Clobert, J., and Anderson, D.
R. (1992). Modeling survival and testing biological
hypotheses using marked animals – a unified approach
with case-studies. Ecological Monographs 62:
67–118.

Legendre, S. (2004). Influence of age structure and mating
system on population viability. In: Evolutionary
Conservation Biology (eds. R. Ferrière, U. Dieckmann and
D. Couvet), 41–58. Cambridge University Press.

Legendre S 2008. ULM computer program, version 4.5.
http://www.biologie.ens.fr/~legendre/ulm/ulm.html.

Legendre, S. and Clobert, J. (1995). ULM, a software for
conservation and evolutionary biologists. Journal of
Applied Statistics 22: 817–834.

Legendre, S., Clobert, J., Møller, A.P., and Sorci, G. (1999).
Demographic stochasticity and social mating system in
the process of extinction of small populations: the case of
passerines introduced to New Zealand. American
Naturalist 153: 449–463.

Merow, C., Dahlgren, J., Metcalf, C.J.E. et al. (2014). A user’s
guide to advances in demography with integral projection
models. Methods in Ecology and Evolution 5: 99–110.

Metcalf, C.J.E., McMahon, S.M., Salguero-Gómez, R., and
Jongejans, E. (2013). IPMpack: an R package for integral
projection models. Methods in Ecology and Evolution 4:
195–200.

Mills, L.S., Hyes, S.G., Baldwin, C. et al. (1996). Factors
leading to different viability predictions for a grizzly bear
data set. Conservation Biology 10: 863–873.

Møller, A.P. and Legendre, S. (2001). Allee effect, sexual
selection and demographic stochasticity. Oikos 92: 27–34.

Morris, W.F. and Doak, D.F. (2002). Quantitative
Conservation Biology: Theory and Practice of Population
Viability Analysis. Sinauer Associates.

Mugabo, M., Perret, S., Legendre, S., and Le Galliard, J.-F.
(2013). Density-dependent life history and the dynamics
of small populations. Journal of Animal Ecology 82:
1227–1239.

Neubert, M.G. and Caswell, H. (2000). Demography and
dispersal: calculation and sensitivity analysis of
invasion speed for structured populations. Ecology 81:
1613–1628.

Ramula, S., Rees, M., and Buckley, Y.M. (2009). Integral
projection models perform better for small demographic
data sets than matrix population models: a case study of
two perennial herbs. Journal of Applied Ecology 46:
1048–1053.

Sandercock, B.K. (2006). Estimation of demographic
parameters from live-encounter data: a summary review.
Journal of Wildlife Management 70: 1504–1520.

Sarrazin, F. and Legendre, S. (2000). Demographic approach
to releasing adults versus young in reintroductions.
Conservation Biology 14: 488–500.

Schoener, T.W., Clobert, J., Legendre, S., and Spiller, D.A.
(2003). Life-history models of extinction: a test with island
spiders. American Naturalist 162: 558–573.

Tuljapurkar, S. (1990). Population Dynamics in Variable
Environments. New York: Springer Verlag.

Tuljapurkar, S. and Haridas, C.V. (2006). Temporal
autocorrelation and stochastic population growth. Ecology
Letters 9: 327–337.

Tuljapurkar, S., Steiner, U.K., and Orzack, S.H. (2009).
Dynamic heterogeneity in life histories. Ecology Letters 12:
93–106.

Vindenes, Y., Engen, S., and Sæther, B.-E. (2008).
Individual heterogeneity in vital parameters and
demographic stochasticity. American Naturalist 171:
455–467.

Vindenes, Y., Engen, S., and Sæther, B.-E. (2011). Integral
projection models for finite populations in a stochastic
environment. Ecology 92: 1146–1156.

Vindenes, Y. and Langangen, Ø. (2015). Individual
heterogeneity in life histories and eco-evolutionary
dynamics. Ecology Letters 18: 417–432.

8 Projecting Populations214

http://www.biologie.ens.fr/~legendre/ulm/ulm.html


9

Combining Counts of Unmarked Individuals and Demographic Data Using
Integrated Population Models
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Summary

Integrated population models are powerful models that can be used to jointly analyze population counts and data that are
specific on one or more demographic rates. Joint analysis of all available datasets has the advantage that demographic para-
meters for which no explicit data are available can often be estimated and that the precision of parameter estimates is improved.
Both advantages are a direct consequence of the more complete extraction of the information in the data. Population count
data, which are required for all integrated population models as defined here, contain information about all demographic pro-
cesses operating in the study population. A key part of an integrated population model is a state-transition model which links
age- or stage-specific population sizes with demographic rates. Thus, integrated population models combine different models
such as capture-recapture models, regression models, and matrix projection models, and can be viewed as a unifying frame-
work for population analyses. I demonstrate applications of these models for temporally variable environments, to model den-
sity dependence and illustrate their use for population viability analyses.

9.1 Introduction

Central aims in population ecology are the understanding
of reasons of population changes and the ability to predict
the future behavior of populations (Sibly and Hone 2002).
Population size changes because individuals die, emigrate
to other populations, produce recruits, or the population
receives immigrants from other populations. At the level
of the population, these events are summarized by four
demographic parameters: survival, recruitment, emigra-
tion, and immigration. Since population growth is a func-
tion of these demographic parameters, knowledge about
the demographic parameters and their link to population
growth are necessary to investigate the reasons for
population change and sets the basis for predicting
population size in the future. Various sampling designs
and associated statistical models have been developed to
estimate demographic parameters and population size
(Chapters 3–7). Classically, each of the sampled datasets
is analyzed separately to obtain estimates of demographic
parameters or population size, and inference about popu-
lation dynamics is typically obtained based the application
of projection matrix models parameterized with estimates
of demographic parameters (Chapter 8). Here, I present a

method for combining different data sources into a single
population model: integrated population models.
Integrated models in general can be viewed as a joint

analysis of multiple datasets, that is, several datasets are
analyzed simultaneously with a single statistical model.
Inference is based on the joint likelihood which is usually
composed of the product of the likelihoods of the single
datasets. A key feature is that one or several parameters
are shared among two or more likelihoods of the different
component datasets. Examples in the context of
population analyses include the joint analysis of cap-
ture-recapture and mark-recovery data (Burnham 1993;
Lebreton et al. 1995), of capture-recapture and carcass
inspection data (Goodman 2004), of age ratios and
mark-recovery data (Zimmerman et al. 2010), of age-at-
harvest with mark-recovery data (Conn et al. 2008), or
the combination of telemetry and camera-trapping data
(Sollmann et al. 2013). The integration of information
stemming from different sources into a single integrated
model is naturally achieved with hierarchical models
(Royle and Dorazio 2008; Schaub and Kéry 2012). Here
I define integrated population models as models that
specify a joint likelihood for population counts data
which are informative about all demographic rates and
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about population changes, and for data which are
informative about only one or a few demographic rates.
Population analyses that combine information on pop-

ulation size and demographic data have been conducted
for a long time, however, these different datasets have
usually been analyzed separately (Jenouvrier et al. 2003;
Schaub et al. 2004). Typically, the demographic datasets
were analyzed with a specific model for estimation of each
set of demographic parameters. Parameter estimates
were then combined to parameterize a matrix projection
model to either estimate population growth rate or to
predict the likely future dynamics of a population.
Comparisons with the trajectory of the observed popula-
tion size, characterized either by the size or the
population growth rate, allowed one to tell whether the
population model contained all relevant demographic
parameters (Jenouvrier et al. 2003), or whether observa-
tion errors were substantial. Correlations between the
observed population growth rate and the demographic
parameters (Peach et al. 1999; Freeman and Crick 2003;
Robinson et al. 2004; Freeman et al. 2007) or retrospective
population analyses based on life-table response experi-
mentsmay suggest the most important drivers of popula-
tion growth (Caswell 2001). These modeling approaches
have been widely used for wildlife management and con-
servation, but have a number of drawbacks. First, they are
inefficient, because they do not use all the available infor-
mation. Population count data include information about
demography, but the data are not exploited for parameter
estimation. Second, it is difficult to properly account for
the uncertainty in the demographic parameters and the
population growth rate (but see McGowan et al. 2011).
Last, unless all relevant demographic parameters are
included, population growth rates derived from projec-
tion matrices are biased low (Caswell 2001). For example,
the growth rate of a Whiskered Tern (Chlidonias
hybrida) population calculated from census data was
1.29 while the asymptotic population growth rate esti-
mated from a matrix projection model that was parame-
terized with apparent survival and fecundity was only 1.02
(Ledwon et al. 2014). The discrepancy in growth rates was
attributed to immigration which was not included in the
matrix projection model.
Recently developed integrated population models hold

promise to overcome these drawbacks (Besbeas et al.
2002, 2005; Brooks et al. 2004). The main difference from
conventional matrix projection models is that in an
integrated population model, all available datasets are
analyzed simultaneously, that is, the single data likeli-
hoods are used to construct one joint likelihood upon
which inference is based. Joint analysis offers several
important advantages. All uncertainty emerging from
the fact that the data stem from a random sample of indi-
viduals in the population of interest are accounted for.
Proper error propagation is particularly important for

population viability analyses. Second, immigration and
other demographic parameters for which no explicit
demographic data are available can often be estimated
in the integrated analysis (Besbeas et al. 2002;
Abadi et al. 2010a; Lahoz-Monfort et al. 2014). Last,
demographic parameters can be estimated with greater
precision (Besbeas et al. 2002; Tavecchia et al. 2009; Abadi
et al. 2010a). The latter two points are a direct conse-
quence of the more complete exploitation of the available
information in the joint analysis: population growth is a
function of demography, hence the population size data
contain information about all demographic processes
in the population, and this information is explicitly
exploited with an integrated population model.
Here, I use the acronym IPM to denote integrated

population models. This acronym is also used to describe
integral projection models (Chapter 8) but the twomodels
have different structure and must not be confused. In my
chapter, I present examples of how an IPM is constructed.
I then introduce important generalizations of the basic
model with temporal random effects and density
dependence, and show how the model is naturally used
for population viability analyses.

9.2 Construction of Integrated
Population Models

To construct an IPM, I find it useful to distinguish
between three basic steps: (i) the development of a popu-
lation model that links demographic rates with popula-
tion size; (ii) the construction of separate likelihoods for
each available dataset; and (iii) the construction of a joint
likelihood for making inferences (Figure 9.1). I describe
each of these three steps in detail with the help of an
example.
Starting by assuming that our focus is a small bird spe-

cies with the life history typical for many songbirds, that
is, all individuals start to reproduce at an age of one year
and the species has a monogamous mating system. Three
different datasets are available: annual counts of the num-
ber of breeding pairs, capture-recapture data based on
live resightings, and fledgling counts. We further assume
that the data are sampled in an area that is large enough
that the majority of dispersal occurs within the study area,
so that emigration and immigration can be neglected.
I will show later how some of these assumptions can be
relaxed by extending the model.

9.2.1 Development of a Population Model

In the first step, we need to define a population model
that links demography and population growth, and such
a model is typically a matrix projection model (Caswell
2001, Chapter 8). For our example of a short-lived
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songbird, an age-structured model with two age classes is
used to describe population dynamics. We consider a
female-based model with a prebreeding census and thus
describe the dynamics of the number of one-year-old
females (N1) and of the number of females that are at least
two years old (N2+) as a function of the demographic rates:

N1, t + 1 =N1, t
f t
2
sj, t +N2+ , t

f t
2
sj, t

N2+ , t + 1 =N1, tsa, t +N2+ , tsa, t
9 1

Here, sj, t is the probability that a fledgling alive in year
t survives until the breeding season in year t + 1 (juvenile
survival probability), sa, t is the probability that an adult
alive in year t survives until year t + 1 (adult survival prob-
ability), and f t is the number of fledglings that a female is
producing in year t (fecundity). Our definition of fecun-
dity implicitly means that all females are reproducing in
each year or that f t includes a component for the portion
of the females that skip reproduction in year t. We
assume an even sex ratio among fledglings and divide
total fecundity by 2 to ensure that the model is female
based. It is equivalent to write this model in matrix
notation:

N1, t + 1

N2+ , t + 1
=

f t
2
sj, t

f t
2
sj, t

sa, t sa, t

N1, t

N2+ , t
9 2

The population is growing exponentially under this

model and the growth rate is calculated as λt =
f t
2
sj, t + sa, t .

Written in this way, the model includes environmental
stochasticity, because all parameters have a time index,
meaning that they could vary from one year to the next.
Yet, we also want to include demographic stochasticity,
which is always present and becomes important when
the population size is small (Lande 2002). Therefore,
we write the model by using appropriate distributions.
The number of one-year-old females must be an integer,
larger or equal than 0, which has no upper boundary in

principle and its expected value is
f t
2
sj, t N1, t +N2+ , t .

We can use the Poisson distribution and write:

N1, t +1 Poisson
f t
2
sj, t N1, t +N2+ , t 9 3

Define population model
(matrix projection model)

Likelihoods for each
single data set

State-space
model for counts

Process model Observation model

Joint likelihood

Inference

Model for demo-
graphic data I

Model for demo-
graphic data II

Model for demo-
graphic data XY

…

Figure 9.1 Workflow diagram for the construction of an integrated population model.
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For the number of females that are at least two years
old, we use the binomial distribution, as it produces
integers, is bounded between 0 and the binomial total,
and has expected values of sa, t N1, t +N2+ , t , thus:

N2+ , t + 1 Binomial N1, t +N2+ , t ,sa, t 9 4

This population model describes one possible link
between population size and demography. As always in
a statistical analysis, the inference under the IPM will
be based on the implicit assumption that the population
model is true or at least sufficiently close to truth; the
estimated parameter uncertainty does not reflect
structural uncertainty about the population model.
Therefore, model construction is a crucial step. Great
flexibility is possible in defining alternative models; one
may choose a different number of age classes, assume
different fecundity of first-time and experienced bree-
ders, include males in a two-sex model as well, or use dif-
ferent distributions for the parameters. The structure of
the model typically depends on the research question,
prior knowledge of the species, and the available data.

9.2.2 Construction of the Likelihood for
Different Datasets

The second step consists of the construction of the like-
lihoods for all the available datasets. Selection of the like-
lihoods requires a good knowledge of a range of statistical
models to estimate demographic parameters, such as
state-space models (De Valpine and Hastings 2002; New-
man et al. 2014), capture-recapture (Lebreton et al. 1992)
and multistate capture-recapture models (Lebreton et al.
2009, Chapter 7), or generalized linear models (McCul-
lagh and Nelder 1989), to name just the most frequently
used models. In the following, I assume a reasonable
working knowledge of these models and therefore do
not explain them in detail. Previous chapters of this book
(Chapters 6–7) and Kéry and Schaub (2012) present these
and other models in detail.
In the IPM as defined here, count data, or an index of

the number of individuals, must always be included,
therefore there is always a model that links these count
data to demographic rates. State-space models are
perfectly suited for this purpose because they describe a
partially observed state that develops over time as a
first-order Markov process (De Valpine and Hastings
2002; Buckland et al. 2004; Newman et al. 2014).
A state-space model in the context of an IPM consists
of the state process equations that describe the dynamics
of the number of individuals, stratified by age or stage
class, as a function of the age-/stage-specific number of
individuals one time step before, and the demographic
rates. The state in the first year cannot be described as

a function of the previous size, therefore a specific model
that describes the initial state of the population in the first
year is also needed. The state-space model also consists of
observation equations that link the observations with the
true state of the population. Generally, the state-process
equations are exactly equivalent to the population model
defined above (Eqs. 9.3 and 9.4), whereas the observation
model should reflect the sampling design of the popula-
tion count data. I assume here that a single survey to
count the number of breeding pairs was conducted each
year and that the counts are subject to imperfect
detection and double counting, and that the two sources
of uncertainty cancel each other out, on average.
Therefore, we model the counts (Ct) as:

Ct Normal N1, t +N2, t ,σ
2 , 9 5

where σ2 is the residual error that contains lack of fit and
observation errors. In our example, we assume that we
cannot determine the age of the individuals, so only the
sum of the two age classes is included. It is possible to
specify other observation models that may be better
descriptions of the observation process (Section 9.3.4).
The likelihood of the state-space model (LSS) is the

product of the different likelihoods, thus

LSS N ,s, f ,σ2 C = Li N 1 × LS N ,s, f × LO N ,σ2 C ,

9 6

where Li is the likelihood of the initial population size at
the first occasion, Ls is the likelihood of the state process,
and Lo is the likelihood of the observation process. Note
that I adopt the usual notation here of denoting vectors
in bold face. The state-space model includes all the
parameters to be estimated, and it is possible in principle
to base parameter estimation directly on this model.
However, most parameters will not be separately
estimable using this model since there are many possible
combinations of s and f resulting in the same dynamics of
N (Box 9.1). Therefore, additional information on at least
some parameters is needed to render the model/para-
meters identifiable. One solution is the inclusion of addi-
tional datasets that are informative about one or several
parameters. In a Bayesian context, the additionally
required information could also be included by the spec-
ification of informative priors (Thomas et al. 2005; King
et al. 2010). Conceptually, the two approaches are closely
related because we could also use the additional datasets
to construct informative priors for the state-space model.
The second dataset is the capture-recapture data

that we analyze with a Cormack–Jolly–Seber model
(Lebreton et al. 1992, Chapter 7), which provides separate
estimates of the probabilities of apparent survival (ϕ) and
of recapture (p). I assume here that permanent emigra-
tion is negligible and therefore true instead of apparent
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Box 9.1 Identifiability of Parameters

When fitted in a Bayesian manner, IPMs may yield esti-
mates of plenty of parameters, but there is no guarantee
that all parameters in a fitted model are indeed identified
and informed by the data rather than the priors. There are
two kinds of nonidentifiability: intrinsic and extrinsic.
A model has intrinsically identified parameters if the same
likelihood for the data cannot be obtained by a smaller
number of parameters, while parameter-redundant mod-
els with at least one unidentified parameter can be
expressed in terms of a smaller number of parameters
(Catchpole and Morgan 1997). Extrinsic nonidentifiability
refers to the situation where a parameter should be iden-
tifiable due to the structure of the model, but cannot be
identified because information in a particular dataset is
missing. Such problems can arise for instance when data

for certain years are lacking. In a Bayesian analysis, there is
strictly no such thing as nonidentifiability, because the
posterior is a combination of the prior and the likelihood,
and is therefore always defined, even if the likelihood is
completely noninformative about a certain parameter
(provided that the prior is proper, Gelman et al. 2004).
However, if the information in the data is low for a partic-
ular parameter (extrinsic nonidentifiability) and/or if the
likelihood surface is completely flat for a parameter (intrin-
sic nonidentifiability) the posterior will simply reflect the
prior. Clearly, in a Bayesian analysis as well, we would nor-
mally want to know whether our posterior is informed by
the observed data and is identifiable in a classical sense, or
simply by the priors or the structure of the model. There-
fore, a prior sensitivity analysis is of interest. Another

4

IPM3 IPM2 IPM1

Prior

Posterior

3

2

1

0

4

3

2

1

0

0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

5 10 15 20

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

25

Fecundity

D
e

n
s
it
y

D
e

n
s
it
y

Fecundity Fecundity Fecundity

Juvenile survival

J
u

v
e

n
ile

 s
u

rv
iv

a
l

Juvenile survival Juvenile survival

Fecundity Fecundity

0.8

1.0

0.6

0.4

0.2

0.0

0.8

1.0

0.6

0.4

0.2

0.0

0.8

1.0

0.6

0.4

0.2

0.0

20

15

10

5

0

25

20

15

10

5

0

25

20

15

10

5

0

0 5 10 15 20 0 5 10 15 20

4

3

2

1

0

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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survival is estimated (ϕ = s). CJS models are introduced in
details in Chapter 7; for a Bayesian approach see
Chapter 7 in Kéry and Schaub (2012). The data for
individual capture histories can be summarized in the
m-array format (m) (Burnham et al. 1987). Given the
number of released individuals (R) at each occasion, each
row in the m-array is modeled using a multinomial
likelihood,

m Multinomial R,Π , 9 7

where Π is a function of the underlying parameters s
and p (recapture probability). Symbolically the likelihood
of the CJS model is LCJS s,p m . The analysis of capture-
recapture data with the multinomial likelihood runs
much more quickly than with the likelihood of the indi-
vidual encounter histories (Kéry and Schaub 2012).
Last, the third dataset consists of the total number of

fledglings (J, productivity data) that were produced annu-
ally from a number of surveyed broods (B).We use a Pois-
son regression model:

J Poisson f ×B 9 8

Symbolically the associated likelihood can be written
as LF f B,J .

9.2.3 The Joint Likelihood

Once all the puzzle pieces needed for an IPM are defined,
in a third step, we combine the likelihoods for the differ-
ent datasets and analyze the resulting integrated model.

Under the assumption of independence, the joint
likelihood of our integrated model (IPM3) is formed by
the multiplication of each individual data likelihood,
and thus:

LIPM N ,s, f ,p,σ2 C,m,J ,B = LSS N ,s, f ,σ2 C × LCJS s,p m × LF f J ,B

= Li N1 × LS N ,s, f × LO N ,σ2 C × LCJS s,p m × LF f J ,B

9 9

A graphical representation of this model which high-
lights the flux of information is provided in Figure 9.2.
The assumption of independence is crucial. One rather
strict view is that independence means that different
datasets must be composed of completely different
individuals. Clearly, the independence assumption is
respected under such a sampling protocol, but the inte-
grated population model is based on the assumption that
the dynamics and the demography of the population
segments from which the different datasets stem are
identical. In practice, the different datasets are often
sampled from a single population and therefore some
of themonitored individualsmay appear in different data-
sets. A simulation study mimicking exactly the model and
data structure of the example in this chapter has shown
that the violation of the assumption of independence
hardly affects the accuracy of the estimated parameters
(Abadi et al. 2010a). However, in a different context
where several populations as well as exchanges of indivi-
duals between the populations were modeled, the viola-
tion of the independence assumption had a stronger

approach to assess parameter identifiability is the compar-
ison between the prior and the posterior distribution
(Gimenez et al. 2009). If flat priors are specified and if
the overlap between prior and posterior is large, the
parameter is weakly identifiable only. Last, a high sam-
pling correlation between parameters of interest is also
an indication that the set of parameters is not separately
identifiable.

As an examplewewould like to knowwhether fecundity
and juvenile survival can be estimated in an integrated
population model if no data on fecundity are available
(IPM2), or in a model that only contains counts and cap-
ture-recapture data of adults (IPM1), but no explicit data
about fecundity and juvenile survival. For comparison,
the model with all datasets (IPM3) is also considered. From
Figure B9.1.1 (panels a and d) it becomes clear that fecun-
dity and juvenile survival can be estimated from IPM3, as
the overlap between their posteriors and priors is small.
The sampling correlation between fecundity and juvenile

survival is small (Figure B9.1.1, panel g, r = −0.15). When
there are no explicit data about fecundity (IPM2), fecundity
and juvenile survival can still be estimated as their poster-
iors do not overlap largely with their priors (Figure B9.1.1,
panels b and e). However, the posteriors are less peaked
and have a larger spread than the posterior from the
IPM3 indicating that the information about fecundity is
less. The sampling correlation between fecundity and
juvenile survival becomes stronger (Figure B9.1.1, panel
h, r = −0.57), but there is still no reason for much concern.
If only counts and capture-recapture data of adults are
available (IPM1), there is a strong overlap between poster-
iors and priors of fecundity and juvenile survival
(Figure B9.1.1, panels c and f ). Thus, fecundity and juvenile
survival are not separately estimable in the model. The
sampling correlation becomes strongly negative
(Figure B9.1.1, panel i, r= −0.91), which is an indication that
the two parameters are linked and that possibly only a
function of the two parameters could be identified.
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impact on parameter accuracy (Besbeas et al. 2009).
Whether or not the violation of the independence
assumption has an effect on the accuracy of the parameter
estimates seems to depend on the information content
that the different datasets share. If the degree of sharing
is low as in our example, where the information about
fecundity and survival in the count data is small com-
pared to the information in the productivity and cap-
ture-recapture data, violation of this assumption has a
negligible impact. Simulation is a good way to study
whether there is a problem with a particular dataset. Ide-
ally, a single data set should not be used twice. For exam-
ple, the independence assumption is strongly violated if
capture-recapture data are used first to estimate survival
and then again to provide an index of population size for
use in the state-space model. Thus, under a less restric-
tive, but probably often reasonable view of independence,
the different datasets should be obtained by different
sampling protocols, but not necessarily contain separate
samples of individuals.
The joint likelihood of an integrated population model

can be analyzed by maximum likelihood (Besbeas et al.
2002; Besbeas and Freeman 2006; Tavecchia et al.
2009) or by Bayesian inference (Brooks et al. 2004; Schaub
et al. 2007; King et al. 2010). Maximum likelihood usually
requires additional assumptions of normality and linear-
ity, and requires use of the Kalman filter (Besbeas et al.
2002; Besbeas et al. 2003; Besbeas et al. 2005; Gauthier
et al. 2007; Besbeas and Morgan 2012b). Advantages of
maximum likelihood include faster computation and
the ability to use likelihood ratio tests or Akaike’s Infor-
mation Criterion (AIC) for model selection (Chapter 2).

On the other hand, Bayesian inference is more flexible
and nonlinear relationships due to demographic stochas-
ticity or density dependence are easily dealt with, but
computation time is typically much longer and model
selection is less straightforward (Hooten and Hobbs
2015). The Bayesian approach also requires the formula-
tion of prior distributions for all parameters that are esti-
mated. The posterior distribution is obtained by the
combination of the joint likelihood and the prior distribu-
tions via Bayes theorem and inference is obtained from
the posterior by simulation, typically with Markov chain
Monte Carlo (MCMC) methods (Ntzoufras 2009; Lunn
et al. 2013). Often prior distributions are chosen in such
a way that they are not informative about the parameters
in question. Nevertheless, the possibility to include exter-
nal information in a formal way is an asset of the Bayesian
analysis of IPMs and will often result in additional estima-
ble parameters and increased precision. The examples in
my chapter applied the Bayesian framework and used
vague priors.

9.2.4 Fitting an Integrated Population Model

As an example, I use simulated data from 19 years (Online
Exercise 9.1). To simulate the data, I set the mean juvenile
survival probability as sj = 0.26, the mean adult survival
probability as sa = 0.5, and themean fecundity as f= 4. Each
of these parameters was allowed to vary over time accord-
ing to a normal distribution on a logit scale (temporal var-
iance of juvenile survival: 0.3; temporal variance of adult
survival: 0.15), or on the log10 scale (temporal variance
of fecundity: 0.1). The recapture probabilities of the
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Figure 9.2 Graphical representation of different integrated population models. Graphs are similar to directed acyclic graphs (DAG) without
the priors. Data are symbolized with small squares, estimated parameters with circles. Large squares show the individual submodels and the
arrows the flux of information. Circles appearing in two submodels indicate that they are informed by two data sources. (a) integrated
population model with count, productivity, and capture-recapture data (IPM3, Eq. 9.9). (b) integrated population model with count and
capture-recapture data (IPM2, Eq. 9.10). For the notation of parameters and data see the text.
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capture-recapture data were set to p =0.6, and I assumed
that, on average, 80% of the reproducing individuals were
counted and that the success of 70% of all broods was
recorded. Thus, detection was relatively high, but not per-
fect for any dataset. The demographic rates varied from
year to year, but I first fit simple integrated population
models where the demographic rates are assumed to be
constant over time (see Online Exercise 9.1 for sample
code). The estimates of the demographic parameters are
provided in Table 9.1. The population trajectory is
smoothed compared to the counts, that is the variation
around the trajectory is random noise due to observation
errors (Figure 9.3). We obtain estimates of the total pop-
ulation size (i.e. Nt =N1, t +N2+ , t), as well as estimates of
the number of individuals in each age class that are
defined in the population model (i.e. N1, t ,N2+ , t). The
Markovian structure of the model makes this possible,
even though the ages of the counted individuals are
unknown. In the current example, these estimates are

not of particular interest, but this may be interesting in
other applications of IPMs (Koons et al. 2017).
Now assume that no fecundity data are available. The

model only needs a few adaptions; basically, the likeli-
hood of the productivity data has to be removed. The
joint likelihood for a model based on two datasets
(IPM2) is therefore

LIPM2 N ,s, f ,p,σ2 C,m = LSS N ,s, f ,σ2 C × LCJS s,p m

9 10

Fecundity can still be estimated because information
about it is included in the counts and this information
is extracted (Figure 9.2). Compared to the model where
productivity data are available, the fecundity parameter
is estimated with a lower precision, but the mean is close
to that from the model with all data (Table 9.1). A lower
precision of fecundity was expected, as fecundity is esti-
mated only from the count data which contain less

Table 9.1 Posterior means (SD in parentheses) of the mean demographic parameters and their temporal variability (σ2) obtained from five
different integrated population models.

Fecundity (f) Juvenile survival (sj) Adult survival (sa)

Model Mean σ2 Mean σ2 Mean σ2

IPM3 3.709 (0.101) - 0.240 (0.017) - 0.540 (0.025) -

IPM2 3.805 (0.586) - 0.238 (0.022) - 0.538 (0.027) -

IPM1 2.941 (2.627) - 0.459 (0.250) - 0.545 (0.030) -

IPM3R 3.744 (0.327) 0.122 (0.056) 0.237 (0.022) 0.099 (0.121) 0.542 (0.031) 0.085 (0.136)

IPM2R 3.670 (0.624) 0.128 (0.246) 0.240 (0.025) 0.088 (0.105) 0.545 (0.031) 0.077 (0.109)

IPM3: includes counts, capture-recapture data, and productivity data, all parameters are constant over time; IPM2: includes counts and capture-
recapture data, all parameters are constant over time; IPM1: includes counts and capture-recapture data of adults, all parameters are constant over
time; IPM3R: includes counts, capture-recapture data, and productivity data, all parameters with random time effects; IPM2R: includes counts and
capture-recapture data, all parameters with random time effects.
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Figure 9.3 Posterior means and 95% credible
intervals (vertical lines) of total population size
(N1 +N2) from integrated populationmodels that
jointly analyzed counts, capture-recapture and
productivity data with constant demographic
rates (IPM3) and with demographic rates with
random time effects (IPM3R). The black dots show
the population counts. See exercise solutions
(9.1. and 9.2) for code.
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information about fecundity than the productivity data
themselves.
If we extend themodel further and assume that we have

collected only counts and capture-recapture data of
adults because we never visited or searched for nests,
fecundity and juvenile survival could not be estimated
separately (Box 9.1). The credible intervals then cover
almost the complete range of the prior (Table 9.1) and
these two parameters are strongly correlated. However,
the predicted population sizes would still be identifiable,
albeit with a lower precision. The inclusion of prior infor-
mation becomes more important and possibly the only
option when more than one parameter for which no data
were sampled are included and estimated with IPMs
(Thomas et al. 2005; King et al. 2010; Matthiopoulos
et al. 2014).

9.3 Model Extensions

The basic models described up to now make a number of
restrictive assumptions that we may wish to relax. Most
importantly, we assumed that the demographic para-
meters are constant over time and the absence of any den-
sity-dependent feedback. In the following, I first show
how environmental stochasticity can be included in an
IPM, and then second, how density dependence can be
modeled. The models also assumed geographically closed
populations and I show how IPMs can be applied to open
populations by explicit estimation of immigration. Last,
I comment on different observation models for the count
data.

9.3.1 Environmental Stochasticity

The basic models that were introduced so far assumed
that the demographic rates were constant over time,
but this assumption was not met for the simulated dataset
and will often be inadequate for empirical data. Therefore,
we now adapt the IPM to allow demographic rates to vary
from one year to the next by including environmental
stochasticity. To model temporal variability, we have
the choice to consider the year as either a fixed or a ran-
dom effect. A fixed effect for a year means that the esti-
mate for one year’s effect is completely independent
from the estimates of the other years’ effects. By contrast,
if the year is treated as a random effect, an estimate from
one year is not independent from the estimates of the
other years. Rather, the year-specific estimates are
assumed to be draws from a normal or other distribution
where the mean and variance are estimated. By treating
the year as a random effect, we also obtain estimates of
each single year, and compared to the fixed-effects esti-
mates these random-effects estimates are pulled toward

the overall mean. The degree of this so-called shrinkage
depends on the precision of the annual estimates, which
is a desired property (Burnham andWhite 2002). In addi-
tion, random effects modeling is required if the model
is to be used to make predictions of future population
size. Therefore, I show here only this option. For juvenile
survival we use the following formulations:

logit sj, t = μsj + εsj , t

εsj , t Normal 0,σ2sj
, 9 11

where μsj is the mean juvenile survival on the logit scale,

εsj , t are the random year effects, and σ2sj is the temporal

variability of juvenile survival on the logit scale, or the
degree of how strongly juvenile survival varies over
time. The same model can also be written as

logit sj, t Normal μsj ,σ
2
sj . The logit link function is

necessary to ensure that all estimates of sj, t are bounded
by the interval between 0 and 1. For adult survival, we use
an analogous formulation. For fecundity, we use the log-
link function to ensure that all estimates of ft are positive:

log ft = μf + εf , t

εf , t Normal 0,σ2f
9 12

Here μf is the mean fecundity on the log scale, εf , t are the

random year effects, and σ2f is the temporal variability of

fecundity. It is also necessary to specify prior distributions
for the means (μ) and the variances (σ2).
The estimated means of all demographic parameters

are similar to the ones obtained from the constant model,
but the precision is slightly reduced (Table 9.1). Loss of
precision is an expected behavior as the random effects
formulation has more quantities that need to be
estimated. The population trajectories of the two models
are hardly distinguishable (Figure 9.3).
Random temporal variation of fecundity can even be

estimated when only population count and capture-
recapture data are available. The model structure is then
similar to IPM2 (Eq. 9.10), but has random temporal effects
for the demographic parameters. The resulting estimates
have lower precision, as expected (Table 9.1), but the point
estimates are close to those of the other models.
Modeling the demographic parameters with random

temporal variation offers the possibility to include envi-
ronmental variables that might have had an impact on
the demographic parameters. For example, if it is
assumed that the number of frost days had an effect on
juvenile survival and the annual number of frost days is
stored in vector (X), the model 9.12 could be extended to

logit sj, t = μsj + βXt + εsj , t

εsj , t Normal 0,σ2sj∗
9 13
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β is the estimated relationship of juvenile survival with the
number of frost days and σ2sj∗ is the environmental

variability of juvenile survival that is not explained by
the variation of the number of frost days. As a formal test
of whether frost days had a “significant” effect on juvenile
survival, we can check whether the 95% credible interval
of β contains zero. It is also informative to calculate the
amount of temporal variability in juvenile survival that
is explained by the variation of frost days as

σ2sj −σ
2
sj∗ σ2sj (Grosbois et al. 2008).

A further possible extension is to relax the assumption
that different demographic rates vary independently over
time, and to assume that they are correlated. Positive
correlations in demographic rates can be induced by
shared effects of environment conditions. For example,
harsh conditions during winter may not only affect juve-
nile survival, but also the survival of adults. The imple-
mentation of correlated effects can be performed with a
multivariate Normal distribution (see Chapter 7 in Kéry
and Schaub 2012 for details and Schaub et al. 2013).

9.3.2 Direct Density Dependence

Populations do not grow exponentially over long time
periods and therefore there must be a regulatory negative
feedback that limits their growth (Turchin 2001). The
main biological mechanism underlying population regu-
lation is competition among individuals for limited
resources. Competition induces a demographic response
such as a decrease in productivity or survival that eventu-
ally results in a reduction of the population growth rate.
Including density dependence in population analyses is
important for a sound understanding of population
dynamics. However, the estimation of density depend-
ence is not an easy task. At the level of a population, den-
sity dependence is typically assessed with regression-like
models that relate population growth with population
size – a negative relationship is then an indication of
the presence of density dependence (Dennis and Taper
1994). However, observation errors and the fact that
the growth rate and population size are not independent
will result in negative bias of the estimator of density
dependence (Freckleton et al. 2006; Lebreton 2009; Leb-
reton and Gimenez 2013). Bias is an undesired result
since density dependence is then detected too often
(Knape and De Valpine 2012). Statistical models that
account for observation errors in population size such
as state-space models are preferred, but it is still difficult
to obtain sound estimates due to weak identifiability even
in simple models (Knape 2008).
Detecting density dependence at a demographic level

can also be done using regression-like approaches where

a demographic parameter is modeled as a function of
population size. If the population size contains observa-
tion errors that are not accounted for, the power to detect
density dependence is reduced (Lebreton and Gimenez
2013). However, the risk of not being able to detect
density dependence is perhaps less problematic than
the risk to detect it when in fact it is absent. Therefore,
dealing with density dependence at the demographic level
is generally easier than dealing with it at the popula-
tion level.
IPMs provide a promising framework to study density

dependence. The advantages of adopting integrated mod-
els for the study of density dependence are twofold: first,
population sizes (or indices) are estimated and therefore
no longer affected by observation errors. Consequently,
the risk to spuriously detect density dependence at the
population level is reduced whereas the power to detect
density dependence at the demographic level is increased.
Second, joint models allow the study of density depend-
ence at the population and at the demographic level. We
therefore obtain both a phenomenological description (Is
the population regulated by density?) along with a more
mechanistic understanding (Which demographic process
is inducing the density dependence we observe at the
population level?). Abadi et al. (2012) have developed
an IPM with which density dependence can be studied
and I will present this next.
In principle, including density dependence is easy and

straightforward. All that is needed in addition to the IPM
introduced so far is the specification of a model that
relates the demographic parameter with the estimated
population size at a previous point in time. The simplest
such relationship is a Ricker-type of model that includes a
linear function on the appropriate scale, and we adopt
this here. It is necessary to also include temporal random
variation, otherwise we would unrealistically assume that
the entire temporal variation of a demographic rate is due
to changes in population size. To model density
dependence in juvenile survival in the case where the
estimated population size is Nt =N1, t +N2+ , t , we can
use the following relationship:

logit sj, t = μsj + βNt + εsj , t

εsj , t Normal 0,σ2sj
9 14

μsj is the mean juvenile survival on the logit scale (if Nt is

centred to zero), β is the estimated strength of density
dependence, εsj , t the random year effects, and σ2sj is the

residual temporal variation of juvenile survival. The esti-
mate of β is negative (−0.045), but the credible interval
included zero (−0.111, 0.001), which is not surprising
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given that the data were simulated without density
dependence. However, the probability that β is negative
is 0.973, thus there is strong evidence for density depend-
ence on juvenile survival in our example. Figure 9.4 shows
the annual estimates of juvenile survival with the esti-
mated total population size. Note that I used the same
data as before which were simulated without density
dependence. The fact that density dependence is found
here is therefore a chance event. If data simulation and
data analysis is repeated many times, we would expect
to find no density dependence, on average.
There is a close similarity between Eqs. (9.13) and (9.14);

the impact of the population size on juvenile survival is
assessed in the same way as that of any other explanatory
variable. A difference is, however, that Nt is an estimated
quantity (Eq. 9.14) while conventional explanatory vari-
ables are considered to be free of measurement error
(Eq. 9.13). Use of MCMC methods fully accommodates
the uncertainty in Nt in the analysis and accomplishes
error propagation in a fully adequate way.
The demographic parameter and population size as

well as their relationship (i.e. β) are estimated within
the same model – there is no two-step approach in which
the demographic rate and population size are estimated
first, and then a second model estimates their relation-
ship. Direct estimation is possible with Bayesian methods,
but is prohibitively complex with classical methods
(Jamieson and Brooks 2004; Besbeas and Morgan 2012a).
As density dependence at the population level is the

result of density dependence at a demographic level, it
is not necessary to specify density dependence at the
population level in the IPM. The assessment of whether
the specified density relationships at the demographic
level were strong enough to impose a response at the

population level should be conducted outside the IPM.
A possibility is to use again a Ricker type of model as
described in Dennis and Taper (1994). Thus, we may fit
the following model:

log
Nt + 1

Nt
= r0 + βpNt + εt ,

εt Normal 0,σ2
, 9 15

where βp is the strength of density dependence at the pop-
ulation level, r0 is the population growth rate whenN = 0,
εt the random year effects, and σ2 is the residual temporal
variance of population size that is not due to density
dependence (environmental stochasticity). The popula-
tion sizes are estimates from the IPM and are therefore
not affected by observation errors. In this case, density
dependence should correctly be estimated (Lebreton
and Gimenez 2013). These calculations are done for each
MCMC sample allowing one to obtain posterior distribu-
tions for r0 and βp. For our dataset, the mean of βp is
−0.021 (95% credible interval: −0.043 to −0.009) and
the probability that βp is negative is >0.99. Thus, there
is strong evidence that density dependence in juvenile
survival resulted in a negative feedback at the population
level.
In the example above, it was assumed that only juvenile

survival was affected by density dependence, but it is of
course possible to include density dependence in more
than one or even in all demographic rates. Alternative
relationships between a demographic rate and population
size could also be considered. These include smoothing
functions such as splines (Gimenez et al. 2006), threshold
models (Besbeas and Morgan 2012a), or delayed density
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dependence (Paradis et al. 2002). As a caveat, it must be
mentioned that Markov chains in IPMs with density
dependence generally do not mix well and therefore long
runs are often necessary to achieve convergence.

9.3.3 Open Population Models and Other
Extensions

We have assumed so far that the focal population is geo-
graphically closed. For vagile species and studies at small
geographic scales, this assumption is unreasonable
because emigration and immigration can be strong. If
the same data types are available, but stem from a
small-scale, local study, the capture-recapture data will
estimate apparent and not true survival. Apparent sur-
vival is the combined probability of true survival and site
fidelity to remain in the study area (Chapter 7). Losses to
permanent emigration are therefore already included in
the complement of the estimate of apparent survival, even
though it is not explicitly estimated. Immigration is
occurring as well, but usually there are no data available
allowing the estimation of immigration. Reverse-time
models allow the estimation of total recruitment to the
population (Pradel 1996; Chapter 7), and data sampling
for robust design models even allows for obtaining
separate estimates of local recruitment from immigra-
tions (Nichols and Pollock 1990; Chapter 7). With slight
modifications to the IPM it is easily possible to estimate
immigration (Abadi et al. 2010b; Schaub and Fletcher
2015), or movement probabilities among populations
(McCrea et al. 2010), and thus to study demography
and dynamics of geographically open populations
(Borysiewicz et al. 2009; McCrea et al. 2010; Péron
et al. 2010; Schaub et al. 2012; Brown and Collopy
2013; Altwegg et al. 2014; Szostek et al. 2014; Tempel
et al. 2014; Duarte et al. 2016).
IPMs are flexible and therefore there are almost no lim-

its for further extensions or adaptations to a specific
situation. Extensions can include the structure of the
population model itself and/or the types of data and
the associated likelihoods that are considered. For exam-
ple, we could model the production of fledglings and their
survival until they become one year old separately
(Schaub et al. 2013). We need to include the number of
female fledglings (NF) as an additional stage in the popu-
lation model whose number is generated with a Poisson

process NF , t Poisson f t
2 N1, t +N2+ , t . The survival

of the fledglings is then generated with a Binomial process
as N1, t + 1 Binomial NF , t ,sj, t . These formulations
would have the advantage that the variability of the two
different demographic processes is fully accounted for.
Other examples include the adaptation of the structure
of the population model to include seasonal dynamics

(Buckland et al. 2004) or populations of two species
whose synchrony is assessed (Péron and Koons 2012).
Other types of data that have been included besides the
classical capture-recapture and productivity data are dead
recoveries of marked individuals (Brooks et al. 2004;
Baillie et al. 2009; Reynolds et al. 2009), telemetry data
(Johnson et al. 2010; Schaub et al. 2010), age ratios of
unmarked dead individuals (Hoyle and Maunder 2004;
Schaub et al. 2010; Fieberg et al. 2010), nest records
(Robinson et al. 2012), harvesting data (Lee et al. 2015),
or occupancy data (Chandler and Clark 2014). In a
review, Schaub and Abadi (2011) summarize the types
of models and data that have been used in studies of birds
and mammals with integrated population models.

9.3.4 Alternative Observation Models

The observation process in the state-space model links the
population counts to the underlying true population size.
Therefore, the observation process plays an important
role in the interpretation of the estimated population
sizes. The estimated residual error (σ2, Eq. 9.5) is often
loosely referred to as observation error, but it is in fact
composed of errors due to observation and errors due
to lack of fit of the state-process model. If the count data
(Ct) are collected in such a way that they are correct on
average with the possibility that some individuals are
not detected (false negative errors) while others are
double-counted (false positive errors), the state-space
model provides estimates of the true population sizes
Nt. This case arises because the average detection proba-
bility or the probability that an individual is included in
the count is 1 in such a situation. Often it is reasonable
to assume that the relative error rather than the absolute
error is constant. For example, the accuracy of the
counts may be ±10% regardless of population size.
Consequently, the variance of the counts changes with
variable population size counts. By using the lognormal
distribution instead of the normal distribution for the
observation model (Ct logNormal N1, t +N2+ , t ,σ2 ),
we can account for increasing variance with increasing
population size.
When population counts are performed often only one

type of error is relevant: not all individuals are detected
and thus only false-negative errors occur. In this case,
the state-space model estimates expected counts, i.e.
Ntpt where pt is the detection probability. The applica-
tion of the state-space model is still useful as it helps to
get rid of the random sampling variation, which is the var-
iation that is induced due to the binomial sampling nature
of the counts. The expected counts (Ntpt) change about
in parallel to the true population size Nt if the detection
probability is either constant or varies randomly over
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time. In cases where detection probability varies nonran-
domly, for example by increasing over time, the expected
counts and the true population size will no longer be par-
allel and inference about population dynamics from the
IPM will be biased (Chapter 5 in Kéry and Schaub
2012). To avoid this scenario, one could try to keep the
detection probability constant over time or put so much
effort that the detection probability is close to 1, which
might be possible in intensive, small-scale studies. The
best solution is, however, to adapt the sampling protocol
in such a way that the detection probability can be esti-
mated. Useful sampling protocols include point counts
(Royle 2004), distance sampling (Buckland et al. 2001),
or double-observer surveys (Nichols et al. 2000). In all
of these sampling situations unmarked animals are
counted and the models allow the estimation of abun-
dance corrected for imperfect detection. The specific
model to estimate p should be included in the IPM,mean-
ing that the likelihood should be written explicitly and
become part of the joint likelihood.
Sometimes it is possible to distinguish age classes in the

field and then count the number of individuals in each.
Age-specific counts are valuable because changes of age
ratios over time contain information about demography
(Link et al. 2003). The inclusion of age-specific counts
requires an adaptation of the observation equations.
For example, had it been possible in our analysis to dis-
tinguish first-year and after first-year individuals in the
counts (C1, t , C2 + , t), we would simply have specified
two observation equations C1, t Normal N1, t ,σ21 and
C2+ , t Normal N2+ , t ,σ22 + . The residual errors may
or may not have been assumed to be the same. Such addi-
tional demographic information results in more precise
parameter estimates (Tavecchia et al. 2009).

9.4 Inference About Population
Dynamics

Results from IPMs are usually estimates of demographic
rates and of stage-dependent population sizes. The esti-
mates may be interesting on their own, but usually we
want to make an inference about population dynamics.
Here, I show how results from an IPM can be used in a
retrospective analysis to infer demographic drivers of past
population changes, and then how an IPM must be
adapted to perform a prospective analysis as a population
viability analysis.

9.4.1 Retrospective Population Analyses

A fundamental aim in many population studies is the
understanding of demographic reasons of population

change. The tools to perform such retrospective popula-
tion analyses include life-table response experiments
(Horvitz et al. 1997; Caswell 2001; Caswell 2010; Koons
et al. 2016), life-stage simulation analyses (Wisdom
et al. 2000) and simple correlation analyses (Robinson
et al. 2004). All these approaches require estimates of
demographic rates and the latter also of population
growth rates. Since these estimates are results from an
IPM, no changes in the IPM are needed to perform any
of these retrospective analyses.
Robinson et al. (2014) investigated demographic drivers

of several British bird species. The researchers first fitted
IPMs and then decomposed the variation of the popula-
tion growth rates into contributions of demographic rates
using a life-table response experiment. Owing to the
Bayesianmode of analyses, posterior distributions of these
demographic contributions could easily be computed and
thus uncertainty due to data sampling was expressed. The
quantification of uncertainty in demographic contribu-
tions is an important step forward for sound inference;
most past retrospective population analyses did not con-
sider uncertainty. Van Oosten et al. (2014) used life-table
response experiments to understand differential dynam-
ics of three populations of Wheatears (Oenanthe
oenanthe). Estimates of the demographic rates stem from
IPMs fitted to each of the three populations. The authors
found that differential immigration contributed strongly
to the different growth rates of these three populations.
In another study, Schaub et al. (2013) investigated the

dynamics of a Red-backed Shrike (Lanius collurio) popu-
lation, where numbers ranged between 35 and 74breeding
pairs during a 36-year period. Schaub et al. (2013) fit an
IPM that included immigration and temporal random
effects for all demographic rates. The estimated demo-
graphic rateswere then correlatedwith the estimated pop-
ulation growth rate to assess how strongly a demographic
parameter contributed to population change (Figure 9.5).
Because all of the demographic estimates were uncertain,
the authors calculated correlation coefficients for each
MCMC draw, i.e. they computed their posterior distribu-
tions. From Figure 9.5 it is obvious that all demographic
parameters – juvenile and adult apparent survival, fecun-
dity, and immigration–were positively related to the pop-
ulation growth rate. The strongest correlation was found
for the immigration rates, suggesting that this local popu-
lation was substantially driven by immigration.

9.4.2 Population Viability Analyses

The purpose of a population viability analysis is to gauge
the likely future trajectory of a population (Morris and
Doak 2002). Typical objectives of a population viability
analysis are the assessment of the extinction risk of a pop-
ulation under study, the evaluation of different possible
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management options, or the development of sustainable
harvest strategies (Punt and Hilborn 1997). All objectives
require a prediction of population size into the future.
Under the assumption that the environment does not

change in future and given estimates about demographic
rates and population size, it is straightforward to predict
the expected population sizes in future years, but it ismore
difficult to assess their uncertainty. Yet,measures of uncer-
tainty are important for inference. The future population
size is a function of the past population size and the dem-
ographic rates. Since both are estimated with uncertainty,
the uncertainty of the future population size is a complex
function of the uncertainty ofmodel components. In a fre-
quentist framework, prediction uncertainty can be esti-
mated by numerical simulation (Morris and Doak 2002;
Lande et al. 2003). In a Bayesian framework, the error
propagation occurs “automatically,” and therefore the
prediction of the future population size with a measure
of uncertainty is easy to obtain (Wade 2002). The Bayesian
framework also offers the possibility to make probability
statements about past or future population sizes, and
about population trends or extinction risks that are not
possible in the frequentist framework or onlywith difficul-
ties and/or restrictive assumptions (Wade 2000).
The prediction of future population sizes or future

demographic rates can be viewed as a missing data
problem in the Bayesian framework (chapter 11 in Kéry
and Schaub 2012). Computation is relatively easy: it
only requires extending the loop for the quantities that

need to be predicted (population sizes and demographic
rates) into the future for a period of years. For illustra-
tion, assume that we want to predict the likely popula-
tion development over the next five years in our
example study, to estimate the probability that the
number of females drops to fewer than 5 in five years
(quasi-extinction probability) and to estimate the prob-
ability that the population will be smaller in five years
than it was in the last year of the study. Figure 9.6
shows the past and the future development of the pop-
ulation. The population is likely to increase in the future
and the uncertainty about the predicted population
sizes is increasing the further ahead we make a predic-
tion. An increase in uncertainty for predictions or other
extrapolations is a general result of population viability
analyses and therefore it often makes little sense to proj-
ect too far into the future (Fieberg and Ellner 2000). The
uncertainty increases faster and with greater uncer-
tainty among demographic rates, population sizes,
and the more stochastic elements that are built into
the model. In our case, the probability that the popula-
tion size five years from now is less than 5 females
(which is our extinction threshold) can simply be com-
puted as the fraction of the MCMC samples of N24 that
are less than 5. The probability of quasi-extinction is
estimated to be 0.043 – thus it is unlikely that the pop-
ulation would go extinct within the next five years
unless the conditions experienced by the population
during the past 19 years change.
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Figure 9.5 Correlations between annual
population growth rates and demographic
parameters of Red-backed Shrike (Lanius
collurio) females from a population in southern
Germany. Source: From Schaub et al. (2013),
adapted. The vertical and horizontal lines
show the limits of the 95% credible intervals.
The posterior means along with the 95%
credible intervals (parentheses) of the
correlation coefficients (r) are also given.
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Second, we wanted to know the probability that the
population is smaller in five years than the population
in the last study year. Compared to before, the population
size in five years is now not compared to a fixed value, but
to an estimate with associated uncertainty. The calcula-
tion of the probability is, however, analogous. Now, we
compare each MCMC sample of N19 with that of N24

and tally up the number of these comparisons where
N24 is smaller than N19. The fraction of comparisons in
which N24 < N19 is our estimate of the probability that
the population size in five years is smaller than the actual
population size. In our example this is 0.52, hence, it is
about as likely that the terminal population size will be
smaller as it will be larger. The result may seem surpris-
ing, given that the population size is predicted to increase
on average. However, there is a positive correlation
between N19 and N24: if a draw in the MCMC chain pre-
dicted a small N19, then N24 tended to be smaller than
average, too. This sampling correlation is taken into
account in the MCMC-based estimate of the probability.
Predictions are also possible under scenarios of envi-

ronmental changes or of possible management options.
Knowledge or educated guesses about how the mean or
the temporal variability of demographic rates change as
a function of environmental changes or management
actions are required. Such functions can be built into
the IPM. Under the Bayesian framework it is straightfor-
ward to compute the probability that one management
option will lead to a larger population size in the future
compared to another. See Online Exercise 9.3 for such
an example.
Although population viability analyses are straightfor-

ward to conduct using Bayesian IPMs, only a handful
of applications have been published. Maunder (2004)
predicted the future size of a fish population, Oppel
et al. (2014) estimated the extinction probability of a

population of a rare songbird, and Tenan et al. (2012)
investigated the potential effect of the reduction of
poison-related mortality in a raptor population.
I expect that we will see many more applications of IPMs
in the context of population viability assessment in the
future.
It is evident that many tools that are available for the

analysis of matrix projection models can also be used
in connection with IPMs (Caswell 2001; Chapter 8).
Measures of uncertainty reflecting measurement errors
of demographic rates and population size can in this
way be obtained easily.

9.5 Missing Data

We can easily handle missing data with IPMs. We have
already seen two examples of missing data problems:
the count and survival model without productivity data
(IPM2, Eq. 9.10), and in the population viability analysis
there were no data available for future years. Neverthe-
less, the demographic parameters or the population sizes
can still be estimated when data are missing, because the
available count and demographic information as well as
the model structure are informing them. In the former
case information about fecundity in the counts is
extracted, while in the latter case the Markovian nature
of the population model along with the random-year
assumptions allows one to infer future population size.
Since IPMs can deal with severe cases of missing data,
it is perhaps not so surprising that the models can deal
also with less severe cases, for instance when population
counts are missing for some years. It may also happen
that the different datasets do not cover exactly the same
time periods. Incomplete overlap is no problem either;
one then specifies the model for the time period with
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Figure 9.6 Posterior means and 95% credible
intervals (vertical lines) of total population size
(N1 + N2) from an integrated population model
with demographic rates with random time
effects (IPM3R), and the predicted population
sizes in the next five years. The black dots show
the counts. The extinction threshold is
indicated by a broken horizontal line. Only a
small part of the 95% credible interval is below
the broken line indicating that the extinction
probability in five years is low.
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count data and considers periods with missing demo-
graphic data as missing data. It might also be possible
to specify an IPM for the complete duration where any
data are available. It is certainly advantageous if the
different datasets overlap partially. If this is not the case,
an integrated analysis may still be possible, but requires
an additional assumption that the distribution of the
demographic parameters is stationary over the entire
period of time. Clearly, the Bayesian MCMC-based
analysis of IPMs confers great flexibility to handlemissing
data, but increasing numbers of missing values always
come at the price of lower precision and additional
assumptions. Moreover, there are limitations about
how many datasets can be missing (Box 9.1).

9.6 Goodness-of-fit and Model
Selection

Goodness-of-fit testing of any model is important to
reduce the risk of obtaining biased parameter estimates,
poor uncertainty assessments, or otherwise inadequate
inference. Recently, Besbeas and Morgan (2014) sug-
gested the use of calibrated simulation to assess the fit
of an IPM. The principle of their suggestion is to simulate
replicate data under the model using the parameter esti-
mates, and to compare these replicate data with the
observed data using some discrepancy measures. If the
replicate and observed data are similar, it can be con-
cluded that the model fits. Because several datasets are
analyzed in an IPM, tests are conducted for all of them.
Ensuring that the different submodels fit the data is of
particular importance when a parameter is estimated
for which no explicit data have been sampled, such as
for IPM2 (Eq. 9.10). For example, if survival had increased
and fecundity remained constant over time, and IPM2 is
fitted with constant survival and time-dependent fecun-
dity, we would get estimates of fecundity that show an
increasing trend over time.
Model selection is straightforward for IPMs when they

are analyzed in the frequentist framework, because estab-
lishedmethods such as information-theoretic approaches
(e.g. AIC) or likelihood ratio tests can be used (Chapter 2).
When the Bayesian framework is applied model selection
is more challenging, but a recent, excellent review shows
many possibilities (Hooten andHobbs 2015). In principle,
Bayesian model selection criteria such as the deviance
information criteria (DIC, Spiegelhalter et al. 2002) could
be applied (Schaub et al. 2007), but there is controversy
about whether the DIC is valid when applied to certain
classes of hierarchical models (Celeux et al. 2006),
especially to mixture models with discrete latent states.
Davis et al. (2014) used the Watanabe-Akaike informa-
tion criterion (WAIC) for model selection of complex

IPMs. Reversible jump MCMC (RJMCMC) is a good
option for model selection (King et al. 2010), but usually
requires development of customMCMC code (RJMCMC
is implemented in BUGS for simple cases) and hence
is currently probably outside the reach of most
nonstatisticians.

9.7 Software Tools

IPMs can be analyzed in either the frequentist or the
Bayesian framework, and consequently the available soft-
ware differs between the two approaches. Owing to its
flexibility, there is so far no canned program with which
integrated population models can be fitted. Therefore,
skills in coding are necessary to fit an IPM and several
computing platforms can be used. For the frequentist
framework MATLAB (Besbeas et al. 2002; Gauthier et al.
2007), C++ (Baillie et al. 2009), and ADMB (Maunder
2004; Maunder and Punt 2013) are computing platforms
for the implementation of the IPMs. For the Bayesian
framework Python (Fonnesbeck and Conroy 2004),
but most often BUGS and JAGS (Kéry and Schaub
2012), have been used. Writing code for IPMs requires
knowledge of a variety of models and experience in pro-
gramming. The BUGS language used in the software
packages WinBUGS, OpenBUGS (Lunn et al. 2000), and
JAGS (Plummer 2003) is particularly well suited to define
IPMs in a manner that is accessible not only to statisti-
cians, but also to many ecologists. The reason for this
is that a complicated joint likelihood does not need to
be formulated explicitly as a single term, but rather as
sequence of simpler, conditionally independent, “local”
relationships (Lunn et al. 2013). The relationships are
typically fairly simple to write down and put the analysis
of complex IPMs in the reach of many quantitative
biologists.
The IPMs developed for this chapter were fit with the

program JAGS run from R (R Development Core Team,
2004) using package jagsUI (Kellner 2015). Code for
some models is provided in the web exercises and
I also refer to chapter 11 in Kéry and Schaub (2012) for
comments on the code. JAGS and its sister programs
WinBUGS and OpenBUGS use MCMC simulation to
obtain samples from the posterior distributions. As in
all Bayesian analyses that use MCMC, output should be
checked carefully to ensure the MCMC chains have
reached stationary distributions. Moreover, the impact
of the priors on the posteriors should be evaluated by
prior sensitivity analyses. Several introductory books on
Bayesian modeling provide background on these and
related issues (Ntzoufras 2009; Kéry 2010; Lunn
et al. 2013).
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9.8 Online Exercises

The online exercises provide examples of an integrated
population model fitted to counts, capture-recapture
data, and data on productivity. The models are based
on JAGS code and are run from R using package
jagsUI. Exercise 1 uses the data in the main text and
is modified for the case where no data on productivity
are available. Exercise 2 extends the model based on
constant demographic rates to one with random tempo-
ral effects. Last, exercise 3 adapts the model to consider
the possible outcomes from alternative management
scenarios as part of a population viability analysis.

9.9 Future Directions

IPMs can naturally be developed as hierarchical models.
Hierarchical models constitute a class of statistical
models that describe an observed response as a nested
sequence of random variables (Royle and Dorazio
2008). The models express a complex joint likelihood
as a product of simpler, conditionally independent
probabilities and are therefore particularly suited to
properly accommodate process variability and uncer-
tainty at multiple levels of a stochastic process. Thus, it
is unsurprising that hierarchical models are considered
by some to be unifying framework for inference and
prediction in ecology (Clark and Björnstad 2004; Cressie
et al. 2009).
A key feature of IPMs is that demographic information

coming from different data sources is combined into a
single model in a coherent way. Synthesis is achieved
by the analysis of a joint likelihood that is the product
of the likelihoods of the different datasets. The combina-
tion of information is powerful and has several important
advantages. Generally, it enables one to get more precise
parameter estimates and to estimate parameters for
which no explicit data have been collected. Combination
of information is not restricted to IPMs, but is widely
applicable. Recently, an increasing number of studies
has been published that integrate information from var-
ious sources to obtain better inference (Cornulier et al.
2011; Sollmann et al. 2013; Halstead et al. 2012; Papada-
tou et al. 2012) and this trend will likely continue, and
probably at an increased rate (Schaub and Kéry 2012).
Although already applied for some time, IPMs are still

relatively novel and further development will certainly
happen. For most current IPMs, inference from the joint
likelihood is based on the assumption that the combined
datasets are independent. In practice, this assumption
may often be violated and depending on the context this
violation may affect parameter accuracy (Besbeas et al.
2009; Abadi et al. 2010a). The most elegant solution to

this potential problem would be development of a joint
likelihood that takes the nonindependence of the single
datasets into account, but this is not obvious to achieve.
Chandler and Clark (2014) developed a model that
integrates capture-recapture and occupancy data. The
independence assumption was relaxed because both
models were conditional on the same spatial process of
population dynamics. The development of goodness-of-
fit assessment for IPM has just begun (Besbeas and
Morgan 2014) and it is desirable to achieve a better
understanding of the performance of the proposed or
alternative goodness-of-fit assessments.
Recently developed open N-mixture models allow

interesting perspectives for modeling population dynam-
ics at large spatial scales: using spatially and temporally
replicated counts of unmarked individuals for population
abundance, population growth rate, and demographic
parameters such as survival and recruitment can be esti-
mated (Dail andMadsen 2011). Chandler and King (2011)
used this model to estimate habitat-specific abundance,
apparent survival, and recruitment of Golden-winged
Warblers (Vermivora chrysoptera) in Costa Rica. Zipkin
et al. (2014) extended this model such that it can deal with
stage-structured counts such as size classes, and applied it
to a population of Dusky Salamanders (Desmognathus
fuscus) to estimate stage-specific survival, immigration,
and recruitment. The N-mixture models are appealing
because they can be applied to monitoring data, and thus
inference about demography is possible even if only
unmarked individuals are counted. However, parameter
estimates are often quite imprecise and violations of
model assumptions can result in large bias (Hostetler
and Chandler 2015; Bellier et al. 2016). To improve
parameter accuracy, approaches where independent
information on demographic parameters via integrated
modeling or prior knowledge is included are promising.
A challenge might be the differential spatial scale at which
data are often sampled. Nevertheless, it is likely that we
will see future development of integratedmodels combin-
ing spatially and temporally replicated counts with dem-
ographic data.
Demographic analyses are essential for conservation,

management, and harvesting of populations (Morris
and Doak 2002; Conroy and Carroll 2009; Mills 2013).
Demographic data must extend over several years for
making sound inference and are generally expensive to
sample. Therefore, it is important that existing demo-
graphic data are analyzed with the most efficient meth-
ods. Existing data can often not be analyzed properly
with conventional matrix projection models, because of
a small number of individuals or because of a lack of spe-
cific data on productivity or other parameters. IPMs may
go a long way toward mitigating such small-sample pro-
blems. By making efficient use of existing data they may
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help to obtain the best possible inference even from lim-
ited data (Schaub et al. 2007). Moreover, especially when
fitted using Bayesian MCMCmethods, they can be speci-
fied extremely flexibly and adapted to virtually any partic-
ular study provided that a minimal field protocol has been
respected and that a minimum amount of observed data
are sampled.
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Summary

Individual-based or agent-based models are a type of stochastic simulation model in which explicit agents or individuals inter-
act with each other and the environment to generate system dynamics. The use of these models is linked to questions dealing
with complex systems and is more akin to a research program than a method in itself, borrowing techniques from many dif-
ferent disciplines. First, the general aim and the questions to be addressed with the model, including the a priori expectations,
must be explicit. The second step includes building the conceptual model based on the aim and the empirical and theoretical
knowledge available. The conceptual model is then implemented in a core model which should be able to perform a single
simulation run. The core model includes the definition of individuals and their traits, the functional relationships, the envi-
ronment and its properties, the temporal and spatial domains, resolutions and boundary conditions, and model scheduling.
A single-model run should produce an output that allows for an early evaluation of model consistency and that can be analyzed
later on. At this stage, the conceptual model and the core model should be carefully documented. Finally, analyzing the model
may require several steps, including model debugging at run time and an evaluation of the consistency of model behavior at the
relevant parameterizations and at extreme values; the evaluation of structural uncertainty and sensitivity analyses, including
uncertainty analyses; the use of model selection techniques, if there are alternative model specifications; and model validation
and calibration, which consists of estimating model parameters by systematically comparing empirical and simulated data.
Ultimately, the successful use of these models is highly dependent on having a clear aim and a good conceptual model. Given
the complexity of the questions these models can address and the large flexibility that is allowed in analyzing them, this chapter
is just a brief introduction to their construction and use.

10.1 Individual and Agent-based
Models

Individual-based models (IBMs) belong to a broad class
of stochastic simulation models in which the individuals
(or more generally agents) of a population are explicit and
identifiable, interacting under a set of rules within a given
environment (DeAngelis and Mooij 2005; Grimm and
Railsback 2005). Each individual is characterized by
specific properties and state variables such as sex, age,
reproductive status, body condition, and the coordinates
defining its spatial location or its genetic make-up. IBMs
may range from very simple to extremely complex imple-
mentations. Nevertheless, the conceptual simplicity is
one of the reasons why IBMs are becoming so pervasive
in disciplines dealing with complex systems, such as
astrophysics, cell biology, the social sciences, or ecology
(Grimm et al. 2005; Gilbert 2008). Complex systems

are characterized by emergent properties generated by
the interaction between its components and the environ-
ment. Typically, the behavior of those emergent proper-
ties is affected by stabilizing negative feedbacks and/or
destabilizing positive feedbacks, as occurs with density-
dependent processes or with Allee effects. Conceptually,
it is easy to grasp what IBMs are, as it is to build them if
we have an intermediate command of a programming
language. The difficult part is using these models in a
way that is useful for our purposes and then communicat-
ing the methods and results to third parties in a clear
and logical way. In this chapter I will try to help you in
doing so.
Populations are just collections of different individuals.

The uniqueness of individuals affects their realized fitness
thus contributing in different amounts to the dynamics
of the population to which they belong. Fortunately,
the heterogeneity of individuals can be categorized into
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several main types that summarize the most relevant
sources of heterogeneity in fitness, such as demographic
classes, phenotypes, or genotypes. In population ecology,
we can take advantage of this structuring by averaging
reproduction, survival, and movement parameters within
each of these groups and then describe or project popu-
lation dynamics using those estimates (Chapter 8). Nev-
ertheless, class-specific demographic parameters vary
through time and for individuals in different spatial loca-
tions, normally as a consequence of changes in relevant
environmental variables.
Populations belong to the most challenging type of

complex systems: adaptive systems where the responses
of individuals can change (Grimm and Railsback 2006).
Apart from evolutionary responses, which may occur
within a small number of generations making them
relevant for population dynamics (DeAngelis and Mooij
2005), individuals can show behavioral and other
phenotypic responses including memory, maternal effects,
or the effect of previous conditions within the domain of
each individual. Thus, individuals have the capacity to
adapt their responses to environmental conditions in
unexpected ways, making demographic functional
responses dynamic (Kuparinen and Merila 2007; Doak
and Morris 2010). Methods dealing with complexity are
especially useful for questions dealing with real
populations. Nowadays, the major challenge of popula-
tion ecology lies in having some forecasting capacity for
populations composed of heterogeneous and adaptive
individuals living in an environment which is also
heterogeneous and dynamic in time and space.

10.1.1 What an IBM Is and What it Is Not

The typical implementation of an IBM comes in the form
of a computer program that executes, in a dynamic way,
the processes describing the interactions between a set of
individuals and their environment, generating relevant
emergent properties at the population level, such as
trajectories of population size in time, age, stage or sex
distributions, or distributions of density in space.
Therefore, IBMs are simply a way to generate simulated
data using stochastic numerical simulations. In itself, an
IBM is not a method of analysis based on some statistical
paradigm and therefore it departs from most of the
methods described in other chapters of this book. To
be of any use, the simulated data needs to be summarized
by analyzing it in a similar fashion to that of field data,
using everything we have learned so far, from how to
generate and test sensible hypotheses, to estimating
demographic parameters or analyzing time series and
spatial structure. Therefore, the use of IBMs requires
some skills in coding and an advanced research plan,
including an adequate initial design for a clearly stated
question, testing the general behavior of the model

against empirical data or theoretical expectations, and
finally conducting some simulation experiments in which
we systematically evaluate alternative scenarios to make
some useful predictions.
Building an IBM requires software coding, either

implicitly or explicitly. Nevertheless, coding is by no
means the limiting factor when building an IBM. The
main challenge is making explicit the question and
designing a sensible and logical procedure to address it.
Above all, using IBMs is an excellent way to make explicit
our knowledge and assumptions in order to generate new
hypotheses and predictions. It is therefore clear that IBMs
are most relevant when aiming at complex questions for
which other approaches are limited. To be able to do so
we need a priori knowledge about how the system might
work as well as information to be able to parameterize
the model, even if using scenarios with hypothetical
parameterizations (DeAngelis and Mooij 2005; Grimm
and Railsback 2005).

10.1.2 When to Use an Individual-based Model

The use of IBMs has increased significantly in the last few
decades, and so has the diversity of research questions
covered (Grimm 1999). Models are often used to investi-
gate complex questions, such as those having highly dis-
cordant spatiotemporal scales for different processes and
patterns (generally local interactions generating data pat-
terns at large scales), or feedbacks and conditional param-
eter values affecting functional responses and strong
impacts of spatial environmental heterogeneity on indi-
vidual traits and responses. In many cases, the use of
IBMs links population ecology to other disciplines, such
as genetics, landscape ecology, behavioral ecology, eco-
toxicology, and economics. Typical studies range from
population viability analysis (PVA) of small populations
for which demographic stochasticity is important
(Chapters 8 and 9), to management questions including
the evaluation of different harvest regimes (Wiegand
et al. 1998; Whitman et al. 2004), and questions dealing
with population genetics, such as genetic structure or
effective population size, and their relationship with
demography and population viability (Storz et al. 2002;
Bruggeman et al. 2010; Perez-Figueroa et al. 2012).
Authors often explore the role that different mechanisms
can play at the population level under different environ-
mental conditions, including physiological processes,
such as individual energetics, growth and biomass
dynamics, or their interaction with diseases (Willis
2007; Buckley 2008; Boyles and Willis 2010), as well as
behavioral mechanisms, such as the link between individ-
ual behavioral responses and their impact on demo-
graphic parameters, the role of group living and
sociality or spatial ecology, and individual movements,
including dispersal and how it impacts population
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dynamics (Stephens et al. 2002; Kramer-Schadt et al.
2004; Revilla et al. 2004; Goss-Custard et al. 2006; Rands
et al. 2006; Revilla and Wiegand 2008; Tablado and
Revilla 2012). Last, IBMs can also be used to address com-
plex multispecific questions, such as predator–prey inter-
actions, community dynamics, or epidemiology of
diseases (Rushton et al. 2000; Schmitz 2000; Wilkinson
et al. 2004; Carlo and Morales 2008; Ramsey and
Efford 2010).

10.1.3 Criticisms on the Use of IBMs:
Advantages or Disadvantages

When first used, IBMs were heavily criticized along four
main lines of thought. First, these models were described
as too complex and therefore data-hungry and prone to
overfitting and error propagation problems. This critique
has been based on a simplifying generalization and on
some erroneous analyses (Beissinger and Westphal
1998; Mooij and DeAngelis 1999). If properly designed,
calibrated, and analyzed, IBMs are nomore prone to those
problems than any other applicable method (Wiegand
et al. 2004b). The generalization about overcomplexity is
unfair since it is by definition not part of IBMs, but rather
a consequence of addressing complex questions. Addi-
tionally, it confuses the definition of complexity used for
statistical inference in statistics probability theory, defined
by the number of parameters of a statistical model, with
structural complexity under algorithmic theory. The situ-
ation leads to an axiomatic application of Occam’s razor,
which should be applied to empirically or theoretically
supported process descriptions when those descriptions
are similarly supported by data. Only then should the
model with fewer parameters be favored. The usefulness
of a model is not given by the number of parameters,
but rather its ability to address a question.
It is often assumed that the lower the number of

parameters of a model the more generalizable the results,
forgetting that the assumptions are also part of the model,
and that to be able to make generalizations to other
systems (not to say to make predictions) the set of
assumptions must be sensible and comparable among
systems. Structural realism is an important advantage
of IBMs, especially in relation to model assumptions
and even if model parameterization is not fully resolved
or specified (Wiegand et al. 2004b; Ajelli et al. 2010).
For example, the structural complexity of IBMs allows
for the direct inclusion of demographic stochasticity with
no need to parameterize it.
The remaining three criticisms are that IBMs are difficult

to analyze, difficult to communicate, and, finally, the results
are difficult to generalize to make inferences on the func-
tioning of other systems (Bolker et al. 2003). These points
are relevant and represent the main challenge of using
IBMs. The poor implementation of some early models,

for some ofwhich it appears the aimwas to build themodel
itself, combined with poor documentation, made the mod-
els too obscure and difficult to follow, not to mention rep-
licate (Müller et al. 2014). The only way to minimize those
problems consists in using a research program aiming to
understandhow a complex systemworks (individual-based
ecology, sensu Grimm and Railsback 2005). In doing so we
should take advantage of the flexibility of IBMs, including
the possibility of linking them to other methods, the
capacity to make use of many sources of data with varying
quality, including ancillary data, or the capacity to
introduce difficult structures, such as covariation between
model parameters, in a natural way. Last, an important
advantage of using IBMs is that if properly built, they
force us to make explicit all the relevant knowledge on a
population, including how different processes interact,
and the capacity to generate predictions that are testable
in the field.

10.2 Building the Core Model

10.2.1 Design Phase: The Question
and the Conceptual Model

The first step in building an IBM is to identify and make
explicit the general aim of the model. In the early days of
IBMs, it was not uncommon to find examples of models
that were described with no further aim, consequently
generating a lot of criticism. IBMs, as any other model,
should be built to address a specific question. The gen-
eral aim should be developed in the form of specific
questions that can be directly linked to a priori predic-
tions as well as data, both empirical and simulated. The
theoretical and empirical context must be set, together
with the general simplifying assumptions that are
made a priori, such as no role for space or evolutionary
processes.
The second step in the design phase consists in devel-

oping a conceptual model in which we summarize the
knowledge in relation to the question to be addressed.
At this stage it is quite useful to perform an in-depth
review of the state of the art of the question, which should
be made available to readers, either as part of the final
manuscript or as a stand-alone publication. The concep-
tual model should make explicit the processes at the level
of individuals that are known to affect some of their
fitness traits such as age-mediated survival, the environ-
mental factors modulating fitness such as higher mortal-
ity at low temperatures, and the available parameter
estimates including their central value, variability, and
uncertainty. It is also important, especially if we are deal-
ing with a question related to a specific species and pop-
ulation, that we clearly differentiate the information
coming from (i) general theory (including empirically
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derived heuristic patterns); (ii) from species with a similar
life history and ecology; (iii) from the same species in
other populations; and (iv) from the focal population
itself. These distinctions will help us later on when
defining model uncertainty, parameterizations, and the
alternative scenarios.
From the design phase, we should have a summary list

with the working plan and the required pieces, including:
(i) the individual traits (both those directly and indirectly
linked with fitness); (ii) processes and their parameters
directly modifying individual traits (including rules and
equations); (iii) environmental processes and their
parameters (indirectly affecting individual traits, their
rules, and equations); (iv) a well-planned schedule for
how all those processes occur and integrate along the
iterations of the model, that is along the individuals in
the population or through time; and, finally, (v) the
emergent properties directly linked to the questions at
hand (Figure 10.1).
The design phase is critical and our final success will

depend on doing a good job at this stage (Figure 10.1).
It is also the most difficult part of the entire process,
requiring some experience to master. The good news is
that there is no single correct way to do it, and that we

have a lot of freedom to follow our own preferences
and style. A good starting point is to consult relevant
papers using IBMs (Section 10.1.2) and see how different
authors deal with stating and breaking the general aim
into questions and predictions, and how they explain
and justify their conceptual model. Building an IBM is
about creating a conceptual model with an explicit and
dynamic representation of the available knowledge on
the relevant processes and their parameters affecting
some variables of interest as the emergent properties
linked to the questions and predictions. We will have a
chance to eventually be successful only if we have a clear
question and a good conceptual model.

10.2.2 Implementation of the Core Model

The next step is the implementation of the conceptual
model in a core model that by iteration of the processes
generates some type of dynamics in a single simulation
run. Normally, the core model is implemented using a
programming language. The best language is the one
you already know, or the one mastered by a colleague
who can provide logistical support. There are so many
potential choices that here we can only offer a brief field
guide to help you in deciding (Box 10.1), and make gen-
eral recommendations that are useful across platforms
and languages. There is no single best approach since
different systems and languages have both advantages
and disadvantages. Running simulations will require a
modeling environment that allows for an efficient charac-
terization of individuals and the proper integration across
scales. Additionally, it is convenient that the system
allows for debugging while coding and while running
simulations, which will help in detecting errors and in
the evaluation of model consistency (Figure 10.1). Last,
the selected platform should allow for fast simulation
runs to be time-efficient in the analyses (Box 10.1).

10.2.3 Individuals and Their Traits

The population is a collection of individuals, but before
creating any individual, we have to define their attributes
by describing the traits and properties characterizing
them, as defined in our conceptual model. For example,
if we need to distinguish their sex, age, and reproductive
status, we will need to define those three identifiers. Even
if two individuals have the same values for all traits, they
must be unique and it should be possible to distinguish
and find them within the population. Individual traits
can be constant throughout their lifetime, for example
their genetic makeup, or – depending on the taxa – their
sex; or dynamic, if they change during the life of the indi-
vidual, such as age or reproductive status (Box 10.2). The
questions to be addressed with the model will help us in
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Figure 10.1 Simplified scheme of the modeling cycle for model
design, including the modifications that often need to be
introduced during consistency checking and analyses, both in the
conceptual model and its implementation in the core model and
even in the way we develop the question and predictions at hand.
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Box 10.1 Programs and Software: A Field Guide to Some Individual-based Coding Environments

We can use three types of approaches: using software that
allows for scripting using interpreted languages, general
multipurpose programming languages that allow for
object oriented programming, or specialized develop-
ment environments created specifically to build agent-
based models.

Approaches Useful for Building Demonstrator Models

We can create IBMs using software which allows for script-
ing, as is possible in some spreadsheets such as Gnumeric,
LibreOffice Calc, or proprietary MS Excel, noting that you
need some knowledge of Visual Basic for Appli-
cations, Python, or any other supported scripting
language to program the macros (e.g. Macal and
North 2010). These implementations are useful as
demonstrators for learning concepts and teaching or for
implementing structurally simple IBMs for which the ana-
lyses are not complex. We can also build IBMs in
environments that are efficient in making generalized sca-
lar operations such as in vectorial or array programming
languages, such as R or Matlab, or even in more eclectic
languages such as Wolfram (running in proprietary
Mathematica).
R is a software platform that allows for the efficient

manipulation and analysis of relatively small datasets. It is
so flexible that we can also build IBMs with it. However,
doing so is only reasonable for learning purposes or when
dealing with simple IBMs with few parameters and
individuals. R uses array programming, operating with all
the data simultaneously, making the processing of large
datasets inefficient. Therefore, it is slow and resource hun-
gry in dealing with the data we create when, for example,
running a sensitivity analysis across many-dimensional
spaces. It is also an interpreted language, i.e. does not com-
pile the commands we write into machine code, making
simulations much slower than other alternatives.

General Purpose Development Environments

This group refers to compiling object-oriented program-
ming languages that allow programming totally ad hoc
models. Normally, the source code is written within a com-
puter program called compiler that transforms the source
language into amachine compatible language that can be
executed by the computer. This approach is more efficient
than interpreted languages, allowing for much faster
simulations. Creating individuals is straightforward using
objects or classes. After compilation we can obtain a range
of possibilities, from a self-contained executable file to a
sophisticated application with a detailed Graphical User
Interface (GUI, normally created by using forms) that
may allow for interaction with the user during the initial-
ization (e.g. for parameterization), a graphical inspection

of model behavior during run time and also the explora-
tion of the results. We can cite C++, Python (to some
extent), or Java as general languages, with different deri-
vations of Fortran and Object Pascal being very
popular in academic and scientific applications. All of
them have many compilers available. If you have some
experience programming this would probably be your
best way to proceed.

To run the model we have several alternatives, very
much dependent on the language we are using and the
environment (compiler and operating system). The most
basic is a batch-like mode in which, after asking for execu-
tion (e.g. by clicking in the .exe file created by the compiler
after a successful compilation), all the code is executed at
once with no further intervention on our part. In most
modern programming languages we interact with a com-
piler that includes prewritten components (library-like)
that can be used and reused, allowing for fast model con-
struction and deployment. Forms are the most basic of
such components when running the program. They create
a window that allows for interaction between the user and
the model at run time. Many other components can be
used, including buttons to be inserted in the form which
execute some code when we click on them. Forms and
other components with which we interact are part of
the GUI of our model. If, for example, the pseudocode
in Box 10.3 was written in a compiler allowing for forms,
we could add to it a button which on a click would run
the subroutine for population dynamics.

Specialized Development Environments

These are just implementations built using general pro-
gramming languages but that offer through an Applica-
tion Programming Interface (API) access to precoded
libraries that can simplify the initial work of making
explicit the conceptual model (Railsback et al. 2006). Using
a specific environment would save you a lot of time if you
have no experience programming. Running the model
in specialized development environments is straightfor-
ward, just follow the program instructions. Specific envir-
onments for building IBMs have their own detailed
documentation and many examples to build upon.
A nonexhaustive list would include:

ALMaSS, Animal, Landscape and Man Simulation Sys-
tem. A complex, highly specific model, with detailed
implementations built for different species (e.g. voles, sky-
larks). The model is spatially explicit, including individual
movement behavior, a landscape model that can be
dynamic, and a weather simulator. Open source project
written in C++. Topping et al. (2003). http://ccpforge.cse.
rl.ac.uk/gf/project/almass.
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GAMA. A highly flexible system that allows for the devel-
opment of complex, spatially explicit models of potentially
very large populations. The conceptual model is coded in
GAML language, which is a derivative ofXML. Allows for call-
ing R and SQL code using several DBMS (database man-
agement systems). The user interface is based on the
Eclipse platform (which is itself mostly written in Java).
Grignard et al. (2013). https://github.com/gama-platform.

Repast. A set of open-source platforms to perform
agent-based modeling and simulations, including spa-
tially explicit models. Different implementations, includ-
ing either Java or C++ coding systems. Allows for fast
simulations and large and very complex models to be
built. Very complete and with many tools available. Macal
and North (2009). http://repast.sourceforge.net.

Mason. Multiagent simulation of neighborhoods. It is a
discrete event agent based simulation platform imple-
mented in Java (requires experience with this language).

It is fast, flexible, and portable across machines, with
good capacity to run in batch mode with no visualization.
Luke et al. (2005). http://cs.gmu.edu/~eclab/projects/
mason.
NetLogo. An intuitive and easy to use system to

develop simple grid-based models. Recommended for
people with no programming experience. Based on a lan-
guage derived from Logo (but built in Java), with many
primitives (built-in commands). Includes a collection
library with many ecological model examples. Well suited
for educational purposes, but simulations are very slow
(does not compile into binary). Can be linked and called
from R using Rnetlogo. Wilensky (1999). http://ccl.
northwestern.edu/netlogo.
Swarm. It was the first platform developed for agent-

based simulation modeling. Initially designed in Objec-
tive-C, currently runs in Java. Well organized and sta-
ble. www.swarm.org.

Box 10.2 The Population: Creating the Individuals

There are two general ways to define and create indivi-
duals in general purpose development environments.
The methods used in specific development environments
can match these or be more graphical.

Lists of Objects

It consists of using a list to generate a collection of objects
where the list refers to the population, and a class tem-
plate of objects is used to represent agents or individuals
(Box 10.3). Within the object oriented programming para-
digm, classes are created to serve as templates to define
objects, which in our case will refer to individuals and the
properties or variables characterizing them. They can be
seen as, data structures. Additionally, in all languages,
classes can have methods associated with them. In princi-
ple, we can create our template for individuals without
needing methods, using simplified class versions, if avail-
able (e.g. record in Pascal, or struct in C++). Once
we have created (declared in programming jargon) the
data structure for our individuals, we need to declare
and create a list to manage a collection of pointers, each
of which will be used to link each individual we create. In
such a manner we will be able to locate and distinguish
individuals even if they have the same trait values. The list
can be seen as a container that facilitates the manage-
ment of individuals, allowing for adding, removing (and
destroying), searching, sorting, and counting among other
useful methods. In summary, we simply have to create the
population (list) and add the number of individuals

(objects) we need, each of them with their own set of
descriptors as specified in by the conceptual model. Run-
ning many simulations can lead to problems of memory
usage and allocation in the computer, depending on
the environment, language, and compiler. To avoid this
situation we need to do the housekeeping of managing
memory when destroying individuals (or any other class)
and when dealing with subroutines (for example, freeing
resources such as virtual memory).

Dynamic Arrays

The second method consists of using dynamic arrays
(arrays are simply vectors or matrices in programming jar-
gon). Obviously, they also represent a data structure in
which each cell has a single value. In dynamic arrays we
can keep the number of dimensions variable in run-time.
Therefore, by keeping constant the dimensions character-
izing the traits, and variable one dimension representing
the number of individuals, we can describe a population.
It is easy to understand how they work by analogy with a
table in a database: the columns describing trait variables
will be a fixed dimension, each of which represents a trait,
and each of the rows will be an individual. This second
dimension will be dynamic, i.e., with a variable size
because we should be able to create and delete items.
Dynamic arrays also come with useful methods associated
with the management of the items they contain.
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defining the initial population, which needs to be created
from scratch at the beginning of a simulation. This pop-
ulation will have a given number of individuals, each with
its own traits. As such, we create a population with a
specific distribution of, for example, sexes, ages, and
statuses. Obviously, the initial condition imposed by this

population will have a profound impact on model
dynamics: the dynamics generated by an initial popula-
tion of 10 or 500 individuals will be quite different.
Therefore, the design and justification of the initial
conditions should be thought out carefully and its impact
analyzed.

Box 10.3 Pseudocode Algorithm Describing a Basic IBM

We consider a population with N individuals and with
reproduction and survival as demographic processes.
We follow the list-class approach to create the population.
The model represents an exponential growth system (for
example to evaluate a reintroduction in the short term or a
population collapse). The explicit parameters of this
model are N0 initial population size; PR reproduction prob-
ability; PS survival probability; max_age maximum age; t
number of time steps simulated. Note that there are other
implicit parameters such as litter size, a constant that
works as a model assumption. We move along all indivi-
duals of the population using conditional loops (such as
Do While- or For-loops, which are sections of code that
are repeated as long as a condition is met); note that
we can call one subroutine from another (as for survival
called from population dynamics subroutine).

//Declaring a container for our
population, named “Population”
1: list Population

//Declaring the data structure for
individuals (their traits)
2: class Individual

Sex: string
Age: integer

//Initializing a population of size N0;
3: procedure Initialize
4: create Population
5: with Population do
6: for 1 to N0

7: create individual
8: individual.sex = random

(female/male)
9: individual.age = random

(maximum_age)
10: add individual
11: endfor

//subroutine for reproduction with a
breeding probability PR

12: procedure Reproduction
13: with Population do
14: N = Population size // assign current
population size to variable N

15: for i = 1 to N do
16: individual = [i]
17: if individual.sex = f then
18: if random<PR then
19: begin
20: create individual
21: individual.sex = random

(f/m)
22: individual.age = 0
23: add individual
24: end
25: endfor

//subroutine for survival with a survival
probability PS

26: procedure Survival
27: with Population do
28: N = Population size
29: for i = 1 to N do
30: individual = [i]
31: if individual.age > max_age then

delete individual else
32: if random>PS then delete

individual else
33: individual.age = individual.

age+1
34: endfor

//subroutine for population dynamics;
this is the procedure we call to run
the model
35: procedure Dynamics
36: N0 = #
37: t = #
38: PR = #
39: PS = #
40: max_age = #
41: Initialize
42: for time = 1 to t do
43: Reproduction
44: Survival
45: N = Population size
46: plot time vs N
47: save results
48: endfor
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10.2.4 Functional Relationships

Individuals should interact in such a way that their fitness
traits are affected. In classical population ecology we
broadly distinguish between processes dealing with
survival, reproduction, and movement. Conceptualizing
survival and reproduction as processes removing or add-
ing individuals from the population is straightforward
(Box 10.3). Movement is more complicated as it is a
process mediating the addition or removal of individuals
by migration. We can distinguish three types of processes
directly affecting individuals: (i) adding individuals by
recruitment or immigration; (ii) removing individuals
by mortality or emigration; and (iii) processes modifying
individual traits, including responses to environmental
conditions, behavioral responses, and automatic modi-
fiers of traits, such as age-related performance. The pro-
cesses may range from simple rules, for example, if the
maximum age is reached the individual must die deter-
ministically, to complex sets of conditional equations,
such as a function calculating the probability of breeding
as a function of local density and a set of environmental
variables only if age and body condition allow for it. The
possibilities are incredibly broad, but fortunately, we have
a conceptual model at hand to identify what processes are
potentially relevant.
Implementing functional relationships is normally

done by programming subroutines, which is nothing
more than a packed sequence of instructions that is
executed whenever we call for it. Subroutines take
different names in different software languages but work
in a similar way (e.g. functions, procedures, methods).
Functional relationships are implemented by modifying
variables (Box 10.4) with mathematical, logical, and other
types of operators as well as functions (for example, to
obtain the absolute value of a floating number or to trun-
cate it). In the case of complex equations we canmake use
of precoded libraries which are subroutines in themselves
that can simplify the task. A key characteristic of subrou-
tines in IBMs is that many of them need to go through the
entire population, individual by individual, in order to
perform the required calculations. For example, to apply
an annual mortality rate we need to go through all indi-
viduals, one by one, and stochastically check if they have
survived to the following year (Box 10.3).

10.2.5 The Environment and Its Relevant
Properties

The environment represents the set of variables that act
as direct or indirect modifiers of the traits of individuals.
For example, the probability of reproduction of a female
depends on its age, the actual density, and the amount of
rain in that year, with some specific parameters estimated
with field data. Age is an individual property with its own

dynamics whereas density and rain are external variables
for each individual. In this case, we need to calculate and
keep track of population size and then calculate density
during each simulation (Box 10.4). Note here that density
dependence is probably one of the simplest impacts that
the environment may have on the traits of each focal
individual. The same applies to rain, which, depending
on our needs, may be a predefined set of values or have
its own dynamics depending on additional processes. In
the case of predefined values, rainfall might be a constant
included in a one-dimensional array of integer values,
indexed from the first to the last year of data. Fixed envi-
ronmental properties are included in the model as vari-
ables, with or without associated variability (Box 10.4).
In the case of dynamic environmental properties, we need
to include the processes describing the dynamics in spe-
cific subroutines as we do with other processes, including
any rules, functional relationships, and their parameters.
Environmental properties, which are also part of the ini-
tial condition, will have to be set up when starting the
simulation.

10.2.6 Time and Space: Domains, Resolutions,
Boundary Conditions, and Scheduling

A critical element is how time and space are dealt with.
Both are defined in all conceptual models, either implic-
itly or explicitly. In explicit definitions, we need to keep
track of them, either in continuous or discrete ways. If
time or space are not explicit, we still need to acknowl-
edge them by clarifying the assumptions made on their
reference domains. A domain is just the range of allowed
values. Even in nonspatial models we have a spatial
domain in the form of an assumption. Therefore, the first
step is defining the temporal and spatial domains. Time is
explicit in most cases (but not all), whereas both spatially
implicit and explicit IBMs are common. For example, if
we define the temporal domain of our model as 10 years
for evaluation of a short-term reintroduction effort, we
know that a simulation can run at most for that amount
of time; or, if the spatial domain is 100 x 500 km, that is
the area in which our population occurs.
Within its domain, time can be represented by one or

more temporal resolutions as required by the processes
affecting individuals and the environment. The study of
the interaction between processes at highly discordant
temporal resolutions is essential for understanding the
dynamics of complex systems (Grimm et al. 2005). In
the above example, the 10 years can run in steps of one
day or one year depending on the relevant processes.
For example, in the case of univoltine species, reproduc-
tion can occur only once a year and therefore reproduc-
tion would require steps of one year. On the other hand, if
we need to evaluate the role of the mortality imposed by
short-term cold spells, we may think of a finer temporal
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resolution. Time is normally introduced as a conditional
loop in which there is a counter that keeps track of the
current time step (see subroutine for population dynam-
ics in Box 10.3). If we have several temporal resolutions,
we can nest several conditional loops in a way that allows
accounting for time as a clock does. For example, if we
need days for survival and years for reproduction, we will
code two nested loops, one counting years and another,
within the previous one, counting days. Once the day loop
runs for 365 days we start it again and the yearly loop
moves to the next year.
In spatially explicit models, we can proceed from sim-

ple to complex descriptions of space (Box 10.5). Typically,

we need to use explicit space when movement is a rele-
vant process and therefore it needs to be implemented
in subroutines, with rules or equations describing when,
how, and where individuals move. Modeling of move-
ment can be handled by changing the values of the traits
describing the coordinates of individual location. The
subroutines tend to have fine-scale temporal resolutions
to allow for individual movement decisions. All the rules
and equations should be clearly specified and justified in
the conceptual model (Nathan et al. 2008). Associated
with individual movement decisions is the concept of
boundary conditions. What happens if individuals move
to the edge of the spatial domain? Individuals can

Box 10.4 Parameters, Arguments, and Pseudorandom Numbers

Parameters and Arguments

With model parameters we refer to values that are rele-
vant in our conceptual model and that need to be consid-
ered either by themselves or as part of the functional
relationships. Their value can be constant in any parame-
terization (e.g. maximum life expectancy) or can change
between parameterizations. Additionally, model para-
meters can be sampled from a distribution to represent
not only the means but the variability of their estimates.
Arguments are information that we track at run time. They
are normally needed by subroutines or commands, for
example, population size at a given time of a simulation,
which may be required in itself as output or to calculate
density. They are sometimes referred as summary
statistics (Hartig et al. 2011).
Parameters and arguments are stored as variableswhich

are identified by a symbolic name (N for the argument
population size or PS for the parameter defining survival
probability in Box 10.3). Variables can be local or global
depending on their scope. Typically, we tend to use local
variables when dealing with information required only
within a subroutine (e.g. the variable describing the coun-
ter of a loop) and global ones when needed throughout
the model. Depending on the language that we are using,
variables may need to be explicitly declared, initialized,
and emptied before reuse and the type of information
they can store needs to be defined a priori (for example,
a string or an integer value). One important distinction is
between variables that can hold a single value and arrays
that can have multiple ordered values in one or more
dimensions (i.e., vectors and matrices).

Variability and Pseudorandom Numbers

Some (or most) of the parameters used to parameterize a
model have some associated variability in relation to both
uncertainty in the empirical estimates and natural
variability, typically in time, space, or associated with

interindividual variability. These sources of stochasticity
need to be dealt with, first in the conceptual model by
identifying and justifying which of them are relevant,
and then when defining the parameterizations that will
be used for sensitivity and further analyses.

In order to obtain a stochastic value from a known
distribution, we use standard procedures that generate
pseudorandom numbers and that are available in all com-
pilers. These procedures need to be initialized with a seed
number. If we always use the same seed, wewill obtain the
same sequence of numbers, which is helpful in detecting
errors in the code. Typically, when running simulations, we
use different seeds coming from a highly variable source
(such as the clock of the computer, with the help of the
relevant function), thusmaking the sequencemore unpre-
dictable (be aware that some of the algorithms can be
poor, with relatively short return rates).

Pseudorandom number generators produce numbers
from a given distribution, usually a uniform distribution
between 0 and 1. Unless the probability density distribu-
tion that we need is already implemented in the compiler,
as often occurs with the normal distribution (with a given
mean and variance that we need to specify), we can use
the pseudorandom numbers obtained from the uniform
distribution to randomly sample any other probability
density distribution or discrete probability histogram, with
a bit of thought and simple math: by rejection sampling or
using the inversion method (inverse transform sampling),
in which we use the cumulative distribution function of
the known probability distribution.

Often we may have erratic errors occurring at low rates.
To locate where they occur in the code, it helps to switch
off the randomization process used to generate pseudo-
random numbers. In that way, the error will always occur
at the same point of the simulation, allowing you to locate
the problem. We can use breakpoints in the code just
before the error happens and then run the code line by
line from within the compiler.
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basically do two things: either be reflected back into the
domain, which would be the case for movements within
closed populations bounded by a fenced area, an island, or
an oversized spatial domain, or emigrate by leaving the
domain. If we implement emigration, we may need to
implement immigration as well. In some cases, it is suffi-
cient using a balanced emigration–immigration function
by moving individuals back into the domain at the other
end of the dimension they left in a torus-like fashion. In
any case, the best answer depends entirely on the system
and the question at hand.
Last, a critical concept we must think about carefully is

that of scheduling, or how processes having different reso-
lutions are nested and, for those with the same resolution,
how they are ordered. Even in simple models, sometimes
it is not easy answering questions such as what or who
should be first, as is the case for survival and reproduc-
tion, in a model with only one temporal resolution (see
for example the model in Box 10.3 and think about the
effect of calling survival first instead of reproduction).
In models with an implicit time, as occurs with some

short-term IBMs dealing with individual decision-mak-
ing, or within a temporal resolution, we still need to
define the order of interaction between individuals, that
is their cuing or implicit timing of interindividual interac-
tions. Different schedules affect model behavior and
results. Again, the conceptual model is critical here as
well as the explicit listing of how many temporal and spa-
tial resolutions we have for each of the processes involved
(Berec 2002). Once you have a schedule, it also helps to
plot a diagram describing it (Figure 10.2).

10.2.7 Single Model Run, Data Input,
Model Output

The core model can be used to run single simulations. As
such, it is not of much use apart from demonstration or
educational purposes with regard to our conceptual
model. Most compilers allow for a process called debug-
ging, which permits detecting the existence of program-
ming errors, often locating the place where the code
is flawed. Therefore, this debugging compilation will

Box 10.5 Space Representations

We can use two simple approaches to define space by
using either a continuous or a discrete space.

Continuous Space

In this case, the location of each individual within the spa-
tial domain is defined using a Cartesian or polar represen-
tation. This approach is typical of applications in which
individuals move independently of an environment or
at most their movement is affected by only a few spatial
references that we can track with their coordinates, such
as the location of other individuals or the location of a
nest. The location of each individual is kept as individual
traits (its coordinates) that change when it moves,
whereas the spatial resolution is given by the resolution
of the numeric values used (e.g. integer or floating types).
Nevertheless, it is perfectly possible to use more complex
vectorial map representations, which will require a bit
more thinking and recalling the trigonometry we learned
in secondary school.

Discrete Space

This approach is used in cases withmore complex spatially
explicit environmental properties, such as several levels of
habitat quality affecting survival or movement. In that
case we can represent a map as an array of one, two, or
three dimensions (more akin to a raster GIS landscape

map), depending on the required dimensionality: one
for landscapes, such as rivers, that can be represented lin-
early; two for x and y landscapes, and three if we need x, y,
and z coordinates such as in the ocean, or if using a
dynamic landscape (x, y, and t). In this array, each dimen-
sion is indexed between 0 and a maximum value (as
defined by the domain), with the index representing the
spatial location (coordinates) and the value at that loca-
tion some relevant environmental property (for example,
1 for presence of a nest, 0 for absence; or different values
representing different habitat qualities). The discrete
space represented by the array has a typical resolution
(e.g. 10 × 10 m or 5 × 5 km) which is not explicit in itself.
A good way to visualize this is to think about the typical
bidimensional map represented as a grid or a raster
map with x and y coordinates and a stored value within
each grid cell. Grid cells can be square or take other shapes
(hexagonal grids; Liu et al. 1995; Letcher et al. 1998). Very
often the resolution of the map is also used to define the
coordinates of the position of individuals, thus using only
one spatial resolution in the model. If we do not use the
same resolution we have to deal with the scaling between
the two, one for individuals and one for the map, with
some rules (such as rounding or truncation, behavior at
the border of grid cells, etc.). For most applications grid-
based approaches may be sufficient, whereas for very
large domains it can be computationally demanding.
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probably be the first manner of execution that we face, to
our despair, but it is needed to obtain a clean and consist-
ent core model. Nevertheless, debugging does not solve
the inconsistencies that we introduced in the conceptual
model or in the questions (Figure 10.1).
To run the model, we need to parameterize it by setting

initial values to all model parameters (Box 10.6) and
defining the initial conditions with the starting popula-
tion size and structure and the environmental setting.
After running a simulation, we need to obtain some out-
put describingmodel behavior and predictions (Box 10.6).
Remember that in the conceptual model we had identi-
fied simulated data directly linked to specific questions

and their a priori predictions. IBMs are stochastic models
and, therefore, the output variables will yield different
results in different simulation runs with the exact same
parameterization and set of initial conditions. To esti-
mate the probability distributions of each of the output
data, a number of simulation runs must be repeated with
each parameterization. A reasonable rule of the thumb is
enough runs to obtain stabilized estimates of the mean
and standard deviation of the output variables.

10.3 Protocols for Model
Documentation

At this stage, we have a general aim that breaks into a set
of specific questions and their potential responses based
on a priori expectations, a conceptual model describing
the system and the potentially relevant processes involved
(and their parameters), and a description of how those
processes drive the interactions between individuals,
between those and the environment, and the environ-
mental dynamics itself, generating the dynamics of the
population. We have implemented the conceptual model
into a simulation model in what I have called the core
dynamic model. At this stage, it is crucial to document
what we did so far before the model gets too complex.
During the process of building the model, we probably
needed to modify some parts and details of the concep-
tual model to accommodate the explicit way we built it
and why we did so (Figure 10.1). Once we start analyzing
the model, we will probably need to revise both the con-
ceptual and the core dynamic models again. A process of
continuous refinement is normal and it is not a problem
in itself. Nevertheless, and as complexity grows, we have
to document what we have, even if it needs be modified
later on.
Traditionally, model documentation has ranged from

simple verbal descriptions to detailed descriptions and
justifications, including pseudocode or even the full code
of the model. Model documentation should run together
withmodel building, as it forces us to go through a process
of thinking about how we are designing things and how all
the components integrate. The documentation should
include bothmodel justification and a detailed description
of its processes. For that reason, the refined version
of the conceptual model, after the revision when
constructing the model, should be the main part of the
documentation.
Some general guidelines can help properly inform our

work.We need to be as clear as possible about the general
aim and the specific questions to be addressed, including
the a priori predictions and the list of model behaviors
and variables dynamically predicted by the model that
will be used in the analyses. If using field or theoretical

initialization

no
female?

yes

yes

yes

saveplot N

reproduce? add
individual

no

no

no

for N individuals

survival

survive?

age>max_age?

age=age+1

delete
individual

reproduction

for N individuals

for t years

load
parameter values

create population
add N0 individuals

Figure 10.2 Schematic flow chart depicting the scheduling of a
time step for the model described in Box 10.3. Time resolution is
one year and space is implicit.
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data to compare with the predictions of your model, be as
clear as possible about the methods used and the quality
of those data sources. Make explicit all rules, equations,
and schedules included in each of the processes, with
the help of graphs and other schemes, if needed
(Figure 10.2). Use mathematical notation to declare equa-
tions and also rules, such as conditional probability or
Boolean algebra notation. List model parameters, includ-
ing constants, in association with the submodels they are
implicated in, their description, and the available

estimates with both their variability and the associated
uncertainty, explaining and justifying the field and statis-
tical methods used and/or the data sources. Make explicit
all scales, domains, resolutions, and how they integrate in
each of the processes. Explain carefully how stochasticity
is handled, including parameter sampling, randomiza-
tion, and any other decision that may affect the interpre-
tation of the results such as data rounding or truncation.
Last, consider seriously publishing a final version of your
code, either in the form of annotated pseudocode

Box 10.6 Data In, Data Out

There are threeways to parameterize amodel. The simplest
is by typing assigning statements in the code. For example,
we can define the variable storing the maximum age that
an individual could reach equals 10 years (max_age = 10
in Box 10.3). This can be done with all the required informa-
tion. Nevertheless, this approach is normally used with
parameters that will not change in between simulations
(such as constants).

If our model has a GUI, we can add components to it on
which we can specify parameter values. There are many
types of components, such as text, combo, or drop-down
list boxes, all of which have a default value that can be
changed again in the form once the code is executed.
Those values can easily be assigned to the relevant para-
meters. This method is useful to explore model behavior.

The most efficient way for the analyses is using stand-
alone files in which we specify all the parameterization(s)
at once. The easiest is using text files with information
delimited in some way (e.g. comma, space, or tab sepa-
rated values) to allow for easy identification of the values.

Once the file is open and read, we can use a series of
assigning statements to initialize all the variables. All this
can be programmed in a subroutine which will be run
early in the model to load all the parameters. Other types
of files that can be used are data tables belonging to a
database. This is a bit more complex since we would need
to install the required ODBC (Open Database Connectivity)
drivers for the specific database engine (e.g. MySQL, Post-
greSQL, or DB2) and some libraries in our compiler.
Retrieving output data is done in a similar way to input

data: plotting graphical output in the GUI, saving it in text
files, or using a database engine from within the model.
For example, we can add a graph component to plot
the trajectory of population size (Figure 10.3). Retrieving
graphical output is very useful in the initial phases of
model evaluation and analysis, whereas saving data in
files is the standard for in-depth analyses. Keeping the out-
put data together in the same files with the model para-
meters used (and the constants) is always a good
recommendation to avoid future confusion.
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Figure 10.3 Graphical output for population size simulated
with themodel given in Box 10.3 and parameterized with N0 =
30; PR = 0.6; PS = 0.9; max_age = 10; t = 100. The plot
corresponds to 10 simulated population trajectories and their
average (bold line). With this parameterization we observe two
extinctions and the effect of the initial condition lasting for the
first 15 years.
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(Box 10.3), the code of your core model, or all code pro-
duced for both the core model and the analyses, with sep-
arate versions to help in understanding what was done.
There have been several attempts to make explicit a list

of minimum requirements to document IBMs in the form
of model documentation protocols (Mooij and Boersma
1996). Themost popular is theOverview, Design Concepts
and Details (ODD) protocol presented by Grimm et al.
(2006), which has been updated and expanded by Grimm
et al. (2010) and by Topping et al. (2010) who created the
ODdox version for C++ code annotation and documenta-
tion. The result is a set of documents providing a heavily
annotated and hyperlinked version of the ODD protocol
linking model description to the source code. The ODD
protocol or any other alternative can be used as a guide-
line to check that we considered and described properly
all the components of a model. The ODD protocol is a
good way to organize and present information, but other
alternatives maybe be more consistent with the aims and
level of complexity of your model (Müller et al. 2014).

10.3.1 The Overview, Design Concepts,
and Details Protocol

The ODD protocol aims to offer a standard that provides
an ordered sequence of information that allows readers to
follow the logic and details of any IBM (Grimm et al.
2006, 2010). It first starts with general information in
the Overview section (Table 10.1), described by three ele-
ments: the purpose of the model, the state variables and
spatiotemporal scales, and finally a short overview of the
processes and scheduling. The next section, the design
concepts, describes the strategic design of the model.
The current version includes a list of 11 elements, ranging
from emergence and adaptation to collectives or stochas-
ticity. The list of elements is a bit arbitrary and it is not in
a particularly relevant order. Go through them and build
an ad hoc list by selecting the ones relevant for you. The
final section goes into an explanation of the model in
detail, including the initialization, the input data, and
finally, a detailed description of all processes. All sections
and subsections of the ODD are articulated as groups of
questions (Table 10.1). The final result is a document in
which relevant details of the model are described. Never-
theless, following the guidelines of the ODD does not
ensure that the explanations make sense, especially if
your conceptual model is not consistent and well thought
out. In the process of building your conceptual model you
can use the ODD questions to check what you might be
skipping.
Grimm et al. (2010) assume that a single protocol can

suit all potential model implementations and that the
ODD protocol should be strictly followed. However,
the question of whether a single protocol can be applied

to a variety of implementations built to address different
questions remains unresolved. My view is a bit more
unorthodox because depending on the aims, we can find
alternative ways to efficiently communicate our work. For
example, in my view the clarity of the documentation of a
model improves by clearly separating what belongs to the
description of the core model from the description of the
analyses. Details include different model parameteriza-
tions and initial conditions that are typically associated
with specific analyses. In doing so, it is easier to under-
stand the different steps, especially if the parameteriza-
tion and initial conditions differ between analyses.
Additionally, separating those two parts simplifies the
distinction between what we consider as supported
knowledge and the part that we will investigate in detail
both in relation to model structure and parameterization.

10.4 Model Analysis and Inference

Analyzing a model is about understanding its behavior
and its emergent dynamic properties under different con-
ditions. The analysis of complex models is not a simple
task. At this stage, the ecologist will use all of her knowl-
edge about experimental design and statistical analyses,
including the methods explained in this book. There is
no single best way to analyze an IBM, with different
approaches ideally yielding similar conclusions. Never-
theless, I offer some general guidelines to simplify the
challenge. It is often difficult to distinguish between the
phases of model building and model analysis because
during the analyses we may be forced to redefine once
again the initial conceptual model and the code, in
another iteration of the modeling cycle (Figure 10.1;
Grimm and Railsback 2005). Normally we will follow a
step-by-step program of analysis. I distinguish between
four main steps. First, we need to go through a process
of model debugging and consistency checking, followed
by an evaluation of the consistency of model structure
and a sensitivity analysis. Next come the steps of model
selection, validation, and calibration. Last, you should
try to answer the questions that motivated the model
within the inference constraints imposed by the previous
results (Figure 10.4).

10.4.1 Model Debugging and Checking
the Consistency of Model Behavior

Before going into your questions of interest, you should
perform a thorough evaluation of model performance
to detect errors arising from model design or implemen-
tation and determine if the behavior of the model makes
sense. In this a priori checking you will detect many small
problematic details and bugs that once removed will
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Table 10.1 The Overview, Design concepts and Details (ODD) protocol for documentation of individual-based models (IBM).

Elements Questions

Overview Context and general information

1 Purpose What is the purpose of the model?

2 Entities, state variables,
and scales

What entities (e.g., individuals, collectives) are in the model? By what state variables (attributes and traits)
are these entities characterized?What are the temporal and spatial resolutions and domains of the model?

3 Process overview and
scheduling

Who (entity) does what, and in what order? When are state variables updated? How is time modeled, as
discrete steps or as a continuum over which both continuous processes and discrete events can occur?

Design Strategic considerations

4 Design concepts

4.1 basic principles Which theories, hypotheses, assumptions, or modeling approaches are behind a model’s design? How
were they taken into account? Are they used in submodels or at the system level? Will the model provide
insights into the basic principles themselves?

4.2 emergence What model results are expected to vary in complex and perhaps unpredictable ways when particular
characteristics of individuals or their environment change? Are there other results that are more tightly
imposed by model rules and hence less dependent on interactions?

4.3 adaptation What adaptive traits do the individuals have? What rules do they have for making decisions or changing
behavior in response to changes in themselves or their environment? Do these traits explicitly seek to
increase some measure of individual success regarding its objectives, or, instead, cause individuals to
reproduce previously observed behaviors?

4.4 objectives If adaptive traits explicitly act to increase some measure of individual fitness, what exactly is that objective
and how is it measured? When individuals make decisions by ranking alternatives, what criteria do they
use?

4.5 learning Do individuals change their adaptive traits over time as a consequence of experience? If so, how?

4.6 prediction How do individuals predict the future conditions (either environmental or internal) they will experience?
What internal models do they use to estimate future conditions or the consequences of their decisions?
What tacit or hidden predictions are implied in these internal model assumptions?

4.7 sensing What internal and environmental state variables (including those of other individuals) are individuals
assumed to sense and consider in their decisions? Are there mechanisms by which individuals obtain
information, or are they assumed to know these variables?

4.8 interaction What kinds of interactions among agents are assumed? Are there direct interactions in which individuals
encounter and affect others, or are interactions indirect? If the interactions involve communication, how is
it represented?

4.9 stochasticity What processes are modeled as random or partly random? Is stochasticity used to reproduce variability in
processes for which the actual causes of the variability are unknown or not relevant? Is it used to model
events or behaviors with a specified probability?

4.10 collectives Are there social networks? If so, are their structures imposed (a priori additional entity) or emergent? Are
collectives affecting, or have been affected by the individuals?

4.11 observation What data are collected from the simulations for testing, understanding, and analyzing the model? How
and when are they collected?

Details Detailed technical description

5 Initialization What is the initial state of the model at the beginning of a simulation run? Is initialization always the same,
or is it allowed to vary among simulations? Are the initial values chosen arbitrarily or based on data?

6 Input data Does the model use input from external sources such as data files or other models to represent processes
that change over time?

7 Submodels What, in detail, are the processes listed in point 3? How were they designed, parameterized, and tested?
What are their parameters, dimensions, and reference values?

Source: Adapted from Grimm et al. (2006, 2010).
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Figure 10.4 Schematic representation of the analyses of IBMs, including the steps of model debugging and consistency check, sensitivity,
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improve model consistency, saving a lot of time later on.
Note that while writing the code of your model you were
already debugging it at compilation time: any error
appearing during compilation should have been
corrected already (Box 10.4). Now we search for errors
during execution time. The model should be able to
run simulations with no errors during a single simulation
run, using a standard parameterization with the mean
value and variability for all parameter estimates.
The next step consists of forcing model behavior with

different combinations of parameters set at extreme
values, such as very low or high survival rates. Testing
boundary conditions will force working with many zeros
and with large numbers (including many individuals),
thus causing errors to appear. It is a good idea to repeat
this step by step, going through the different processes
before making overall extreme parameterizations of the
model. Tests may generate problems by making forbid-
den or undefined calculations, such as floating point
divisions by zero and other exceptions that the code does
not handle properly. Many of the errors will be associated
with exception handling, which depending on the lan-
guage and compiler will be easy to solve. Other important
sources of errors will be associated with logical failures in
scheduling and the way we introduce stochasticity into
parameter values.
Simultaneous to model debugging during execution, it

is important to look for biologically implausible
behaviors, especially when working at extreme parame-
terizations. Before concluding that an interesting or
unexpected behavior is a new finding, we must consider
the possibility that it is associated with something
incorrect in model specification or coding. The dynamics
of the model should be consistent with the general expec-
tations of the conceptual model. It is a good idea to use
graphical output to check the relevant output in run time,
as well as saving simulated data together with parameters
and tracking other data not directly related with the
model aims and emergent properties, such as realized
reproductive and mortality rates. All this information will
serve as a log file, helping to determine whether an unex-
pected model behavior is due to a problem with design or
programming, or if it is a new emergent result. Be sure to
update the documentation of the model to describe the
changes made in the conceptual or core models.

10.4.2 Model Structural Uncertainty
and Sensitivity Analyses

The next step in analyzing an IBM should deal with
setting the context in which to interpret the results: what
are the limits for the inference? This step has two
complementary sides, one related to model structural
consistency, as defined by the processes and how they

are integrated, and the other to the parameterization of
those processes (Figure 10.4). Thinking about the
structural uncertainty of a model consists of specifying
alternative definitions of the processes that we have
implemented, such as using additive or multiplicative
processes, or different functions such as power or expo-
nential laws. It is important when we do not have a good
empirical description or theoretical justification for the
choices. For example, imagine that based on empirical
data we implemented a function in which survival is
affected by temperature, but there is no data on which
function is best and how it needs to be integrated with
other factors such as density. If the main reason to build
your model is addressing questions regarding the impact
of temperature variation on some relevant population
traits, it will be a good idea to think of alternative ways
to implement the processes, such as an additive or
multiplicative interaction with density. The idea is to
create two or more alternative model structures that will
be subject to sensitivity analyses. Further analyses will be
repeated for each of the alternatives and the results
compared for consistency under a model selection frame-
work. Sensitivity analyses will help to gain confidence on
how the specification of the model may affect inference.
Structural uncertainty should be evaluated for processes
that have some level of uncertainty and for which we
expect, a priori, a relevant role on model behavior
(Figure 10.4).
In sensitivity analyses, we quantify how changes in the

values ofmodel parameters affect the value of the key out-
put variables. This is achieved by repeatedly running the
model with different parameterizations and measuring
how the relevant outcomes respond. Depending on the
aim of the analyses, we can differentiate between two dif-
ferent types: sensitivity analysis in a strict sense versus
uncertainty analysis. In sensitivity analyses we define
the range of values to be explored using biologically
realistic values for each model parameter that we want
to explore. For example, the boundary conditions
might set the parameter hypervolume, using parameters
between the minimum and maximum values reported in
the literature. In this way, we can explore the potential
behaviors of the system under plausible conditions. Con-
versely, in uncertainty analysis we sample only within the
existing uncertainty around each of the parameter esti-
mates to determine the variability of the response of
the model in relation to the available information. Typi-
cally for some parameters we do not have accurate esti-
mates from the literature or from empirical data, for
instance, the probabilistic parameters used in stochastic
rules, and this uncertainty needs to be taken into account
to avoid overinterpreting the results.
Sensitivity analysis is generally considered a key com-

ponent of the quality evaluation of any model, for
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understanding the model itself and providing the context
in which the rest of the results will be interpreted. For
example, if the model aims to evaluate a conceptual
hypothesis then the actual parameterization is not so
relevant, whereas model behavior in a range of plausible
conditions is. On the other hand, uncertainty analysis is
particularly useful in indicating which parameters are
candidates for additional research to narrow the degree
of uncertainty in model results, and is a key component
of models built for making predictions based on empiri-
cally estimated parameters. Something that is often over-
looked in sensitivity analyses is the possibility of including
how parameters interact by including covariation in
parameter values. A final recommendation is avoiding
sensitivity analyses using the central estimate of parame-
ter values and an arbitrary small amount of variation
(typically ±5 to 10%). The range of values to be used
should be well justified.
In sensitivity or uncertainty analyses two general

approaches are used depending on whether all para-
meters are considered simultaneously or not. In local
and one-at-a-time analyses we sample the range of values
of just one parameter while keeping all the others con-
stant at their central estimate and thenmeasuring to what
extent the output of the model is affected. One-at-a-time
approaches perform poorly when dealing with complex
models such as IBMs and should in general be avoided
(Saltelli and Annoni 2010; but see Beaudouin et al.
2008). In global or multivariate sensitivity analyses we
explore all the parameters simultaneously, repeatedly
sampling the n-dimensional parameter hypervolume.
The sensitivity analysis will require a substantial

amount of coding only for this purpose. Therefore, mak-
ing a specific version of the model for this is a good idea.
By coding loops, one for each parameter and with asmany
steps as values needed for each of them, you can run a
global analysis at once even if you have a lot of parameters
to sample. There are several ways to sample the param-
eter hypervolume, from simply randomly choosing
parameter values (very inefficient) to a complete factorial
sampling design, which may be reasonable for a reduced
number of parameters. The alternative approaches
become computationally challenging for relatively small
models. Just 10 parameters with 5 values each running
with 100 simulation replicates to estimate the variability
of the output requires 107 simulation runs.
Latin hypercube sampling is an efficient approach for

addressing the issue of a large number of simulation runs
(Iman and Helton 2006). Briefly, this technique is a stra-
tified sampling method commonly used to reduce the
number of simulation runs necessary for sampling the
parameter hypervolume. Each parameter is sampled
using an even sampling method and then randomly com-
bined sets containing all parameters are used to run the

model. For each parameter the range of possible values
is divided into nonoverlapping intervals of equal proba-
bility size (Box 10.4). One value from each interval is
chosen at random and this process is repeated for each
parameter until we obtain a parameterization set. The
key is that for every parameter each interval must be
sampled only once until all intervals of all parameters
have been used once. Then the process starts again. If
the model is complex, it may be necessary to use a refined
version of the Latin hypercube sampling that reduces the
dimensionality of the problem by carefully analyzing
some relevant processes before going into a simplified
global analysis.
In the end, we obtain a dataset including the parameter

values used and one or more relevant model predictions
directly related with the questions (such as overall popu-
lation size, density, growth rates, extinction probability,
mean time to extinction, or sex ratio). All this information
needs to be summarized in order to obtain a picture of the
differential role of the parameters and their associated
uncertainty. The most basic way to do this is simply by
using a partial rank correlation analysis (Segovia-Juarez
et al. 2004). A more inclusive approach is to run general-
ized regressions between model predictions with the aver-
age of the replicates for each parameterization as a
dependent variable and model parameters as independ-
ent predictors (McCarthy et al. 1995). The resulting
equations approximate the functions that relate the para-
meters of the simulation model to predictions in a simple
way, while the standardized coefficients of the regression
can be used to describe the sensitivity of model predic-
tions to each of the input parameters (Revilla et al.
2004; Revilla andWiegand 2008). The generalized version
of this approach is referred to as Gaussian process anal-
ysis, in which the behavior of the simulation model with
regard to each of its predictions is approximated by a
Gaussian statistical model in which the predictors are
the parameters of the simulation model (Dancik et al.
2010). Remember that you need to report effect sizes
and confidence intervals to give readers an idea of the
magnitude and relative importance of each parameter
effect. P values do not make sense here since the input
parameters are known to generate the output, while the
unlimited power provided by large simulated sample sizes
makes their interpretation irrelevant.
Last, we need to warn you against using sensitivity or

elasticity analyses to make strong inferences about the
actual factors driving the dynamics of a real population.
These analyses do not necessarily tell you much about
which parameters should be managed in the field. It spe-
cifies what each of the parameters does and the strength
of the effect, so avoid making any definitive conclusion
onwhatmight be going on unless you have some empirical
indication that the parameters identified as important in
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the sensitivity analyses are the ones that need to be man-
aged. For example, the fact that adult survival is the param-
eter with the highest sensitivity or elasticity does not
guarantee that the population is declining due to low adult
survival; it could be entirely due to a lack of recruitment.

10.4.3 Model Selection, Validation,
and Calibration

A bit trickier is comparing the outcome or outcomes of
the model against a specific dataset. The comparison
is usually made for different reasons, such as model

selection, model validation, and model calibration
(Figure 10.4, Table 10.2). If we are dealing with uncer-
tainty in model structure, we will have alternative process
specifications which can be assessed by their capacity to
reproduce the observed data. In the case of validation, we
typically have estimates of model parameters with their
variability and uncertainty, which are then validated by
evaluating their capacity to replicate an empirical dataset
or some empirically observed behaviors, setting a
credibility standard for that model structure, parameter-
ization, and question (Figure 10.4).Calibration is a kind of
model parameterization in which we estimate parameters

Table 10.2 Some issues to consider when comparing empirical and simulated data for model selection, validation, and calibration.

Data
Key data Empirical data directly related with the questions to be answered with the model.

Ancillary or secondary data Empirical data not directly related with the questions. It contains information useful inmodel selection and
calibration. Often corresponds to data at discordant spatiotemporal scales.

Estimates Key and secondary data can be quantitative, including point estimates and their uncertainty and variability,
or qualitative, such as trends

Summary statistics Aggregation of data into new simplified yet informative statistics (for example calculating a growth rate
from a raw series of census data). This is often done to simplify the comparison between data and
predictions.

Single vs multiple The amount of data can vary from a single key variable to multiple key variables and secondary data.

Predictions
Symmetry We need to calculate as model output the same key and secondary predictions as with the empirical data.

Single parameterization For a given parameterization we generate a frequency distribution of model predictions by repeating a
number of simulations with the parameterization.

Output formats Predictions can be obtained as graphical outputs to visualize the results and saved into files. It is convenient
saving the parameterization within the output files.

Multiple parameterizations Often we need to repeat the process for multiple parameterizations obtained by moving across the
parameter space.

Comparisons
The logic Systematically compare data and predictions to estimate the likelihood of reproducing the observed data

with a given parameterization and model structure.

Types of comparisons Rejection filtering by using pattern oriented modeling or informal likelihoods

Direct calculation of the likelihood by running a sufficiently large number of simulations

Informal likelihoods (e.g. sum of squared differences between data and predictions)

Nonparametric likelihood approximations (e.g. kernel density estimation)

Parametric likelihood approximations (e.g. Z scores)

Approximate Bayesian computation

Methods to define
parameterizations

Systematic search of the parameter space when the number of parameters is low

Latin hypercube sampling for more complex models

Markov chain Monte Carlo strategies: Metropolis–Hastings and Gibbs sampling algorithms and their
variants.

Sequential Monte Carlo approaches, also known as particle filters or bootstrap filters

Numerical optimization methods such as genetic algorithms, simulated annealing, simplex algorithm, or
support vector machine algorithms
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from observed field data on model predictions by filtering
out the parameterizations that do not match the data, by
Gaussian process approximation or any other likelihood
approximation (Hartig et al. 2011). It is important to note
that we leave model parameterization for the analysis-
inference and not for model building since this step is
important in understanding how the model behaves.
Parameterization is often first about defining and then
reducing the dimensionality of the model before making
any strong inference such as management recommenda-
tions. Model parameterization by calibration (or inverse
modeling) may use no a priori information on the actual
parameters, ormay use the available information as priors
under a Bayesian calibration framework (Hartig et al.
2011). In mechanistic modeling, we assume that we can
use information about the processes and how they
integrate from other populations, whereas the parameters
are just different realizations that we may observe. In
model calibration, we can simultaneously perform the
parameterization and the uncertainty analysis.
This step requires the systematic comparison of empir-

ical and simulated data to decide which of the tested
parameterization sets or model structures reproduce
the empirical data in a reasonable way by calculating
the probability of reproducing the field data with a given
model structure and parameterization. Typically, we run
simulations until we obtain a distribution of the frequen-
cies of the simulated observations that the model struc-
ture and parameterization can generate and from them
calculate the probability of observing the field values.
The comparison between the observed and simulated
data can be straightforward, as the difference or the
sum of squared distances between the observed values
and those obtained from the simulated data, or more
efficient if we make the comparison only once against
the summary statistics of the simulated frequency distri-
bution (mean and variance). Conceptually, we can gener-
alize all the alternative approaches as a kind of point-wise
likelihood approximation of the goodness-of-fit of our
model to the data (Hartig et al. 2011). As such, we need
to calculate the likelihood of observing the empirical data
for each model structure and parameterization. The final
goal is finding the structure and parameterization that
maximizes that likelihood, thus obtaining a parameteriza-
tion of the model with field data on model predictions,
obtaining an estimate of the uncertainty by knowing
how many alternative parameterizations match our
threshold of fit, or simply helping us to select the model
structure that is best supported by the available data
(Figure 10.4). Hartig et al. (2011) review the different
methods under a useful likelihood-based inference con-
ceptual framework. The methods range from those that
explicitly approximate the likelihood, such as approxi-
mate Bayesian computation, simulated (synthetic)

pseudo-likelihoods, or indirect inference, to those that
allow calibrating the model without explicitly approxi-
mating the likelihood, such as pattern-oriented modeling
or informal likelihoods (Beaumont 2010; Hartig et al.
2011). The value of these methods is that the structural
realism in the definition of processes at the right scales
allows for inverse parameter estimation (Wood 2010;
Hartig et al. 2011, 2014).
One of the classic ways to calculate the likelihood of

obtaining the observed data given a model structure
and parameterization makes use of central limit theorem,
which allows us to calculate the probability of obtaining
an empirical measurement from the summary statistics
of the distribution of model outcomes for a given param-
eterization, if the simulated distribution can be approxi-
mated with a normal distribution as a parametric
likelihood approximation (following the notation of Har-
tig et al. 2011). For each model prediction, we calculate a
match score, for example, a Z score using the mean and
the standard deviation of the simulated replicates
(Revilla et al. 2004); while by setting different threshold
probabilities for acceptance we can simultaneously eval-
uate multiple model predictions using a multicriteria
approach, such as Pareto optimality assessment
(Reynolds and Ford 1999). Alternatively, we can use a
Bayesian framework to calculate the posterior distribu-
tion and proceed in a similar manner (Beaumont 2010;
Hartig et al. 2014). If the simulated frequency distribution
generated by themodel does not conform to a normal dis-
tribution, which typically occurs when using highly aggre-
gated data that generate multimodal distributions, then
we may instead use a kernel density estimator to obtain
a nonparametric estimation of the probability density
function of the simulated distribution and subsequently
calculate the probability of observing the empirical data
from it (Tian et al. 2007). There are cases in which the var-
iability in the observed data is high due to measurement
error, but the predictions of the model for the same type of
data shows lower variability. In these cases it is advisable to
add a tractable error term (parametric or nonparametric)
on the side of the observed data to account for noise
(Hartig et al. 2011). If we are evaluating alternative model
structures, and therefore cannot be sure of the origin of
the mismatch between observed and simulated data
(structure, parameterization, or stochasticity), it is advisa-
ble to use simpler measures ofmismatch, such as the sum
of squared distances between the observed and simulated
data (informal likelihoods; Hartig et al. 2011) or some kind
of ad hoc rejection filtering under the pattern-oriented
approach (Grimm et al. 2005).
Pattern-oriented modeling, also termed rejection or

performance filtering (Grimm et al. 2005; Webb et al.
2010; Hartig et al. 2011), can be applied to models of
dynamical systems. It is probably the most liberal
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approach with regard to model selection, validation, and
calibration, because it can also be used when the data to
be adjusted (both the empirical and/or the simulated
data) have complex distributions such as multimodal or
multidimensional, or when the quality of the empirical
data is poor or simply unknown. The method consists
of defining criteria that allow classifying whether model
structures or parameterizations match the observed data
within a given explicit threshold, instead of calculating
the actual likelihood of obtaining the observed value or
a close enough value. The criteria used to define the
thresholds can be diverse or even ad hoc, andmay include
some of the indexes of adjustment discussed above, such
as a mean squared difference or a Z score threshold.
Additionally, we can use the error of the field data esti-
mates to define the criteria. It allows using multiple ancil-
lary data which in isolation do not contain much
information, but that in combination can provide a robust
approximation to constrain model behavior within the
limits of the available information (Wiegand et al. 2004b).
Potentially, the number of variables that may be

included in the empirical dataset to be directly used in
the comparison with simulated output can be large. Often
we aggregate the available information in some way to
obtain a simplified set of data that can be compared with
the simulated output. These variables are referred to in
the literature as patterns, state variables, output variables,
or simply summary statistics (Hartig et al. 2011). The dif-
ficulty lies in deciding, which of the many alternatives are
statistically sufficient given the purpose of the model. The
statistics need to convey information on the relevant
properties of model dynamics. A good recommendation
is to choose variables that operate at different spatial or
temporal scales and hierarchical levels, including vari-
ables describing stationary and nonstationary dynamics
(Grimm et al. 2005; Wiegand et al. 2004b; Wood 2010).
Nevertheless, the question behind your model should
be the key when you decide which data are relevant, obvi-
ously, within the limits imposed by the available empirical
information.
All the methods discussed above require searching the

potential parameter space in order to find the model
structure or parameterizations best supported by data
using some kind of numerical approximation (Bolker
2008). In models with a reduced dimensionality, we can
use a Latin hypercube sampling strategy. In more com-
plex models, say above 20 parameters, depending on
the availability of computing power, the programming
language, and how efficiently the model was coded, we
will need a more efficient sampling strategy, such as
Markov chain Monte Carlo strategies, including the
Metropolis–Hastings and the Gibbs sampling algorithms,
which start with an initial parameterization obtained
from the parameter space, from which we generate a

new parameterization by randomly moving a small
amount within the parameter space. Then the likelihood,
or similar, of the two consecutive parameterizations is
compared, retaining the best one from which a new
parameterization is obtained. There are lots of variants
aiming to increase the speed, for example by reducing
the correlation between consecutive parameterizations,
and to avoid getting stacked in local likelihood maxima
by going downhill with some probability. Another alter-
native is using sequential Monte Carlo approaches in
which, starting with a set of parameterizations obtained
from the whole parameter space, we calculate the
point-wise likelihood and then weight each of them, for
example, by their normalized importance weight, accord-
ing to their estimates. From this initial set, we obtain a
new set of parameterizations with probabilities according
to their weights and repeat the process until some conver-
gence criteria are met, such as that all parameterizations
within the set are within a given likelihood threshold.
Last, we can consider using a numerical optimization
algorithm when dealing with multiple data to be fitted
under a pattern-oriented approach (Table 10.2). Hartig
et al. (2011) provide pseudocode algorithms for some
of these numerical sampling methods. Applying these
methods is most efficiently done by programming the
routines within the coding environment. The methods
in themselves are not complicated (though the specific
jargon is) but require extensive coding. Remember mak-
ing a specific version of the model for the purpose of val-
idation and calibration. A potentially less efficient
alternative is generating the simulated datasets and then
using some of the algorithm implementations available
within R.

10.4.4 Answering your Questions

At this stage, and after all the work is done, we should
have a clear idea of the questions to answer. The potential
uses of IBMs are broad and flexible, as are other stochas-
tic simulation models, making it difficult to summarize
their uses (see examples in Section 10.1.2). The first
and most basic use consists of reviewing and integrating
the available knowledge on a system. This step is
completed by building the conceptual model and its
implementation in a core model plus the sensitivity anal-
ysis over the biologically plausible parameter space and a
validation of the model with independent data. We must
provide all the available information, making clear what is
supported by knowledge and data and what are the
assumptions and hypotheses which should be investi-
gated further. Following the initial step, the typical use
of IBMs consists of gaining new knowledge about how
a system usually works, often evaluating the predictions
of theoretical models and empirical generalizations for
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population regulation, movement, density dependence,
or interspecific interactions such as predation or diseases.
Last, practical applications represent a broad field of use,
including population viability analyses, the evaluation of
alternative management scenarios for conservation,
population control or exploitation, the evaluation of
strategies to control diseases, or measuring the impact
of infrastructures on connectivity among spatially
structured populations, just to mention a few.
All these uses have in common the description of model

behavior under different scenarios. A scenario is defined
by a model structure, an initial condition, and a parame-
terization, which also includes the space definitions used
in spatially explicit models, normally as maps. For the
scenario, we obtain frequency distributions of the relevant
model outcomes by running multiple stochastic simula-
tions. The simplest approach is just a qualitative or quan-
titative description of those outcomes, for example, by
plotting the results in figures. It is much more common
that we need to compare the results of one scenario
against other scenarios, empirical data, or theoretical
expectations in a qualitative and/or quantitative way, as
discussed in the previous section. Comparing the output
of the model for alternative scenarios is more or less
straightforward, especially if what we need is the relative
evaluation against a desired standard. For example, we
may need to evaluate alternative hunting strategies to esti-
mate maximum yield, to reduce interannual variability in
population size, or to minimize extinction risk. We can
also use statistical descriptions to compare the
distributions of outcomes for the different scenarios.
The comparison of multiple scenarios, such as manage-
ment alternatives, needs to be carefully thought out under
the standard framework of experimental design in a
virtual ecologist approach (Zurell et al. 2010).
Last, one important issue to consider when designing

experiments is model hysteresis or the dependence of
model behavior on both its current and past states. The
initial conditions or a perturbation often impose a
transient-state phase after which the system may reach
a steady state with stationary stochastic dynamics, which
occurs when the dynamic properties of the model do not
change over time, with the frequency distributions of
model outcomes remaining stable. Depending on the
aims, we may need to focus on the nonstationary dynam-
ics, for example, when studying the impact of an event or
perturbation, such as the success rate of different reintro-
duction scenarios varying in the number of animals
released (Kramer-Schadt et al. 2005), or a PVA affected
by the initial conditions imposed by an empirical estimate
of population size and structure (Wiegand et al. 1998).
We can also focus on the steady-state phase, as we do
when calculating the intrinsic mean time to extinction
in a PVA (Grimm and Wissel 2004), or on both transient

and steady phases, for example, when investigating the
impact of different management activities starting with
an observed initial population size (Wiegand et al. 2004a).

10.5 Software Tools

Individual and agent-based models can be constructed in
a variety of different programming languages. For the
online exercises associated with this chapter, I chose a
generic language and a relatively simple open-source
compiler platform to implement the three exercises.
I provide pseudocode in Object Pascal language
using the Free Pascal compiler in Program Lazarus.
Lazarus is cross-platform, and as such it can be used in
Linux, Windows, or Mac OS environments. It is an inte-
grated development environment (IDE) that allows for
rapid application development. I selected a language
based on Pascal because it is intuitive and as a result
the learning curve is not as steep as with other languages
such as Java or C++. Therefore, following the logic of
the examples will be easier for naïve programmers.
Although Pascal is an old programming language, it
has a long tradition of use in academic circles.

10.6 Online Exercises

Three online exercises illustrate the basics of individual
based models. Exercise 1 is an exponential model that
represents an iteroparous organism with a single repro-
ductive event each year. Exercise 2 extends the exponen-
tial model by adding the effects of density dependence.
Last, Exercise 3 extends the density-dependent model
from a single population to a spatially explicit model with
three different types of habitat: nonhabitat, sink habitat,
and source habitat.

10.7 Future Directions

My chapter is a bit different from the others. More than
discussing a specific method with a lot of examples, it
deals with a research approach that can be implemented
in many alternative ways to address a potentially broad
range of questions. As such, the approach borrows meth-
ods from many disciplines, including not only ecology,
but also statistics, complex systems, and algorithmic the-
ories and software engineering. I did not intend to present
a thorough review of the literature in regard to examples
of IBM implementations and applications. Instead,
I aimed to provide an overview of the whole process, from
the beginning to the end of the research program,
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focusing on those parts that might be more challenging
for newcomers and hopefully providing some useful
guidelines. Using IBMs is by no means easy. The chal-
lenge remains in having a good conceptual model and
clear questions early on. Analyzing the model requires
some experience in order not to be overwhelmed or lost
in irrelevant detail. As with using any other approach that
relies on programming, the learning curve may be steep,
but it should lead somewhere, and knowing where to go is
on the side of the user. Remember that, by itself, building
a model is not the question to answer.
I provide some example models in the online materials.

The examples are built merely to illustrate one of the
many different ways you may choose to start coding an
IBM. The examples are intended to help you to feel more
comfortable with how IBMs are built. The examples are
not core models, just out-of-the-box toy models for
you to play with, modify, corrupt, and modify again,
and in this manner learn a bit more about the logic behind
this research approach. With the help of this chapter and
the methods presented in the rest of the book, you should
be able to address your research questions.
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Summary

Although population ecology is fundamentally concerned with understanding the factors that influence population dynamics
across space and time, collecting the required empirical data can be time consuming and logistically challenging. Quantifying
population dynamics can be particularly daunting for rare or cryptic species where individuals are often difficult to observe,
diminishing the utility of traditional population ecology techniques. Using genetic data in population ecology may alleviate
some of these issues, but the wide variety of statistical techniques and types of molecular data make it challenging for non-
specialists to easily grasp the array of questions that can be addressed and the types of data required. In this chapter we intro-
duce the genetic markers that are most commonly deployed in population genetics and subsequently provide an outline of the
genetic terminology and approaches that will bemost useful in population ecology.We focus onmethodology used to delineate
genetic population structure, estimate population parameters such as population size, growth rate, and demographic history,
and quantify dispersal and gene flow among defined populations. In addition to the insights that molecular data may provide
for population ecology, a more complete integration of population ecology and population genetics will lead to more biolog-
ically realistic geneticmodels and amore comprehensive understanding of the genetics of demographic independence. Further,
combining genetic and demographic data with landscape and environmental information provides a clearer understanding of
how local demographic characteristics (e.g. population density, growth rates, and carrying capacity) and species interactions
influence and interact with dispersal to shape landscape connectivity and source-sink dynamics.

11.1 Introduction

At its core, population ecology is concerned with under-
standing the abiotic and biotic factors that influence pop-
ulation abundance and trajectories across space and time
(Rockwood 2006). As evidenced in many of the chapters
in this book, collecting this information can be onerous,
often requiring extensive field studies over multiple years.
Quantifying population dynamics is particularly chal-
lenging for cryptic or rare species, where it can be difficult
to determine the presence of individuals, let alone obtain
the multiple recaptures required for application of cap-
ture-recapture techniques for population estimation
(Chapter 5) or collecting enough occurrence records
for occupancy or abundance models (Chapter 3). Genetic
data can alleviate many of the issues associated with
obtaining reliable population estimates, defining spatial
structure, and estimating dispersal and gene flow among
populations (Manel et al. 2005; Broquet and Petit 2009;
Luikart et al. 2010). Some of the benefits of genetic data

can be realized by simply using genetic techniques to
identify individuals from hair or scat collected from snags
or ground surveys (Taberlet and Luikart 1999; Waits
2004; Waits and Paetkau 2005) and using these data in
capture-recapture analyses (Lukacs and Burnham
2005). These methods are not only less invasive than live
trapping or capturing of individuals, but can also reduce
the time and resources required for data collection.
Genetic sampling can reveal much more about a

population than just numbers of individuals. Information
such as sex (Aasen and Medrano 1990; Griffiths et al.
1996, 1998), age class (Barrett and Richardson 2011),
genetic diversity of individuals or populations, and even
the probability of an individual being a resident or migrant
(Pritchard et al. 2000; Piry et al. 2004) can be determined
using noninvasive genetic sampling. To this end, De Barba
et al. (2010) advocated for “genetic” monitoring of
populations and illustrated the benefits of this approach
by monitoring a reintroduced Eurasian brown bear (Ursus
arctos arctos) population entirely through noninvasive
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methods. Through the identification of individuals, De
Barba et al. (2010) established that the population size
had increased from 9 to 27 over a 10-year time period.
Using the genotypes of individuals, however, they were
also able to determine that all individuals were descen-
dants of introduced individuals (i.e. no immigration) and
that genetic diversity was decreasing due to inbreeding.
This was likely due to the fact that one dominant male
had sired most of the young, which the researchers were
able to infer using parentage analysis based on DNA
markers. Given the negative consequences of inbreeding
(Madsen et al. 1999; De Barba et al. 2010), these results
point to a much more informed and less positive
assessment of the bear population than would have been
possible without insights from genetic techniques.
Although it is usually beneficial for population

ecologists to integrate molecular tools into their research
program, the number and types of molecular analyses
available can be overwhelming, particularly to the
nonspecialist. In this chapter, we introduce the terminol-
ogy and approaches used to: (i) delineate genetic popula-
tion structure; (ii) estimate population parameters, such
as population size and growth rate, as well as infer
demographic history; and (iii) quantify dispersal and gene
flow among populations. It is worth noting that there has
been a move over the last decade to incorporate historical
and contemporary landscape variables into population
genetic models (Manel et al. 2003; Storfer et al. 2007).
This is an important advance as it allows for the develop-
ment of more biologically realistic models and can extend
the level of inference beyond simply how populations are
distributed and the effects of various distribution patterns,
to also include why populations are distributed in a par-
ticular manner, and how landscape changes will impact
population connectivity. Although a detailed considera-
tion of the specific landscape genetics methodologies is
beyond the scope of this chapter, many are relevant
and thus we draw on research in this field and provide
examples illustrating how landscape variables can and
should be included. Further, reflecting our background
in vertebrate evolutionary genetics and conservation,
most of our empirical examples come from the animal
literature, although we recognize the rich body of plant
population genetics research (Brown et al. 1990; Wright
and Gaut 2005).

11.2 Types of Genetic Markers

The methods used to isolate and identify genetic markers
have dramatically increased over the last 20 years, redu-
cing the costs and time associated with targeting specific
genomic regions in population genetic studies (Freeland

et al. 2011). Each class of marker potentially conveys dif-
ferent information about the individuals or populations
under study and thus, it is important to have a general
idea of the basic properties of the different markers avail-
able. For example, in sexually reproducing species, one
can target genomic regions that are inherited from both
parents (biparental) or only from either the mother or
the father (uniparental). Uniparentally inherited haploid
markers have approximately one-quarter the effective
population size of biparentally inherited diploid markers
and largely track the history of the parent from which
they were inherited, which has important implications
for the interpretation of genetic patterns. Another impor-
tant consideration when choosing or analyzing genetic
markers is mutation rate, which largely dictates the
expected variability among individuals and populations,
but also the temporal period over which inferences can
be drawn. For example, under the simple scenario where
two populations began to diverge in the recent past, mar-
kers with high mutation rates are more likely to accumu-
late differences and thus reveal the demographic
signature of the population split. Considering all these
factors together, a suite of different types of markers will
likely prove useful to population ecologists, their choice
depending on the research question.

11.2.1 Mitochondrial DNA

Uniparentally inherited markers are typically assayed
using direct sequencing of the mitochondrial (animals
or plants) or chloroplast (plants) genomes (Birky 1995),
or from sequencing portions of sex chromosomes
(Selelstad and Hebert 1994), resulting in individual
haplotypes. Mitochondrial DNA (mtDNA) is typically
maternally inherited, and since the 1980s sequence data
have been the most common markers for animal species
delineations and establishing large-scale phylogeographic
patterns of population structure, gene flow, and demo-
graphic history (Pakendorf and Stoneking 2005; Zink
and Barrowclough 2008; Galtier et al. 2009) of animals.
This widespread use of mtDNA sequence data has been
largely due to lack of recombination, high substitution
rates relative to nuclear counterparts, high copy number
making isolation relatively easy, and the aforementioned
small effective population size, which means mtDNA
markers may more closely track demographic changes.
All of these factors combined make it relatively cost-
and time-efficient to generate large mtDNA datasets that
are more easily interpreted thanmany nuclear DNA data-
sets (nDNA) (Zink and Barrowclough 2008). However,
due to questions regarding the assumptions of strict
maternal inheritance in vertebrates and selective neutral-
ity, and because all mtDNA markers are inherited
together (i.e. not independent loci), basing demographic
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inference and population structure solely on mtDNA
patterns is not recommended and decreasing in practice
(Galtier et al. 2009; Lougheed et al. 2013). A mitochon-
drial assessment of the range-wide genetic structure of
foxsnakes, for example, found no genetic differences
between Western and Eastern foxsnakes (Pantheris
spp., Crother et al. 2011). However, a more recent test
with microsatellites found strong genetic differentiation
between the species, and even within Eastern foxsnakes,
with this differentiation corresponding with geographic
disjunctions (Row et al. 2011). Given the endangered sta-
tus of Eastern foxsnakes in Canada, which houses 70% of
the range of this species, a genetic assessment based on
mtDNA alone could have had strong negative manage-
ment implications.

11.2.2 Nuclear Introns

Due to the relatively low substitution rate of nDNA com-
pared to mtDNA, the direct sequencing of introns is
often used to elucidate evolutionary relationships among
taxa and/or deeper phylogeographic patterns. When
nuclear introns are used in concert withmtDNAmarkers,
the results can often be illuminating given differences in
temporal resolution and mode of inheritance (Eytan and
Hellberg 2010). The difficulties of deducing haplotypes
for diploid markers, which are required for many types
of analysis (Stephens et al. 2001), and the challenges in
accumulating the large amount of data necessary for
robust inference (because introns typically show low
variability) mean that nuclear introns are unlikely to be
particularly relevant to population ecologists.

11.2.3 Microsatellites

In part due to their high mutation rate, genotyping short
tandem repeats (STR) or microsatellites emerged as one
themost popular choices for estimating recent patterns of
divergence, gene flow, and current population size
(Selkoe and Toonen 2006). Microsatellites are tandem
repeats of a core DNA motif, typically composed of two
to six nucleotides that are biparentally inherited and gen-
erally assumed to be selectively neutral. The number of
repeats defines distinct alleles, with between 5 and
40 repeats being common (Selkoe and Toonen 2006).
Microsatellites are assumed to mutate usually in a step-
wise fashion (i.e. gain or loss of single repeat due to
DNA polymerase slippage). There is no need to obtain
the DNA sequence of every individual as the number of
repeats can be determined by calculating the size of the
amplified fragment against standards of known size using
capillary electrophoresis and fluorescent labels (Koumi
et al. 2004). Such automated genotyping is typically
cheaper and more time efficient than direct DNA

sequencing, especially when multiple microsatellite loci
are assayed in the same polymerase chain reaction
(PCR) – called multiplexing. Recent sequencing advances
have also made the identification of microsatellite
markers much more cost- and time-effective (Perry and
Rowe 2011). Regardless of these advances, testing
microsatellites for variation among populations,
determining optimal PCR conditions, and scoring
microsatellites for nonmodel organisms can still be
time-consuming and the number of markers per study
for wild organisms is still typically less than 20 or
30 (Selkoe and Toonen 2006).

11.2.4 Single Nucleotide Polymorphisms

Single nucleotide polymorphisms (SNP) have been gain-
ing in popularity largely due to an increased ability to
identify and genotype large numbers of markers from
across the genome (Seeb et al. 2011). As with microsatel-
lites, they are typically derived from nDNA, and thus are
biparentally inherited and used in similar types of analy-
sis, which are based on allele frequencies. Due to the
lower mutation across most of the nuclear genome, SNPs
generally have much less variability and are on average
less informative than microsatellites for population struc-
ture (4–12 times less informative; Rosenberg et al. 2003;
Liu et al. 2005); however, SNPs have reduced scoring
error rates, higher reproducibility, and can be highly
informative of population structure when large numbers
are used (Rosenberg et al. 2003; Liu et al. 2005). Finally,
the theoretical foundations of population genetics are
largely based on simple di-allelic systems like SNPs
(see: Hedrick 2009), and thus our understanding of
how to analyze such data is more advanced than for
highly variable markers like microsatellites.

11.2.5 Next-generation Sequencing

Next-generation sequencing (NGS – also called high
throughput or massively parallel sequencing) is a term
used to cover an array of technologies that allow us to
quickly and relatively inexpensively obtain millions of
base pairs of DNA or RNA sequences – from a single
individual to suites of individuals across populations of
a focal species (Shendure and Ji 2008). Current NGS
platforms include Illumina, Roche 454, Ion Torrent,
and SOLiD. The field is moving quickly and the term
next-generation sequencing is considered by some to
be passé – indeed we are now speaking of third-
generation sequencing technologies (van Dijk et al.
2014), including novel techniques like single-molecule
real-time sequencing (SMRT), and single-molecule nano-
pore DNA sequencing (Madoui et al. 2015). Regardless, it
is now technically feasible and cost effective to obtain
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genome-wide panels of thousands or tens of thousands of
DNA markers (often SNPs but also contiguous stretches
of DNA sequence) from individuals from multiple
populations (Malenfant et al. 2015).
All of the markers discussed so far are selectively

neutral and most approaches that will be of interest to
population ecologists and described throughout this
chapter assume this to be the case; in other words, that
patterns of variation reflect the relative influences of gene
flow and genetic drift only. With NGS approaches, we
can move beyond simple quantitative surveys of large
numbers of DNA markers intended to estimate these
traditional population genetic parameters. For example,
so-called genome scan techniques look for “outlier” loci
– and those SNPs that exhibit greater divergence than
background, which may be the signature of selection
(Nosil et al. 2008). We can also sequence the transcrip-
tome of individuals, the set of all RNA transcripts pro-
duced by a genome, rather than the DNA itself to test
hypotheses on differences in gene expression in varying
environments or divergence in developmental pathways
among distinct populations or species (Wang et al.
2009). These genetic markers of adaptive significance
may be of interest to population ecologists who wish to
identify genes or genomic regions responsible for individ-
ual variation in biologically important traits, such as the
growth rate of individuals (Hemmer-Hansen et al.
2011). Even with NGS, however, the methods to link
known, complex adaptive traits to a specific genomic
region (or more likely regions), remain fairly lab intensive
and thus most approaches that we discuss in this chapter
utilize neutral genetic markers.

11.3 Quantifying Population
Structure with Individual-based
Analyses

The origins of population genetics can be tied back to the
seminal works of several prominent biologists and math-
ematicians. In particular, Ronald Fisher, J.B.S. Haldane,
and Seawell Wright are largely credited with developing
the mathematical underpinnings of population genetics
by combining their understanding of Mendelian inherit-
ance, statistics, and sampling theory with ideas on selec-
tion in captive and wild populations (Fisher 1930; Wright
1931; Haldane 1932; Provine 1971). Their ideas were a
major contribution to theModern Evolutionary Synthesis
(Huxley 1942), which underpins much of modern evolu-
tionary biology. The work also laid the foundations of
classical population genetics, which largely compares
changes in allele frequencies within and among a priori
defined populations – it relies on comparisons to expec-
tation under Hardy–Weinberg Equilibrium (HWE).

HWE describes the expected genotypic proportions in
an ideal population at equilibrium, the characteristics
of which include random mating, no selection, and
negligible mutation. Given a single genetic locus
example at HWE where there are two alleles, A1 and
A2 with frequencies p and q, the expected respective gen-
otypic proportions of genotypes A1A1, A1A2, and A2A2 in
subsequent generations can be calculated using:

p2 + 2pq + q2 11 1

HWE is treated as a “null” hypothesis where significant
departures from expectation can be used to infer
particular processes. For example, lower than predicted
heterozygote frequencies across surveyed loci imply
inbreeding; departures for a single locus might imply
the action of selection or the presence of a nonamplifying
“null” allele for PCR-based genotyping (Hedrick 2009).
In practice, traditional population-based analyses using

HWE are of most utility for species where there are
obvious population delineations or breeding aggrega-
tions, such as aquatic species inhabiting a pond, or a for-
est-dwelling species occupying a forest patch in a heavily
fragmented landscape. In many cases, however, indivi-
duals are distributed more continuously or obvious pop-
ulation boundaries are not apparent. Nonetheless cryptic
divisions may exist, which can range from subtle restric-
tions in dispersal (Rueness et al. 2003; Sacks et al. 2004),
through admixture of historical genetic lineages that
confound attempts to understand contemporary genetic
patterns (Austin et al. 2002; Gibbs et al. 2006), to evolu-
tionarily-independent cryptic species that have not
diverged morphologically (Elmer et al. 2007). These
divisions have strong implications for quantifying and
interpreting the dynamics of populations and if not
identified, can introduce bias and lead to spurious
interpretations.
Three major classes of analysis that can be used to

quantify major patterns of genetic population structure
in a given dataset: Bayesian clustering, multivariate, and
spatial autocorrelation. These broadly defined categories
are all primarily individual-based methods, where the
researcher is interested in identifying the patterns of
genetic structure without prior delineation of popula-
tions. Although not always possible, the most appropriate
sampling strategy for individual-based approaches is sys-
tematic sampling across a landscape and on either side of
putative population boundaries or impediments to dis-
persal. The specific sampling regime with random, uni-
form, or hierarchical protocols will largely depend on
the research question, resources, and the species being
studied (Storfer et al. 2007).
It is important to first define “population,” and discus-

sion in both population ecology and population genetics
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has concerned what might be most appropriate (Wells
and Richmond 1995; Waples and Gaggiotti 2006; Palsbøll
et al. 2007). Most researchers seem to agree that
population designations require some demographic
independence and not a simple rejection of a lack of
panmixia or statistical lack of genetic structure, but
how to define demographic independence is still unclear.
Many of the analyses below are designed to simply test for
panmixia, and thus in most cases, to identify true
“populations” in a demographic sense will require studies
linking genetic and demographic patterns.We refer to the
genetic structure identified through the various analyses
as genetic groups or genetic clusters, with the under-
standing that more information is required to determine
their status as “true” populations in any population
ecological sense.

11.3.1 Bayesian Clustering

The essence of model-based Bayesian (see Chapter 2 for
introduction into Bayesian analysis) clustering algorithms
is that individuals can probabilistically be assigned to
genetic clusters, based solely on their individual multilo-
cus genotypes. Since the seminal paper by Pritchard et al.
(2000), Bayesian clustering has been used in a broad range
of topics in ecology and evolution, including quantifying
species interactions (Wang et al. 2006; Rudge et al. 2009;
Kobmoo et al. 2010), identifying hybrid zones and their
dynamics (Pierpaoli et al. 2003; Mavárez et al. 2006; Tung
et al. 2008), and understanding the mechanisms underly-
ing adaptation (Kitano et al. 2008). Most commonly and
perhaps most relevant to population ecologists, this
approach is used to determine both the number and
spatial extent of genetic clusters within focal species.
Once identified, clusters can be used as population
groupings in subsequent population-based analysis
(Baums et al. 2005; Hoelzel et al. 2007; Janssens et al.
2007) or mapped onto the landscape to identify
anthropogenic (Riley et al. 2006; Row et al. 2010) or
natural landscape (Fouquet et al. 2012) features that
restrict dispersal and gene flow.
The simplest clustering algorithms generally do not

assume an underlying mutational model and thus can
be used with any class of Mendelian-inherited codomi-
nant marker where allele frequencies from independent
loci can be derived (e.g. SNPs, microsatellites). Most clus-
tering algorithms assume that each individual can be
placed into its own unique genetic cluster, within which,
individuals are in HWE and linkage equilibrium (LE),
and attempt to find the groupings that best satisfy these
assumptions using Bayesian statistical methods
(Pritchard et al. 2000; Guillot et al. 2005a; Chen et al.
2007). Under this framework the most likely number of
genetic clusters (K) and a probability of membership

(q) for each individual to a particular genetic cluster
(Pritchard et al. 2000) can be determined (Box 11.1). In
their original paper, Pritchard et al. (2000) also suggested
a modification of this simple model which incorporates
admixture between genetic clusters and thus calculates
the proportion of each individual’s genome derived from
each cluster rather than a probability of individual
membership. In the absence of strong geographic barriers
or low dispersal rates an admixture model is likely more
biologically realistic and has extended the used of
Bayesian clustering to hybridization studies, where by
definition admixture occurs. For example, Stewart et al.
(2016) used individual-based Bayesian cluster analysis
to examine the outcome of secondary contact between
lineages of a temperate frog species, spring peeper
(Pseudacris crucifer), finding asymmetrical hybridization
between lineages.
Early Bayesian clustering models used only the geno-

type to assign individuals to genetic clusters and for the
most part did not assume any spatial structure or incor-
porate geographical information. This may be appropri-
ate in some scenarios, where barriers to dispersal are
not spatially constrained (e.g. host specificity), however,
in most cases individuals closer in space are more likely
to belong to the same genetic cluster. Thus, Bayesian
clustering algorithms have been developed to incorporate
such spatial information using three main approaches
that are described well in Guillot et al. (2009). In the sim-
plest approach, individuals collected from the same sam-
pling location are assumed to be more likely in the same
genetic cluster. More complex approaches require coor-
dinates of individual sample locations and define proxim-
ity using Voronoi tessellation, which deconstructs the
landscape into a number of spatial polygons with no over-
lap or gaps. Tessellation is typically conducted using
either free Voronoi tessellation, which builds a defined
number of polygons independent of sampling locations
(Guillot et al. 2005a, b) or constrained tessellation where
polygons are built using the sampling locations (Chen
et al. 2007; Corander et al. 2008b). In both approaches,
the tessellated landscape is used as prior information in
the clustering analysis under the assumption that geo-
graphically proximate individuals have a higher probabil-
ity of belonging to the same cluster. Guillot et al. (2009)
provide a detailed description of the merits of each
approach. Most importantly, methods using free Voronoi
tessellation can extrapolate genetic structure to areas that
have not been sampled, which may be a positive or neg-
ative feature depending on the real amount of spatial
structure in a dataset. Overall, the benefits of including
spatial information can be substantial. Guillot et al.
(2005) used spatial clustering analysis to re-analyze a
DNA microsatellite dataset of wolverines (Gulo gulo)
and diagnosed an additional genetic cluster and five
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Box 11.1 Bayesian Clustering Analysis of Foxsnake Populations Using Structure

Row et al. (2010) examined the genetic population struc-
ture of eastern foxsnakes (Patherophis gloydi) across a
fragmented region in southwestern Ontario, Canada,
and found significant genetic structure. Here we use
Bayesian clustering, as implemented in Program Struc-
ture (ver. 2.3.3), on a subset of data (N = 203 individuals)
to determine number and extent of genetic clusters across
four sample locations (Figure 11.2). Given a high degree of
natural and anthropogenic fragmentation, it was possible
that each sampling location would comprise a separate
genetic cluster. Thus, we determined the number genetic
clusters (K) by running 20 replicates for K = 1–5 (100 repli-
cates total), with the maximum value of K simply being
one more than the total number of locales. For each rep-
licate we ran 100 000 MCMC iterations with 50 000 itera-
tions discarded after an initial burn-in, as prescribed by
the program authors. Preliminary runs suggested longer
burn-ins, and run lengths did not change the results. We

expected some gene flow between the clusters, and used
admixture analysis with correlated allele frequencies
(Falush et al. 2003).

We considered four alternative statistics for estimating
thenumberof genetic clusters (FigureB11.1.1). Evannoet al.
(2005) suggested that apeak inΔK, inour case at K=3, is the
best determinant of the likely number of true genetic clus-
ters in simulated studies.When a clear peak is not observed,
an asymptote of L[K] (a) is also commonly used as evidence
for K and the barcharts below are derived for a range of
K values. Because we did have a clear peak, we determined
individual admixture coefficients by conducting another
80 simulations in Structure for K = 3, and averaged the
top 5% of the lowest L[K]. A barchart of the Q-matrix repre-
senting admixture coefficients from the genetic clusters
where each individual is represented by a single bar, and
each cluster with a different color is a typical way
to display the results of Bayesian clustering (Figure B11.1.2).

1 2 3 4 5

K

L
(K

)

L
′(K

)

|L
″(

K
)|

Δ
K

K

K K

6 1 2 3 4 5 6

1 2 3 4 5 61 2

(a) (b)

(c) (d)

0

5
1
0

1
5

2
0

2
5

5
0

1
0
0

1
5
0

–
5
3
0
0

–
5
0

0
5
0

1
0
0

1
5

0

–
5
2
0
0

–
5
1
0
0

3 4 5 6

Figure B11.1.1 Four alternative statistics
derived from the mean posterior
probability of data output by a Structure
(L[K]) Bayesian clustering analysis that
can help to establish the inferred
number of K. The four panels illustrate:
(a) the raw mean posterior probability of
data output by structure (L[K]); (b) the
mean value of the difference in L(K)
between runs (L [K]); (c) the absolute
value of the difference between runs
(|L (K)|); and (d) the mean |L (K)| of the
20 runs divided by the standard
deviation (ΔK).
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Figure B11.1.2 Cluster analysis for
foxsnake populations in southern
Ontario. The barchart displays each
of the three foxsnake clusters in a
different shade of gray. The Point
Pelee National Park and Hillman
populations seem to be admixed
with both Pelee Island and Talbot
Road populations, which appear to
be largely discrete clusters.



first-generation migrants that were not identified in
previous nonspatial analysis (Cegelski et al. 2003).

11.3.2 Multivariate Analysis of Genetic
Data Through Ordinations

Multivariate ordination approaches, and in particular
principal component analysis (PCA), have proved effec-
tive for analyzing population genetic structure and have
several advantages over Bayesian clustering (Patterson
et al. 2006; Jombart et al. 2008; Reich et al. 2008). Because
such ordination methods simply summarize major trends
in variation among individual genotypes, population-
based allele frequencies or matrices of genetic distances
(using principal coordinates analysis [PCoA]), they are
free from key genetic assumptions (HWE, LE) and thus
can accommodate multiple types of genetic structure.
This includes isolation-by-distance and genetic clines
(Jombart et al. 2009), which Bayesian clustering analyses
struggle with given their assumption of discrete clusters
in equilibrium (Frantz et al. 2009; Schwartz andMckelvey
2009). Another advantage of ordination methods is that
they do not require Markov chain Monte Carlo
(MCMC) algorithms to solve complex equations and thus
are less computer-intensive than Bayesian clustering and
can accommodate large genetic datasets (Ma and Amos
2012); this advantage will become more important with
the large amounts of genomic data being generated
through NGS (Shendure and Ji 2008).
Ordination methods summarize genetic variation

(Jombart et al. 2009) and the most widely used is PCA
(Paschou et al. 2007; Montarry et al. 2010; van Heerwaar-
den et al. 2010), which attempts to identify a series of
composite multivariate axes (called principal axes or fac-
tors) that best summarize major trends in allelic variation.
Multivariate space can be composed of individual
genotypes or population-based allele frequencies, but in
both cases, derived axes or factors are defined by the con-
tribution of each allele (allele loading) and their eigen-
value (explained variation), with the locations of
individuals or populations defined by their scores along
each axis (Box 11.2).

A major challenge of PCA is to establish statistical and
biological meaning of derived axes (Patterson et al. 2006;
Reich et al. 2008; Jombart et al. 2009). This is perhaps best
illustrated by the controversies surrounding Cavalli-
Sforza et al. (1994), who attributed continent-wide
genetic clines in human populations detected using
PCA analysis to ancient migration patterns. While some
of the assertions presented by Cavalli-Sforza et al. (1994)
have been corroborated with other lines of evidence,
some researchers have suggested that these patterns
can also arise through other processes like simple isola-
tion-by-distance (Novembre and Stephens 2008; Reich
et al. 2008). This example certainly points to the impor-
tance of combining multiple lines of evidence when inter-
preting genetic data, but also the importance of taking a
statistical approach for ordination analysis (Patterson
et al. 2006). In particular, many have advocated determin-
ing the number of PCA axis to retain for further analysis
by comparing the distribution of eigenvectors to a Tracy–
Widom (TW) distribution (Johnstone 2001; Patterson
et al. 2006). The resulting significant axes can be visua-
lized to assess population structure, and clustering
algorithms such as Ward’s clustering (Ward 1963) can
be used on distances derived from the retained axes to
identify population structure (Box 11.2; van Heerwaarden
et al. 2010, 2011).
In many cases we would advocate examining popula-

tion structure using multiple types of analyses to provide
confidence in the assertions regarding the underlying pat-
terns. For example, consider the populations of eastern
foxsnakes (Pantherophis gloydi) described in Box 11.1.
We find that the eigenvalues of the first four axes show
significant deviation from the TW distribution, suggest-
ing that these best capture overall patterns of genetic
structure. Plotting the first and second principal axes,
we find a clear separation between the same three clusters
identified with Bayesian clustering (Figure 11.1a). Plots of
the third and fourth axes, however, show no additional
power to separate among populations, despite significant
deviation from the TW distribution (Figure 11.1b). These
axes were marginally significant (P = 0.03 for both) and
some have suggested that this method tends to

Box 11.2 Multivariate Analysis of Genetic Structure for Simulated Populations

We used Program Easypop (ver. 2.01) to simulate four
genetic datasets (20 loci mutating according to a stepwise
mutation model): (i) a single panmictic population; (ii) a
hierarchical population structure where two populations
(P1 and P2) are connected by high gene flow (0.004 prob-
ability of an individual migrating from one population to
another each generation with no breeding restrictions)

with a third population (P3) with less gene flow between
it and the other two (0.002 probability of migration);
(iii) three populations with equivalent high amounts of
migration (0.004 probability of migration); and (iv) three
populations with half the amount of migration (0.002
probability of migration) as in scenario c. All simulations
were run for 5000 generations with fixed population sizes
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of 500 individuals (equal sex ratios), 30 of which were
sampled for genetic analysis. When genetic structure
was present in the dataset (ii–iv) the first, and usually sec-
ond, eigenvalues were disproportionately larger than the
others, but this was not the case for the panmictic popu-
lation (i). Indeed, we find that only when there is genetic
structure in the dataset and not panmixia do the eigenva-
lues show significant deviations from a Tracy–Widom (TW)
distribution (bolded values) (Table B11.2.1). Model results
can be visualized by plotting the first two PCA axes to sum-
marize the genetic variation of each dataset illustrated the
genetic structure (or lack thereof) in each of the four
simulated scenarios (Figure B11.2.1).

Table B11.2.1 Eigen analysis of genetic population structure
for four simulated datasets.

Eigenvalue Sim i Sim ii Sim iii Sim iv

1 0.62 <0.001 <0.001 <0.001

2 0.76 0.003 <0.001 <0.001

3 0.86 0.45 0.37 0.26

4 0.79 0.32 0.73 0.23

5 0.70 0.69 0.53 0.20

6 0.62 0.67 0.94 0.72

7 0.51 0.67 0.84 0.60

8 0.49 0.50 0.79 0.51

9 0.73 0.66 0.86 0.53

10 0.65 0.90 0.85 0.89

d=2 d=2

d=2d=2

P1

P1

P1

P1

P3

P3

P3

P2
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(a) (b)
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Figure B11.2.1 Principal components analysis to summarize genetic variation in simulated datasets. Shown are 95% confidence ellipses
around the centroid of each simulated population with vectors attaching individuals to the centroid of their population.
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overestimate the number of significant axes (Lee et al.
2011), as is likely in this example.
Recently, the incorporation of spatial and landscape

data in ordination analysis has improved the ability of
these methods to detect fine-scale population structure
and establish associations between genetic and landscape
variation. Jombart et al. (2008) introduced spatial princi-
pal components analysis (sPCA), a modification of PCA
that simultaneously maximizes the genetic variance and
spatial autocorrelation of the principal axes (i.e. maxi-
mizes the product of variance and spatial autocorrelation
measured using Moran’s I). Before conducting sPCA
analysis, Jombart et al. (2008) advocated for, and derived
a test to, detect the presence of spatially correlated
genetic structure by comparing individual allele frequen-
cies to Moran’s Eigenvectors Maps (MEM; Dray et al.
2006). MEMs are derived from a connection network

of sampled individuals, and when spatially correlated
genetic structure is present, the correlation (Pearson R2

values) between individual allele frequencies with MEMs
should be higher than R2 values calculated for randomly
permuted allele frequencies (Jombart et al. 2008).
Using genetic simulations, Jombart et al. (2008) found

sPCA to perform better than PCA in revealing simple (e.g.
clines, discrete patches) and complex genetic structure,
such as mixture of clines and patches mixed with ran-
domly distributed individuals. These results have been
corroborated by many empirical studies that have used
sPCA and themethod has been utilized to identify various
spatial genetic patterns, including genetic clines
(Vandewoestijne and Van Dyck 2010; Koen et al. 2011)
and discrete populations (DiLeo et al. 2010; Chiappero
et al. 2011). Other spatial analysis such as PCA of Neigh-
bor Matrices can incorporate landscape information to
explicitly test for associations between allele frequencies
and the distribution of habitat variables (Dray et al. 2006;
Legendre and Fortin 2010). This can be particularly rele-
vant for quantifying associations between particular
alleles and environmental variables and be useful in iden-
tifying genes of adaptive importance (Manel et al. 2010;
Bothwell et al. 2013).

11.3.3 Spatial Autocorrelation Analysis

Fine-scale spatial genetic structure not revealed by ordi-
nations or Bayesian analyses may be present within con-
tinuously distributed populations or genetic clusters, and
relate to the distribution of individuals or patterns of dis-
persal. Individual patterns of spatial genetic structure can
arise through selection and historical processes, such
as range fragmentation or expansion (Epperson 2003),
but for populations at mutation-drift equilibrium the
predominant patterns likely reflect limited dispersal, with
neighboring individuals exhibiting higher relatedness
than individuals at greater distances apart (i.e. individ-
ual-based isolation-by-distance; Rousset 2000). Spatial
autocorrelation analysis quantifies the correlation
between pairs of individuals within increasing geograph-
ical distance classes (d) and is frequently used for contin-
uously distributed populations (Hardy and Vekemans
1999; Smouse and Peakall 1999).
Dewey and Heywood (1988) suggested using Moran’s

I on individuals by first coding individual genotypes based
on allele frequencies (q; 1.0 – homozygotes, 0.5 – hetero-
zygotes, and 0.0 – not present) and calculating Moran’s
I for each allele in each distance class (d). In the formula
(Sokal and Oden 1978)

I d =
n i j wij d ZiZj

i j wij d i Z
2
i

11 2

d = 5

d = 2
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Eigenvalues

Eigenvalues
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Figure 11.1 Biplots of the principal axes of a principal components
analysis (PCA) on foxsnake microsatellite genotypes distributed
across southwestern Ontario (Figure 11.2), with insets of
eigenvalues (displayed axis indicated by black bars). The first four
eigenvalues significantly deviated from a Tracy–Widom (TW)
distribution.
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n is the number of individuals, Zi = qi – q and wij(d) is a
weighting scheme, typically constrained to equal 1 if sepa-
rated by a distance within d, and 0 if outside that distance
class. Averaging over alleles and loci gives an estimate of
the correlation of allele frequencies between individuals,
within each distance class.
Calculating Moran’s I across any set of geographic dis-

tance classes and permuting individuals among cate-
gories to derive a null expectation for no spatial
structure is a common approach to determine signifi-
cance across distance classes (Hardy and Vekemans
2002). As an example, we determined the extent of signif-
icant, positive correlation (Moran’s I) for genotypes of
Canada lynx (Lynx canadensis) distributed across Mani-
toba to Quebec (Figure 11.3a). Canada lynx have a wide
distribution across northern Canada and very little
genetic population structure, with most of mainland
North America belonging to a single genetic cluster
(Row et al. 2012). Here, using individuals genotyped at
14 DNAmicrosatellite loci, we show positive spatial auto-
correlation for individuals separated by less than 400 km
(Figure 11.3b). This fits well with our current knowledge
of movement patterns of Canada lynx, which regularly
disperse distances greater that 250 km and up to 1000
km (Poole 1997). Although we have not established
specific dispersal parameters (e.g. range and mean of

dispersal distance), the extent of positive spatial genetic
structure gives us an idea of the dispersal potential of this
species without having to conduct an extensive radio-
telemetric study, as in Poole (1997).
Several genetic distance and relatedness coefficients

can be used as individual-based estimators of genetic dif-
ferentiation in spatial autocorrelation analysis. Many
studies have compared and estimated the properties of
each (e.g. error, precision – see Hardy 2003; Vekemans
and Hardy 2004; Rousset 2008) and related spatial genetic
patterns to actual dispersal parameters and genetic neigh-
borhood size (Vekemans and Hardy 2004; Epperson
2005; Wagner et al. 2005). The choice of genetic distance
or relatedness estimator, and the number and size of dis-
tance classes, can have a large effect on the estimated
parameters for spatial autocorrelation. In general, the
number of pairwise comparisons and the percentage of
individuals present at least once in the distance class,
and the overall distance in relation to expected dispersal
distance or movement, can be used to select appropriate
distance classes (Hardy and Vekemans 2002; Double et al.
2005). Systematically varying the distance classes in the
analyses can also give some measure of the sensitivity
of the desired statistic to the choice of a particular set
of distance classes (Troupin et al. 2006).
Smouse and Peakall (1999) developed a multivariate

correlation coefficient (r) for estimating individual spa-
tial genetic structure, which is commonly used in the
literature. Their approach is similar to Moran’s I and
is also calculated across distance classes, but is a “true”
correlation coefficient between individuals in the
sense that it is bounded by −1 and 1, with 0 reflecting
no correlation. Another possible advantage of this
approach is that instead of calculating and averaging
separate coefficients for each locus, a multivariate dis-
tance is used in the calculation, potentially increasing
the statistical power (Smouse and Peakall 1999; Peakall
et al. 2003).
Most empirical studies having used spatial autocorrela-

tion analysis typically compare the observed patterns
between groups in regions with different habitat compo-
sitions, such as disturbed versus undisturbed sites, to gain
insight into dispersal potential under varying environ-
mental conditions (Schmuki et al. 2006; Jolivet et al.
2010; Wang et al. 2012). Similar comparisons can be
made between species or different reproductive classes
in the same region or habitat to examine within and
among species variation. For example, Paquette et al.
(2010) used spatial autocorrelation analysis for a popula-
tion of radiated tortoises (Astrochelys radiata) and found
that males were less genetically similar than females at
short distance classes, providing evidence for male-biased
dispersal in this species. This result was not apparent
when population-based approaches were used, and given

Talbot
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Hillman
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Pelee Island

0 5 10 km

Point Pelee

National Park

Figure 11.2 Sampling locations of eastern foxsnakes used in
Bayesian clustering (Box 11.1) and subsequent assignment tests to
identify migrants. Assignment tests identified migrants or their
descendants (G = 2) among the three clusters. We set k = 3 and ran
an admixture analysis for 100 000 MCMC iteration (50 000 burn-in)
and set the probability of an individual being a migrant (v) at 0.1.
Significant migrants out of Pelee Island (white triangles) and the
Talbot (white circles) population are shown.
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that the species is critically endangered it would have
been difficult to obtain through capture-recapture
records.

11.3.4 Population-level Considerations

In many cases, individual-based analyses would be a log-
ical starting point for evaluations of population structure
as they provide a nonarbitrary population definition and
suggest boundaries to dispersal on the landscape. Many
molecular methods, however, consider groups of indivi-
duals and estimate group-based statistics, such as effec-
tive population size or gene flow between patches, and
thus populations must be defined. A typical approach
might be hierarchical: to use individual-based methods
to determine the number and extent of genetic clusters,

which are then used as “populations” in the population-
based analyses (Bergl and Vigilant 2007). For example,
we diagnosed three genetic clusters for eastern foxsnakes
(Box 11.1) and proceed to use these as sampling units in
population-based analysis to determine effective popula-
tion sizes and directionality of gene flow (Box 11.4).

11.4 Estimating Population Size
and Trends

A fundamental property of organisms in nature is popu-
lation size. While population size is a key parameter for
both ecologists and geneticists, and important for
management and predicting extinction risk of species
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Figure 11.3 Results from Spatial
Autocorrelation analysis of individual Canada
lynx (Lynx canadensis) genotypes distributed
from Manitoba to Quebec in Canada.
(a) Distribution of samples, and (b) degree
of autocorrelation (Moran’s I) between
individuals within increasing 100 km distance
classes are shown. Dotted line represents
correlation between genotypes randomly
permuted across distances classes, and open
squares and closed circles delineate distance
classes where observed autocorrelation is
significantly above or within the permuted
range, respectively.
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Box 11.3 Introduction to Coalescent Theory

Coalescent theory dates back to the 1970s (Kingman
2000), but was more formally described by Kingman
(1982a, 1982b) who mathematically derived the
n-coalescent as the time to the most recent common
ancestor (MRCA) of a contemporary sample of genes,
under an idealized Wright–Fisher population model
(Fisher 1930; Wright 1931). This formulation allowed a shift
from classical population genetics, which describe the
properties of entire populations, to considering only the
direct ancestors of the sampled genes through their gene
genealogies. In his original derivation, Kingman (1982a,
1982b) determined that the probability of a coalescent
event for two genes in the prior generation is 1/(2 N),
where 2 N is the haploid population size (N is the diploid
population size) and thus tying the coalescent process to
the effective size of the population. Consider an example
of 10 genes in a small population of 10 individuals
(Figure B11.3.1).

When two genes choose the same ancestor, a coales-
cent event occurs, and this process continues until all
genes coalesce into a single common ancestor, the MRCA.
In a panmictic, stable population, the rate of coalescent
events depends on the number of lineages and popula-
tion size, thus allowing for demographic inference based
on the genealogies of sampled genes.

Present

(a) (b)

T = 1

T = 9

MRCA
Past

Figure B11.3.1 Example of coalescent
events based on the complete
genealogy of 10 sampled genes in a
haploid population of fixed size (10
individuals) where the immediate
ancestors for each gene are randomly
selected from the proceeding
generation. Source: Adapted from
Rosenberg and Nordborg (2002).

Stable

(a) (b)

(c) (d)

Decreasing

Increasing Structured

Figure B11.3.2 Visualizing the individual gene genealogies for
50 individuals generated using Simcoal (ver. 2.0, Laval and
Excoffier 2004) under four different scenarios: (a) a stable
population; (b) an exponentially decreasing population; (c) an
exponentially increasing population; and (d) four populations
with no gene flow occurring among them.
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of conservation concern, definitions differ among disci-
plines (Luikart et al. 2010). In population genetics, as
originally conceived by R.A. Fisher (1930) and S. Wright
(1931, 1978) effective population size (Ne) is broadly
defined as the number of individuals of an idealized
population – one with random mating (with each parent
having the same expected number of progeny), and
assuming no immigration or emigration, equal sex ratio,
no selection, negligible mutation – that exhibits the same
behavior in terms of inbreeding or genetic drift as the
natural population under consideration (Fisher 1930;
Wright 1931). The strict definition may seem to be overly
restrictive but the intent is not to mirror real biological
systems, but rather to have a “common currency” through
which we can (i) compare populations and species with
different life histories; and (ii) understand the genetic
consequences of variation in population sizes. Beyond
this general definition there are different conceptions of
effective size that reflect different properties of genetic
populations: (i) inbreeding effective population size
emphasizing identity of descent of two randomly

chosen alleles (Crow 1954; Crow and Denniston 1988);
(ii) variance effective population size that reflects variance
in gene frequencies due to drift (Crow 1954; Crow and
Denniston 1988); (iii) eigenvalue effective population size
that is based on a matrix of probabilities of changes in
allelic states and is calculated as the maximum nonunit
eigenvalue of this transition matrix (Ewens 1982); and
(iv) coalescent effective population size based on
tracking the history of individual genes using coalescence
theory (Box 11.3; Sjödin et al. 2005). Below we discuss
some methods for estimating contemporary effective
population size and inferring temporal demographic
patterns, although a detailed discussion of all of versions
of Ne is beyond the purview of this chapter. Suffice to say
that versions of Ne can vary in the means by which they
are estimated, in the values that they assume for the same
population (e.g. evolutionary equilibrium; Chesser et al.
1993; Wang 1997a, 1997b), and the degree to which they
incorporate contemporary versus historical demographic
changes (Schwartz et al. 1998; Wang 2005; Crandall
et al. 2006).

Many studies have expanded on the basic coalescent to
derive mathematical models that describe this process
under a variety of demographic scenarios, such as increas-
ing or decreasing population size (Slatkin and Hudson
1991; Griffiths and Tavaré 1994) or structured populations
with gene flow (Notohara 1990; Beerli and Felsenstein
1999), which can all drastically affect shape of individual
gene genealogies (Figure B11.3.2).
Using these models, genealogical samplers have been

developed that estimate demographic parameters such
as effective population size, gene flow, and population

change parameters (e.g. degree of increase or decrease in
size), for a given set of sampled genes (Table B11.3.1).
Many of these models have been instrumental in extend-
ing population genetic analysis to infer demographic his-
tory for modern populations. Demographic inferences for
coalescent analysis have ranged across time from the very
recent, such as establishing the origins of viral strains
(Pybus and Rambaut 2009) or paths of invasive species
(Taylor and Keller 2007), to the demographic history of
populations thousands of years in the past (Row et al.
2011; Dudaniec et al. 2012; Fouquet et al. 2012).

Table B11.3.1 Examples of coalescent samplers used to estimate population demography and gene flow between populations.

Program Description
Main
Assumptions Platforms References

Migrate Estimate asymmetric gene flow and effective
population size for interacting populations

Constant population sizes and
migration rates

Win,
MacOS,
Linux

Beerli and
Felsenstein
(1999), Beerli
(2006)

Lamarc Estimate asymmetric gene flow and effective
population size for interacting populations which
may be increasing or decreasing

Constant migration rates;
exponential increasing or
decreasing populations

Win,
MacOS,
Linux

Kuhner (2006)

IM,
IMa2

Estimate divergence time and gene flow between two
populations that have split at some population in the
past;

Two populations split with or
without gene flow in the recent
past

Win,
Linux

Nielsen and
Wakeley (2001),
Hey (2010)

All programs can incorporate DNA sequence data and multi-allelic markers and assume a particular mutation model that can be defined.
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Box 11.4 Effective Population Sizes and Gene Flow for Populations of Foxsnakes

Previous Bayesian clustering (Box 11.1) suggested three
genetic clusters (Pelee Island, Point Pelee National Park
[PPNP]-Hillman, Talbot) for eastern foxsnakes (P. gloydi)
populations sampled in southwestern Ontario. Here, we
compare capture-recapture analysis, ABC (ONeSAMP; Tall-
mon et al. 2008) and coalescent analysis (migrate-n,
ver. 3.2.2; Beerli and Felsenstein 1999; Beerli 2006) to esti-
mate census (Nc) and effective population size (Ne) for one
local population (Hillman), and to estimate effective pop-
ulation size and gene flow among three identified genetic
clusters.

Wemonitored the population at HillmanMarsh Conser-
vation Area from 2006 to 2010 and each new individual
captured was marked with a passive integrated transpon-
der or PIT tag. We derived a census population size using a
Jolly–Seber open population model (Cormack 2012) in
Rcapture (Baillargeon and Rivest 2007). We estimated
Nc for adults (>700 mm snout-to-vent length) to be
119.47 individuals (standard error 23.97). Although open
population models are known to give biased estimates
of abundance if capture heterogeneity is present, our
sampling protocol did not fit a closed population model
as the preferred model for estimation of abundance. To
estimate Ne for this local population, we ran the ABC anal-
ysis for 50 000 iterations, and set minimum andmaximum
population sizes to 2 and 500, respectively. This analysis
suggested an effective population size of Ne = 34.2 indivi-
duals (95% CI: 26.9–53.7), and thus a Ne/Nc ratio of 0.28,
which is equal to the average value for small populations
of conservation concern reported in Palstra and Ruz-
zante (2008).

We also used the ABC analysis to estimate the effective
population size for each of the three clusters with the
same parameters as above. We found the PPNP-Hillman

cluster to have the largest Ne (mean: 43.3; 95% CI:
33.4–67.2), which was significantly larger (nonoverlapping
confidence intervals) than the Talbot value (mean: 19.6;
95% CI: 15.5–28.54), but not the Pelee Island estimate
(mean: 31.8; 95% CI: 25.1–49.41).
For these same samples, we estimated Ne and direc-

tional rates of migration using a coalescent analysis as
implemented in Migrate (ver 3.2.20). We ran 10 inde-
pendent replicates, each having a 2.0 × 107 burn-in and
4.0 × 108 iterations. We assessed convergence by evaluat-
ing the effective population size and the posterior distri-
bution of migration and population size parameters and
confirmed the results with multiple runs. The analysis esti-
mated Θ (4Neμ) and a mutation-scaled effective immigra-
tion rateM (m/μ) for each of the genetic clusters (1 – Pelee
Island; 2 – PPNP-Hillman; 3 – Talbot). To obtain population
sizes we divided Θ by 4 × 0.0005, which is the average
mutation rate for microsatellites (Estoup and Angers
1998) and obtained the absolute number of immigrants
by Θ X M. Again, the coalescent analysis suggests the
PPNP-Hillman cluster has the largest effective population
size (Table B11.4.1).
Effective population sizes in general were larger for the

coalescent analysis, except for the Talbot cluster, which had
a much smaller size. The Pelee Island and Talbot clusters
also have much higher effective immigration rates with
most of the migrants coming from the PPNP-Hillman clus-
ter. These higher rates are largely due to the fact that these
populations had much smaller effective population sizes
and thus smaller amounts of migration have a larger effect.
In terms of actual migrants there was a larger number of
individualsmigrating from the Talbot and Pelee Island clus-
ters into the PPNP-Hillman cluster, which would be consist-
ent with the Bayesian clustering and assignment results.

Table B11.4.1 Estimation of effective population size (Ne) with coalescent analysis.

Parameter Mode 95% CI Ne Number of Immigrants

Θ1 0.23 2.28–4.20 115 NA

Θ2 3.46 0.00–0.59 1730 NA

Θ3 0.01 0.00–0.37 5 NA

M1- > 2 3.00 NA NA 10.38

M1- > 3 0.07 NA NA <0.01

M2- > 1 13.93 NA NA 3.20

M3- > 1 3.27 NA NA 0.75

M2- > 3 15.53 NA NA 0.15

M3- > 2 3.40 NA NA 11.76
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For population ecology, census population size (Nc) is
the more obviously important parameter. Census popula-
tion size has been variously estimated as (i) the total num-
ber of individuals, including juveniles, and breeding and
nonbreeding adults; (ii) the total number of adults; or
(iii) the number of breeding individuals only (Nunney
and Elam 1994). Nunney and Elam (1994) suggest that
Nc should be the number of adults where adulthood is
“… defined by the likelihood of breeding.”Authors should
be unequivocal as to which definition they adhere to as it
has important implications for how we understand the
ratio of effective to census population size. A number
of studies have compared theNe/Nc ratio across taxa with
Ne generally found to be smaller (Frankham 1995; Palstra
and Ruzzante 2008), although the ratio of Ne/Nc varies
enormously among species with divergent life history
attributes, from 10−6 in oysters to almost 1.0 for humans
(Frankham 1995). Luikart et al. (2010) caution that we
know little about the temporal stability of this ratio for
specific populations, the consistency of the Ne/Nc ratio
among regions across species ranges, or the taxonomic
generality of the Ne/Nc ratio among species sharing life
history attributes. We are thus far from a general
understanding of the relation between the Ne and Nc.

11.4.1 Estimating Census Population Size

Methods for estimating bothNc andNe from genetic data,
details on assumptions, and computational methodology
have been reviewed by Charlesworth (2009) and Luikart
et al. (2010) (Table 11.1). Here, we provide an overview
of methods and issues but defer to these other works
where appropriate. Traditional mark-recapture methods
require initial capture and physical marks such as bands,
passive integrated transponder tags, branding, or some
other reasonably durable mark, including toe clips for
amphibians and lizards, scale clips for reptiles, and fin
clips in fish. After marking individuals, they are subse-
quently recaptured with Nc estimated from the propor-
tion of marked versus unmarked recaptures relative to
the number marked initially (Seber 1973; Chapter 7).
For secretive, cryptic, fossorial, or otherwise challeng-
ing-to-study species such traditional marking approaches
may be unfeasible or yield so few data that population size
estimates are inaccurate. Genetic capture-recapture
methods may resolve many of the logistical challenges
using noninvasive DNA sampling of items like scat, hair,
feathers, shed skins, or urine (Waits and Paetkau 2005;
Beja-Pereira et al. 2009). Genetic capture-recapture
methods rely on unique multilocus genotypes typically
using high-resolution markers, such as microsatellites
or SNPs, that can distinguish individuals. Of great value
is the possibility of using samples collected over a short
time span – what amounts to a single temporal sample –

to estimate Nc with genotypes matched across samples
treated as recaptures (Luikart et al. 2010). Values of Nc

can be estimated using rarefaction, where a plot of the
accumulation of unique genotypes approaches an asymp-
totic value of population size (Kohn et al. 1999; Frantz
and Roper 2006), although new Bayesian or likelihood
methods have largely displaced rarefaction in recent studies
(Miller et al. 2005; Lukacs et al. 2007). These genetic
approaches to estimating population size can lead to
unique insights as in Hájková et al. (2008) where the pop-
ulation size estimate for the Eurasian otter (Lutra lutra) at
one of their sites was 76 (95% CI = 49–96), twice the esti-
mate of 38 derived using a method based on tracks in
the snow.
Noninvasive DNA sampling and subsequent genotyp-

ing can also be used for traditional two- or multisample
capture-recapture estimation of Nc (Chapter 7), treating
genotypes like any other of the permanent marks indi-
cated above. Unlike more traditional methods of cap-
ture-recapture models, there can be error in individual
identification arising from allelic dropout or genotyping
errors. However, this has become less of an issue with
improved genotyping and genomics techniques irrespec-
tive of potentially degraded DNA samples (Luikart et al.
2010) and can be incorporated into the population model
(Lukacs and Burnham 2005).

11.4.2 Estimating Contemporary Effective
Population Size with One Sample Methods

There are two general approaches to estimating present-
day or short-term Ne from genetic data: one-sample, and
multisample or temporal methods. One-sample methods
use contemporary signatures of population size that are
reflected in key genetic parameters to estimate present-
day Ne: linkage disequilibrium (LD) (Hill 1981),
heterozygote excess (Pudovkin et al. 1996; Luikart and
Cornuet 1999; Balloux 2004), relatedness or parentage
(Wang 2009), or difference in allelic diversity between
juvenile and adult cohorts (Hedgecock et al. 2007).
The LD method uses the nonrandom association

between alleles at different loci to infer Ne (Hill 1981).
LD can be caused by overlapping generations, selection,
dispersal, or mixing of two genetically distinct popula-
tions or the Wahlund effect (Wahlund 1928), and
genetic drift (Wang 2005). However, the LD method
assumes that, in geographically isolated populations,
linkage between neutral DNA loci will be influenced
by drift alone and thus the amount of disequilibrium will
be proportional to Ne (Hill 1981). A basic problem with
this approach, and all one-sample approaches, is that it
necessarily integrates and reflects historical rather than
contemporary Ne. For example, the LD method better
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Table 11.1 Programs for estimating census (Nc) and effective (Ne) population size, and diagnosing population bottlenecks using molecular data.

Program Description
Main
Assumptions Markers Platforms Source

Estimating Census Population Size

Capwire Estimates census population size from
genetic sampling.

Individuals must be identified with
certainty.

MULT R (all
platforms)

Miller et al.
(2005),
Pennell
et al. (2012)

Estimating Effective Population Size

ONeSAMP Estimates effective population size from a
single sample using approximate Bayesian
computation (ABC).

Population follows a Wright-Fisher model STR Web-
based (all
platforms)

Tallmon
et al. (2008)

LDNe Estimates Ne using linkage disequilibrium. Mating is random or there is lifetime
monogamy. Other assumptions consistent
with a Wright-Fisher model.

MULT Win Waples and
Do (2008)

Nb_HetEx Offers twomethods to estimateNe: Using an
excess heterozygosity and a temporal
method (Waples 1989b).

Small number of breeding (<30); large
number of sample progeny (>200). Assumes
that loci are independent.

MULT Win Zhdanova
and(2008)

NeEstimator Estimates Ne using allele frequency data.
Encodes 3 internal methods (two one-
sample method, and one temporal method
using moment-based F-statistics), and three
third-party programs described below: TM3,
MLNE and Mcleeps.

Various depending on the method
employed.

MULT,
mtDNA

Win Ovenden
et al. (2007)

TM3 Estimates Ne with a coalescent Bayesian-
based inference.

Two samples at distinct times from a single
closed (i.e. no immigration) population.

MULT Win Berthier
et al. (2002)

MLNE Estimates Ne and m (the migration rate)
from temporal changes in allele frequencies
using maximum likelihood.

Assumes an infinitely large source
population from which immigrants flow
into the focal population.

MULT Win,
Source
code
available.

Wang
(2001);
Wang and
Whitlock
(2003)

Mcleeps Estimates Ne using temporal changes in
allele frequencies from individuals sampled
in different generations.

Assumes underlying Wright–Fisher model. MULT MacOS,
Source
code
available.

Anderson
et al. (2000)

CoNe Employs a coalescent-based likelihood
approach to estimateNe using data from two
temporal samples

Closed population with no selection or
immigration and negligible mutation. Allele
frequency changes arise from drift alone.

MULT (all
platforms)

Anderson
(2005)

TMVP As in TM3 but allows for more than 2
temporal samples.

Closed population with no selection or
immigration and negligible mutation. Allele
frequency changes arise from drift alone.

MULT Win Beaumont
(2003)

TempoFs F-statistic moment method based on
multiple temporal genetic samples.

Closed population with no selection or
immigration and negligible mutation. Allele
frequency changes arise from drift alone.

MULT Win,
Linux

Jorde and
Ryman
(2007)

Diagnosing Population Bottlenecks and Size changes

Bottleneck Identifies the molecular signal of recent
population bottlenecks using 3 different
approaches.

Only identifies extreme and sustained
bottlenecks.

MULT Win Cornuet
and Luikart
(1996)

M_P_Val.exe
critical_M.
exe

M_P_Val.exe calculates a statistic, M
(ratio of the number of alleles to range in
allele size) and simulates an equilibrium null
distribution for comparison.

Mutations follow a version of stepwise
mutation with a proportion ps adding or
deleting one repeat, and a proportion (1-ps)
with larger mutations.

STR Win,
MacOS

Garza and
Williamson
(2001)
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estimates Ne when loci are tightly linked, but disequilib-
rium between such loci reflects the signature of deeper
demographic events and integrates information on
founder events, changes in population size, or dispersal
(Rudge et al. 2009). Waples (1991) indicated that the
LD method has greater power when Ne is small because
the signal of LD will be proportionally large. Concomi-
tantly, large sample sizes of >90 individuals may be
required for reasonable estimates of Ne (Luikart et al.
2010) because if sample size is less than effective size
there is marked downward bias on the estimate of Ne

(England et al. 2006), which represents a challenge for
the study of rare or cryptic species, although corrections
for sample size biases have been developed (Waples
2006).
The heterozygote excess method depends on the obser-

vation that, in small populations of dioecious organisms,
allele frequencies in females and males will differ because
of binomial sampling error, with Ne or more accurately
inbreedingNe being a function of this disparity. Similarly,
in small populations we expect an excess of heterozygos-
ity among progeny due to nonrandom mating (i.e. depar-
tures from HWE – see Balloux 2004), which can be used
to estimate the effective number of breeders (Nb)
(Zhdanova and Pudovkin 2008). The sibship method
for estimating effective population size proposed by
Wang (2009) evaluates relatedness among offspring taken
at random from a population and uses the frequency of
inferred half- and full-siblings to infer Ne. Wang et al.
(2010) developed a one-sample parentage assignment
method for organisms with overlapping generations that
requires a random sample from a focal population, and
for each individual a multi-locus genotype and sex and
age. Hedgecock et al. (2007) developed a rarefaction
method which was used for European oysters, Ostrea
edulis, where they simulated the effective number of

parents required to produce allelic diversity in a juvenile
cohort relative to their adult samples.
Tallmon et al. (2008) introduced a promising approach

that may provide better estimates of contemporary Ne

as it uses approximate Bayesian computation (ABC)
(Beaumont et al. 2002). Their approach uses more of
the information contained within the genetic data,
estimating eight summary statistics, each of which have
been shown to relate to effective population size, and
deploying upper and lower bounds on Ne for simulated
populations, each with an effective size drawn from a
uniform distribution of random numbers between the
lower and upperNe priors. Initial genetic variation within
each replicate simulated population is defined by theta,
which is defined by 4Ne∗μ where Ne is the historical
effective population size and μ is the mutation rate of
the considered loci. Each simulated population is allowed
to reproduce following a Wright–Fisher model for
between two and eight generations (number determined
by a random draw of a uniform distribution bounded by
these values) before sampling an identical number of
individuals and loci as contained in the observed dataset.
The best value of Ne is the one where summary statistics
of the simulated population are closest to that of the
target population. We use this approach to compare
estimates of contemporary Ne to historical Ne and census
population sizes for isolated populations of eastern
foxsnakes (Box 11.4).

11.4.3 Estimating Contemporary Effective
Population Size with Temporal Sampling

Temporal methods require estimates of allele frequencies
from two or more time periods (Waples 1989a), and thus
necessarily require that populations have been sampled in
the past. Generally, this class of estimators is based on the

Table 11.1 (Continued)

Program Description
Main
Assumptions Markers Platforms Source

Critical_M.exe uses sample size, the
number of loci, and three parameter values
for the two-phase mutation model and
calculate a critical value, Mc.

MSVAR Estimates a current effective population size
(N0) that has changed from a historical
population size (N1) beginning at some
point (ta) in the past. Can incorporate linear
or exponential population size changes.

Assumes a demographic history of a single
population undergoing expansion or decline
following a coalescent model.

STR Win,
Web-
based (all
platforms)

Beaumont
(1999)

Temporal methods typically assume negligible mutation over the time span considered. Typically they also require a known duration between samples
measured in number of generations.
MULT: multi-allelic markers (e.g. SNPs or microsatellites); STR: short tandem repeats or microsatellites; mtDNA: mitochondrial DNA sequence.
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observation that the magnitude of change in allele fre-
quencies over time brought about by genetic drift is
inversely related to effective population size. Luikart
et al. (2010) provide a detailed list and discussion of
temporal methods that are based on (i) declines in
heterozygosity (Harris 1989; Miller and Waits 2003);
(ii) F (inbreeding) statistics (Nei and Tajima 1981; Jorde
and Ryman 2007); (iii) a pseudo-maximum likelihood
approach (Wang 2001); (iv) descent-based MCMC esti-
mators (Anderson 2005); and (v) a coalescent Bayesian
perspective (Beaumont 2003). Temporal methods, as well
as most one-sample methods, typically assume nonover-
lapping generations, no age structure, no migration, and
negligible mutation. Luikart et al. (2010) systematically
evaluated these assumptions, and the means to mitigate
their impacts or methods most robust to violations of
them. Ultimately conclusions regarding population size
for use in management benefit from clear articulation
of assumptions of any method deployed, a good under-
standing of the ecology of focal species, and comparison
across estimators.
A need remains for detailed comparisons of the many

one-sample and temporal methods of estimating Ne, but
some nice empirical work has been done. Skrbinšek
et al. (2012) compared four newer methods for estimat-
ing Ne in brown bears (Ursus arctos). They genotyped
510 bears of varying ages for 20 DNA microsatellites
and organized them into age cohorts. Using the
unbiased LD estimator of Waples (2006), ABC as per
Tallmon et al. (2008), the sibship method of Wang
(2009), and the parentage assignment method of Wang
et al. (2010), they found that the four methods produced
comparable results. Thus, they concluded that one-
sample methods might be very useful for long-term
monitoring of species of conservation concern. For
example, the harmonic mean Ne across cohorts was
276 (95% CI: 183–350) for the parentage assignment
method, and was similar to the median long-term Ne

estimate of 305 (95% CI: 241–526) from their ABC anal-
ysis. Hoehn et al. (2012) also quantified Ne using four
different methods for the Australian reticulated velvet
gecko (Oedura reticulata). They concluded that sin-
gle-sample estimators produced comparable values to
temporal methods for estimating Ne, although the two
temporal estimates exhibited substantial variation in
confidence intervals with concerns regarding prior
information incorporated in estimates.

11.4.4 Diagnosing Recent Population
Bottlenecks

Due to seasonality and other environmental factors such
as disease and drought, populations are known to fluctu-
ate in size over time with obvious ramifications for

demography and genetic diversity. Population bottle-
necks are marked reductions in effective population size
and can have profound direct and indirect consequences
for population persistence (Frankham 2005). Smaller
populations have greater probabilities of local extinction
due to both intrinsic demographic factors such as demo-
graphic stochasticity, and extrinsic environmental varia-
bility (e.g. droughts, severe storms, changes in habitat;
May 1973). Small populations are also more vulnerable
to genetic stochasticity defined as the loss of genetic
diversity through random genetic drift and inbreeding
(Shaffer 1981) and may experience reduced mean fitness
(Kalinowski and Waples 2002). Indeed when population
sizes change over time, small populations may have a dis-
proportionate impact on genetic diversity (Hedrick 2011).
Because of the effect of size changes on genetic diversity,
long-term effective population size should be estimated
as the harmonic mean of Ne calculated at different time
periods (Sjödin et al. 2005).
Genetic markers can be used to diagnose recent pop-

ulation bottlenecks because the events leave a distinct,
albeit transient genetic signature. Thus, even in a popu-
lation for which we have no current demographic
insights, we can make inferences into some recent
demographic trends. Populations that have undergone
a bottleneck are expected to exhibit both reduced heter-
ozygosity and allelic richness (Nei 1975), but we predict
fewer alleles than expected from the observed heterozy-
gosity, assuming that the population is at mutation-drift
equilibrium (Maruyama and Fuerst 1985). The differ-
ence in allelic richness compared to that predicted from
heterozygosity, and our ability to detect the genetic sig-
nature of a bottleneck, depend on time elapsed since the
bottleneck began, the difference in Ne before and after
the bottleneck, the number of genetic markers assayed,
and the mutation rate of the markers (Maruyama and
Fuerst 1985; Cornuet and Luikart 1996). Cornuet and
Luikart (1996) and Luikart et al. (1998) developed three
simple statistical tests to detect whether a population
has a significant number of loci with a heterozygote
excess as a signature of bottlenecks: (i) A Sign test on
the difference between observed and expected heterozy-
gosity across all loci; (ii) A standardized differences test,
which compares the standardized difference between
observed and expected heterozygosity to zero; and
(iii) A Wilcoxon sign-rank test, which is a nonparamet-
ric paired method. In a different approach to the same
question, Garza and Williamson (2001) showed that
the mean ratio of the number of alleles to the range in
allele size across assayed loci, denoted as M, also can
be used to test for the signature of bottlenecks up to
100 generations after the initial population reduction.
Significance is assessed using simulations and calcula-
tion of a critical value, Mc, under mutation-drift
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equilibrium and assuming a particular model of muta-
tion (Garza and Williamson 2001). Population size
changes can be similarly identified using coalescence
theory (Box 11.3) and MCMC, to evaluate either popu-
lation declines or expansion across longer periods
(Beaumont 1999).
Bottleneck tests have not proved particularly effective

at identifying known or strongly suspected population
declines, primarily because of limited sampling or viola-
tions of some of the key assumptions (e.g. mutational
models; Peery et al. 2012). Another caveat to this discus-
sion is the aforementioned disparity in the relation
between census and effective population size across
populations and taxa, which means that changes in the
Nc may not be immediately evident in the Ne

(Frankham 1995).

11.5 Estimating Dispersal
and Gene Flow

Since the conception of population genetics many sum-
mary statistics have been developed to estimate genetic
differentiation among populations using allele frequen-
cies. The most widely used estimator is FST, which was
originally described by Sewall Wright in his derivation
of F-statistics (Wright 1943, 1965) for two alleles. FST
varies from zero to one and can be defined as the
reduction in genetic diversity caused by population sub-
division relative to the total population. When multi-
allelic markers became available, the derivation from
a biallelic system would not work and many other fix-
ation indices were derived that could describe differen-
tiation at more than 2 alleles. The most popular of
these is GST:

GST =
HT −HS

HT
11 3

where HT is the total gene diversity (expected heterozy-
gosity for diploid species) andHS is the within population
expected heterozygosity (Nei 1973). Some have raised
concerns about this derivation because the index no
longer ranges between zero and one, but has a maximum
of 1 −Hs as Ht will always be larger than Hs. Thus,
maximum GST is not independent of diversity, and when
diversity is high, GST can have low values even when
populations do not share any common alleles (Jost
2008; Meirmans and Hedrick 2011). This issue has led
to several proposed solutions for more standardized mea-
sures of differentiation. For example, using the maximum
possible GST, GST(max), described as a function of HS and
number of populations (k):

GST max =
k−1 1−HS

k−1 +HS
11 4

Hedrick (2005) proposed G ST, which standardizes
GST and forces an upper limit of 1:

GST max =
GST

GST max
11 5

Jost (2008) similarly recognized the problem of a lack of
standardization in GST, but also suggested that expected
heterozygosity is altogether unsuitable as it does not scale
linearly with genetic diversity (i.e. asymptotes at 1). For
example, given that expected heterozygosity is calculated

as 1− k
i= 1p

2 for k alleles, a change in two equally fre-
quent alleles (p = 0.5 for each allele) to 20 alleles
(p = 0.05 for each allele) results in a change of Hs from
0.5 to 0.95 and not the 10-fold increase that would be
intuitive. Thus, he proposed a new measure of differenti-
ation based on a “true diversity” quantifying the effective
number alleles in a population. True diversity can be cal-
culated from heterozygosity as 1/(1 −Hs) and this metric
scales linearly with diversity – in the example above this
would result in a change of 2–20 effective alleles. Using
true diversity, Jost (2008) proposed the differentiation
statistic D which can be expressed using heterozygosities
and the total number of populations (k):

D=
k

k−1
HT −HS

Hs
11 6

This statistic is a purer measure of differentiation
between populations and gives the proportion of each
subpopulation’s alleles that are unique to that subpopula-
tion. In practice, we have found that many of these mea-
sures of genetic differentiation are highly correlated, but
nevertheless it is wise to use multiple measures. Large dif-
ferences in estimators can largely be explained (i.e. high
diversity) and can lead to unique insights and assist with
determining the appropriate statistic for a given question.
While most measures of genetic differentiation should

correlate with gene flow (Neigel 2002) and there are
obvious advantages of standardized estimates of genetic
differentiation among populations, they are generally
ineffective at quantifying the actual amount of movement
occurring under most biological scenarios (Charlesworth
1998; Whitlock and McCauley 1999; Jost 2008). Given
that actual dispersal rates will be of greater interest to
population ecologists than any measure of genetic differ-
entiation, we focus on the approaches that more directly
estimate this parameter.
The terms “dispersal” and “gene flow” are often used

interchangeably, but there is a critical distinction between
the two. Dispersal is the movement of individuals, or their
gametes, from one population to another. If that
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movement results in successful transfer of genes because
matings or fertilizations produce offspring, then effective
dispersal or gene flow has occurred. Dispersal does not
result in gene flow if the dispersing individual does not
reproduce. A variety of newer methods can estimate
either recent dispersal patterns or more sustained levels
of gene flow through time. Different approaches have
even led some to compare recent and historical gene flow
and make inferences about the impacts of human habitat
alterations on population connectivity (Howes et al. 2008;
Burbrink 2010; Chiucchi and Gibbs 2010). We discuss
approaches to estimate (i) recent dispersal or gene flow
events; or (ii) sustained levels of gene flow over long per-
iods of time. We then introduce the recent application of
network analysis to study genetic connectivity, whichmay
be a particularly useful approach given its relevance to
metapopulation dynamics and the similarity in analytical
methodology between both approaches. All of these
approaches require population grouping, which will
largely depend on the biology of the species under study.

11.5.1 Estimating Dispersal and Recent
Gene Flow

Within a Bayesian clustering analysis, the posterior prob-
ability of membership or admixture coefficients can be
used to identify possible immigrants within a population.
In our example, several individuals that were captured on
the mainland (PPNP) have admixture coefficients that
suggest island origins (Box 11.1). Instead of simply basing
the identification of migrants on qualitative assessments
of admixture coefficients, Pritchard et al. (2000) sug-
gested a formal test to determine the probability that
an individual or its ancestors aremigrants. In theory, their
approach can provide evidence of migrant ancestry up to
G generations in the past, but in practice the power to
detect ancestry beyond a few generations (G = 2) is low
(Pritchard et al. 2000). Their model assumes that most
individuals originate from their sampled population,
but incorporates a small probability that an individual
is an immigrant or has an immigrant ancestor. Because
of these assumptions, the method is most informative
when the number of clusters matches the number of sam-
pling locations, with few migrant individuals. For our
foxsnake populations it was therefore necessary to
reclassify the dataset to designate individuals from geo-
graphically proximate mainland locales, Hillman and
PPNP, as coming from the same location because they
could not be separated in our original Bayesian clustering
analysis (Box 11.1). Subsequently, we used an assignment
test to identify individuals that were migrants or had
migrant ancestry (G = 2) among the three locations.
Using this approach we diagnosed four migrants in the
PPNP-Hillman cluster; two of the southern migrants

were from Pelee Island and two migrants in the north
were from the Talbot population (Figure 11.3). A lack
of migrants going from PPNP-Hillman to either Talbot
or Pelee Island pointed to an apparent asymmetry in
movement, suggesting that PPNP-Hillman may be acting
as a sink. This fits with the results from our Bayesian clus-
tering analysis (Box 11.1), which implies some admixture
within the PPNP-Hillman cluster but little within the
Pelee Island or Talbot clusters.
In addition to testing for the probability on an individ-

ual belonging to a particular cluster in a Bayesian anal-
ysis (Rannala and Mountain 1997; Pritchard et al. 2000),
there are a variety of other approaches to identify recent
migrants using genotypic data. One method simply cal-
culates individual pairwise genetic distance (Takezaki
and Nei 1996), and identifies migrants as individuals
within a priori defined populations that are more closely
related to individuals from a population different from
the one in which they were sampled (Cornuet et al.
1999). Likelihood-based approaches, which maximize
the likelihood of an individual belonging to a particular
population, are also available (Paetkau et al. 1995). In a
comparison of all three methods, Cornuet et al. 1999
found the Bayesian and likelihood methods provided
much greater power to assign unknown individuals to
their population of origin than the distance-based
method. The power of such assignment tests increases
with the sample size for each population and when all
populations exchanging migrants have been sampled
(Paetkau et al. 2004).
In many cases, it will be more useful to determine a

recent migration rate as opposed to identifying individual
migrants. Likely for this reason, the method introduced
by Wilson and Rannala (2003) has been particularly well
used (Vignieri 2005; Johnson et al. 2007). Because the
underlying model in this approach incorporates and esti-
mates an inbreeding coefficient, it does not require popu-
lations to be in HWE. The model does assume low to
moderate migration (less than 30% of the population
composed of migrants), and that migration has been con-
stant and genetic drift negligible over the past three gen-
erations where the migration rates are being estimated. In
an independent sensitivity analysis, Faubet et al. (2007)
found that, if differentiation was not too low (FST >
0.05) and model assumptions were not violated, the
approach provided relatively accurate migration
estimates.

11.5.2 Estimating Sustained Levels
of Gene Flow

In contrast to assignment methods, which attempt to
identify individual migrants in extant populations or
establish recent migration rates from allele frequencies,
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coalescent approaches (Box 11.3) estimate population
parameters such as effective population size or gene flow,
over much longer periods of time. There are various con-
siderations before choosing the most appropriate coales-
cent model for estimating demographic parameters
(Table B11.3.1). In general, coalescent approaches search
the parameter space of an assumed demographic model
to derive population parameter estimates and associated
probability distributions, given the observed data (i.e.
gene genealogies of sampled genes). It is important to
understand the underlying demographic or evolutionary
models and accompanying assumptions to determine
whether they match with the biological underpinnings
of collected data, the ecology of the focal species, and
the research questions being asked.
Because of the mathematical complexity of even simple

coalescent models, parameter estimates cannot typically
be calculated directly and the methods used to derive
parameter estimates vary. Parameters are typically esti-
mated using MCMC algorithms, with parameter search-
ing guided by either a likelihood function or a Bayesian
approach (Metropolis et al. 1953; Hastings 1970). Beerli
(2006) provides a nice overview and comparison of like-
lihood and Bayesian approaches using the same migra-
tion model. For both methods, it is important to assess
convergence of the model parameter estimates and if
done properly, they should yield similar results (Beerli
2006). In part, this can be done by assessing the consist-
ency of multiple runs with different starting parameters
and prior probabilities in the case of Bayesian analysis.
We provide an example of a coalescent-based approach
for estimating gene flow between populations of eastern
foxsnakes (Box 11.4).
In addition to providing the basis for model-based

approaches, coalescent theory can be used to simulate
generate genealogies under an assumed demographic
and mutational model (Hudson 2002; Laval and Excoffier
2004; Carvajal-Rodríguez 2008). Using these simulations,
expected distributions of genetic summary statistics for
the simulated data can be calculated and compared to
observed data to determine the likelihood of, or power
to detect, a given demographic scenario (Thalmann
et al. 2007; Rutledge et al. 2012). To this end, some have
advocated for ABC to be used to make statistical compar-
isons between generated and observed summary statistics
and to compare coalescent simulations generated under
competing demographic models (Beaumont et al.
2002). This approach has many advantages over the more
traditional model-based approaches due to the flexibility
of the demographic models that can be specified, the pos-
sibility of incorporating prior information, and the ability
to compare competing evolutionary and demographic
models (Bertorelle et al. 2010; Csilléry et al. 2010).
Typically, model comparisons have been employed to test

among models with different invasion scenarios (Pascual
et al. 2007), population status as stable, increasing or
decreasing populations (François et al. 2008; Row et al.
2011), or types of population subdivision (Peter et al.
2010). If the demographic history of sampled populations
is known or has been selected through a model compar-
ison approach, the posterior distributions can also be
used to derive parameter estimates of splitting times
and/or effective population sizes. Potential limitations
to ABC include a lack of power in model comparisons
(Robert et al. 2011), and care must be taken to choose
appropriate genetic summary statistics and conduct
proper model checking and validation (Bertorelle et al.
2010). Eliminating the summary statistics altogether,
and instead using full allelic distributions, may also
address these deficiencies (Sousa et al. 2009).
In both ABC and model-based approaches, a variety of

types of genetic markers can be incorporated into the
analysis. In fact, both approaches can incorporate more
than one type of marker in the same analysis, which
may increase the power to establish demographic history
across spatial and temporal scales (Peters et al. 2008;
Wegmann and Excoffier 2010). Note that because coales-
cence results from random processes, there can be large
variation among individual genealogies and thus it is
important to sample a number of unlinked genes to quan-
tify variation and derive a confidence interval for a given
result (Rosenberg and Nordborg 2002). This has led some
to debate the merits of using more individuals versus
obtaining more data from other unlinked genetic loci,
with most researchers suggesting that increasing the
number of loci at the expense of increasing the number
of sampled individuals leads to more accurate parameter
estimates (Felsenstein 2006).

11.5.3 Network Analysis of Genetic
Connectivity

Most of the population approaches we have discussed so
far largely involve pairwise comparisons between popula-
tions, but since Dyer and Nason’s (2004) key paper intro-
duced population graphs, the use of network-based
approaches in population genetics has increased. Net-
work methodology relies on graph theory, which is widely
applied in many disciplines (e.g. sociology, transporta-
tion, biology, information systems, and physics) and to
address a variety of research problems. Thus, the statisti-
cal and mathematical underpinnings of graph theory are
well developed. In general, networks are composed of
nodes or vertices that are connected by a set of arcs or
edges. In population genetics, nodes generally represent
populations with edges characterizing some form of
genetic connectivity. Through systematic pruning or
the removal of edges, one can gain insight into the genetic
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structure, connectivity of populations, and the impor-
tance of individual nodes.
In their original introduction of networks to population

genetics, Dyer and Nason (2004) proposed “population
graphs” where pruning is done to a saturated graph,
where all populations are connected, in a manner which
minimizes the genetic covariance structure. In their
method, individuals are first defined by their multilocus
genotype within multivariate space, and pairwise dis-
tances between populations (nodes) are derived from
the centroids of individuals within multivariate space that
comprise each population. Following Magwene (2001),
Dyer and Nason (2004) transformed a population dis-
tance matrix (dij) to a standardized precision matrix
(rij) where off diagonal elements represent the partial
correlation coefficients. Values that do not significantly
deviate from zero represent connections that are condi-
tionally independent such that their removal (i.e. prun-
ing) will not affect the overall genetic covariance
structure. To date, this method of pruning genetic net-
works has been utilized in landscape genetics to identify
barriers to dispersal (Giordano et al. 2007) or local factors
affecting migration rates (e.g. snow depth; Garroway et al.
2008). However, there are several other methods to build
(e.g. minimum spanning network, Gabriel graph; Dale
and Fortin 2010) or prune (e.g. percolation threshold;
Stauffer and Aharony 1994; Rozenfeld et al. 2008) genetic
networks that may be equally useful for displaying and
summarizing genetic patterns.
The overall network, as well as node-specific character-

istics, can also provide valuable insights into population
structure and dispersal patterns. For example, nodes with
many edges linking them to other nodes are dispropor-
tionately important for the maintaining overall connec-
tivity of the metapopulation; the degree of a node
connotes the total number of nodes to which it is joined
by edges. Assessing the degree values in a pruned network
of genetic distances for populations across the range of a
clonal sea grass, Rozenfeld et al. (2008) found a small
number of populations with high degree values suggest-
ing that these populations were acting as important cen-
tres of gene flow and were essential to maintaining
connectivity across the entire system. In contrast,
Garroway et al. (2008) found a well-connected genetic
network for fishers (Martes pennanti) across northern
Ontario with comparable degree values across all popula-
tions. This pointed to a high level of resiliency in fishers to
the loss of any particular node (population) on the
network.
Networks can also be used to test predictions or to

make comparisons among regions or within and among
species. For example, tests can be carried out to deter-
mine if the number of connections in graphs pruned
using genetic covariance significantly deviate from the

saturated graph or to test for the effects of a particular
habitat or landscape boundaries. Giordano et al. (2007)
used this approach and after pruning a network with con-
ditional independence found significantly fewer edges
among than within high- and low-altitude populations
of long-toed salamanders (Ambystoma macrodactylum),
suggesting restricted gene flow between populations at
different elevations in Montana. Fortuna et al. (2009)
compared networks for four Mediterranean woody plant
species across the same fragmented landscape in south-
ern Spain. The importance of any particular habitat patch
varied drastically among species, implying difficulties for
devising a multispecies conservation plan. Certainly the
ability to include local (at-site) and regional (between-
site) characteristics and examine their combined effects
on metapopulation dynamics, make network-based
approaches attractive for combining population ecology
and genetics.

11.6 Software Tools

Throughout this chapter we outlinedmany different indi-
vidual- and population-based approaches that were
developed to (i) quantify population structure using indi-
vidual genotypes; (ii) estimate census and effective popu-
lation sizes and their trends; and (iii) estimate gene flow
and dispersal between populations. Many of these
approaches have accompanying programs that can be
used for analyses of genetic data. Although the availability
of these programs increases the ability of nonexperts to
conduct complex analyses, their sheer number can be
overwhelming. Here we outline a few of the major plat-
forms for conducting some of most common analyses
and summarize this information in three tables.

11.6.1 Individual-based Analysis

Bayesian clustering approaches are a popular first
approach for population genetic analyses, and various
programs have been developed (Table 11.2). Although
the objectives of the analyses underlying these programs
are similar, many of the assumptions are different and
they can accommodate varying types of data. The largest
distinction among the major programs is whether they
incorporate geographic locations into the clustering algo-
rithm, such as Tess (Chen et al. 2007) or Geneland
(Guillot et al. 2005), or only utilize genotypes with or
without a population identifier (Structure, Gene-
class2). Incorporating information on sample prove-
nance can increase the spatial resolution (Guillot et al.
2005b), but it often does not make sense for well-spaced
population level data, or clustered sampling. Further,
when utilizing a population identifier, both Structure
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and Geneclass2 allow for specific tests to identify
immigrants in sampled populations. The program Gen-
eclass2 (Piry et al. 2004) is more complete in this
aspect and implements three different methods to iden-
tify first-generation migrants in a sample of populations:
(i) a method utilizing an array of individual pairwise
genetic distances (Cornuet et al. 1999); (ii) a method that
uses Bayesian criteria and is similar to those used in the
migrant test of Structure (Rannala and Mountain
1997); and (iii) implements a likelihood-based approach
which maximizes the likelihood of an individual belong-
ing to a particular population (Paetkau et al. 1995).
Other programs that incorporate individual level data,

include both Genalex 6 (Peakall and Smouse 2006) and
the R package adegenet (Jombart 2008), which can be
used for PCA and other multivariate analysis. In particu-
lar, adegenet is a versatile and expanding R package
that can conduct spatial PCA analysis and incorporate
various types of data, including genomic level SNPs.
Although Genalex 6 (Peakall and Smouse 2006) is
based in Excel, it incorporates an array of analyses
including a spatial autocorrelation analysis across defined

distance classes (Peakall et al. 2003). The program SPA-
GeDi (Hardy and Vekemans 2002) can similarly conduct
spatial autocorrelation analysis using a number of differ-
ent individual-based genetic distance measures and tests
for deviations from random for any set of geographic dis-
tance classes, using permutation tests. For example, we
used SPAGeDi to determine the extent of significant,
positive correlation (Moran’s I) for Canada lynx (Lynx
canadensis) genotypes distributed across Manitoba to
Quebec (Figure 11.3).

11.6.2 Population-based Population Size

The software for analyzing census and effective popula-
tion sizes is similarly vast and we have summarized many
of the available programs in Table 11.1. For capture-
recapture, a newer R package capwire implements
the likelihood methods of Miller et al. (2005) to estimate
Nc (Pennell et al. 2013). This approach allows researchers
to: (i) obtain maximum likelihood estimates of census
population size; (ii) select between two capture rate
models (Equal Capture Model versus Two-Innate Rates

Table 11.2 Bayesian clustering and assignment test programs used to identify genetic clusters and estimate dispersal.

Program Description Assumptions Spatial Platform Source

Structure Identifies genetic structure using Bayesian
clustering of individual genotypes or
identifies migrants using population
analysis.

HWE and LE within clusters; can
allow admixture between clusters;
recent versions can accommodate
some linkage

Population
group

Win,
MacOS,
Linux

Pritchard
et al.
(2000)

Geneland Identifies genetic structure using Bayesian
clustering of individual genotypes; new
versions can incorporate phenotypic
information.

HWE and LE within clusters; can
incorporate null alleles; can allow
admixture between clusters

Individual
locations

R (all
platforms)

Guillot
et al.
(2005b)

Baps Identifies genetic structure using Bayesian
clustering of individual genotypes or
identifies migrants and admixed
individuals using population analysis.

HWE within clusters; can allow
admixture between clusters

Population
group

Win,
MacOS,
Linux

Corander
et al.
(2004,
2008a, b)

Tess Identifies genetic structure using Bayesian
clustering of individual genotypes.

HWE within clusters; can allow
admixture between clusters

Individual
locations

Win,
MacOS,

Chen
et al.
(2007)

Geneclass2 Assigns unknown individuals to a priori
defined populations and identifies first
generation migrants using three methods.

Different for each of the three
methods

Population
group

Win,
Linux

Piry et al.
(2004)

BayesAss Uses Bayesian inference to identify recent
migrants (>3 generations) and estimate
directional migration rates.

LE but allows for inbreeding within
populations (i.e. deviations from
HWE); Proportion of immigrants
<30%

Population
group

Win,
MacOS,
Linux

Wilson
and
Rannala
(2003)

BIMr Uses Bayesian inference to identify recent
migrants and estimate directional
migration rates, and relates patterns to
environmental variables.

LE but allows for inbreeding within
populations (i.e. deviations from
HWE)

Population
group

Win,
MacOS,
Linux

Faubet
and
Gaggiotti
(2008)

All programs can utilize unlinked multi-allelic, such as microsatellite and SNP markers with no assumed mutation model.
HWE: Hardy–Weinberg Equilibrium; LE: Linkage equilibrium.
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Model) using a log likelihood ratio test; and (iii) estimate
95% confidence intervals of the population estimate using
parametric bootstraps.
Effective population size estimators can largely be

classed into single-sample and multitemporal sample
estimators (Table 11.1). A good starting point is the pro-
gram NeEstimator (Do et al. 2014), as it implements
three single-sample methods as well as a temporal esti-
mator. Because this program incorporates multiple
approaches, comparisons of effective population sizes
using different estimators can be easily accomplished.
Currently, ONeSAMP (Tallmon et al. 2008) is the only
program available that utilizes ABC, but this program
was recently suggested to overestimate effective popula-
tion sizes for small populations and has much longer run
times than many comparable programs (Gilbert and
Whitlock 2015). This led the authors to recommend
against using it and instead suggested the LD method
available in NeEstimator (Do et al. 2014). If temporal
data are available, MLNe was suggested as the best option
(Wang 2001; Wang and Whitlock 2003). Because this
method and program also estimates migration from a
source population, it was found to be less sensitive to
higher immigration.
There are also some programs that allow, and explicitly

test for changes in population size. Two options for use
with microsatellites are the program MSVAR (Beaumont
1999) and more recently the R package VarEff
(Nikolic and Chevalet 2014). Because VarEff relies on
an approximation of the exact likelihood, it is much faster
than MSVAR and thus the effect of mutational model and
priors can be tested more efficiently.

11.6.3 Dispersal and Gene Flow

Multipopulation programs that estimate gene flow
between populations typically utilize coalescent
approaches that search the parameter space of an
assumed genetic model to derive population parameter
estimates given the observed gene genealogies of sampled
genes. These models can range from migration between
stable populations at mutation-drift equilibrium
(Migrate, Beerli and Felsenstein 1999, 2001; IM, Niel-
sen and Wakeley 2001), to more complex models that
incorporate and estimate population size changes
through time (Lamarc, Kuhner 2006). Given the rise
in popularity in ABC, several programs that incorporate
coalescent simulations into an ABC framework have been
recently developed. These programs range from stand-
alone user-friendly programs (DIYABC, Cornuet et al.
2010) to collections of packages and scripts that assist
with running simulations and comparing the output of
simulations and observed data (ABCtoolbox, Weg-
mann et al. 2010). Along these lines, the R packages

abc (Csilléry et al. 2012) and easyABC (Jabot et al.
2015) offer R solutions to running ABC analyses, but rely
on external simulation software to conduct the demo-
graphic simulations. Given that all these programs allow
for the comparison and parameterization of customized
models, more biologically realistic models can be derived
and parameters such as effective population size and gene
flow can be estimated. However, as always there is a
trade-off, as increasing complexity and number of para-
meters will invariably lead to longer run times and con-
comitantly diminished power. Moreover, complexity
may also suffer from problems of failure to converge.

11.7 Online Exercises

The online exercises for our chapter illustrate both individ-
ual and population-based genetic analyses, for example,
data from different populations of foxsnakes (Pantheris
spp.) and Canada lynx (Lynx canadensis). Exercise 1 uses
Bayesian models in the Geneland package of Program
R to examine spatial clustering and genetic structure
among foxsnakes that were genotyped with microsatellite
markers. Exercise 2 is an example of spatial clustering of
simulated genotypes across a climatic cline. Exercises 3
and 4 use sPCA to identify spatially explicit genetic struc-
ture with the tools of the adegenet package. Exercises 5
and 6 use Bayesian models in the VarEff package to esti-
mate effective population size and population trends based
on coalescent analysis.

11.8 Future Directions

In this chapter, we have highlighted the genetic techni-
ques that can reveal key insights likely to be of most inter-
est to population ecologists. Despite this perhaps
asymmetrical focus on the influence of genetics in ecol-
ogy, both theoretical and empirical population genetics
would also benefit from incorporatingmore of the biolog-
ical complexity embedded within population ecology.
Certainly, there have been recent suggestions that some
of the simplistic demographic scenarios such as idealized
Fisher–Wright populations and stable population sizes
may compromise our ability to make truly insightful bio-
logical inferences using population genetic analyses
(Neuhauser et al. 2003; Lambert 2010). Genetic simula-
tions have revealed the relevance of population stochas-
ticity and density-dependent dispersal on the effects of
genetic drift and the evolution of spatial genetic structure,
independent of mean population characteristics (Kaitala
et al. 2006; Björklund et al. 2010).
Beyond simply incorporating more biological realism

into population genetics, there are other benefits to be
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gained frommerging demographic and genetic inferences
in empirical research. Perhaps the value of a more inte-
grated approach is best illustrated by the utility of both
demographic and genetic information for accurately esti-
mating the viability of populations (Reed et al. 2002; Traill
et al. 2010) or even their geographic definition (Wells and
Richmond 1995; Palsbøll et al. 2007; Lambert 2010), usu-
ally involving some form of demographic independence.
Theory suggests that dispersal rates below 10% lead to
demographic independence (Hastings 1993), but there
are few empirical data to support this assertion
(Waples and Gaggiotti 2006; Lowe and Allendorf 2010).
Given that many life history attributes and population
size itself all likely influence the impact of dispersal on
local demographics, the effect of a 10% dispersal rate is
likely to vary widely among species and even populations.
Only through demographic and genetic monitoring over
multiple years will we begin to understand the genetics of
demographic independence.With increased awareness of
the power of molecular insights, more ecologists are col-
lecting genetic material, and shared databases have
emerged for both genetic (Benson et al. 2005) and
demographic information (NERC Centre for Population
Biology, IC 2010), so these data are likely to become
increasingly available in the coming years. Over the
shorter term, spatially explicit demographic simulations
that explore the relationship between complex demogra-
phy and allele frequencies under different life history and
demographic scenarios would help shed light on benefits
of a more complete synthesis of these fields.
A recent merging of landscape ecology and population

genetics approaches has led to the new field of landscape
genetics (Storfer et al. 2007; Holderegger and Wagner
2008; Parisod and Holderegger 2012). Much of the
research in this field has identified key landscape and
other environmental attributes that promote or impede

dispersal among populations for a variety of species.
Given the importance of landscape connectivity in popu-
lation persistence and viability (Brooker and Brooker
2002; Bonte et al. 2004; Stevens and Baguette 2008), this
information is invaluable to conservation initiatives.
Some recent research, however, has suggested that overall
population connectivity may be similarly impacted by
local factors such as the density of interacting species
(Manier and Arnold 2006) or fine-scale environmental
characteristics (Murphy et al. 2010; Veysey et al. 2011).
Some of this importance is undoubtedly tied to the attrac-
tiveness of site characteristics for dispersing individuals,
but the demographic characteristics of a given region,
such as the production of an excess or deficiency of indi-
viduals, likely have large effects on dispersal and overall
population connectivity (Dias 1996; Figueira 2009). Only
through quantifying local demographic characteristics
and species interactions, and how they influence and
interact with dispersal, can we truly understand the com-
plexity underlying landscape connectivity and source-
sink dynamics.
Although a complete amalgamation of population

genetics and population ecology is not likely, there are
many overlapping objectives and both disciplines have
much to benefit from a more combined approach.
NGS will vastly increase the ease with which large
genetic datasets can be generated and, combined with
statistical and computational advances, this will aug-
ment the power of genetic analysis for demographic
inference, and allow for more complex and demograph-
ically realistic genetic models. As this occurs, the lines
between many aspects of population ecology and
population genetics will likely blur, leading to a more
synthetic understanding of the factors influencing
population dynamics and shaping patterns of genetic
diversity.

Glossary

Allelic dropout The absence of one ormore alleles in an
individual genotype due to technical issues that include
failure to amplify because of degraded DNA template or
because of mutations in the DNA priming site.

Demographic independence Two populations are
demographically independent when the demographic
characteristics of one does not influence the other. As
migration between populations increases,
demographic independence decreases.

Effective population size (Ne) The size of an ideal
population in which one would see the same rate of

evolution via genetic drift as in the real, natural
population under study. An ideal population is one
comprised of N diploid, hermaphroditic (and self-
compatible), and random mating individuals with
nonoverlapping generations. In such ideal populations,
each individual has the same probability of
contributing to the subsequent generation. Other
assumptions include no selection and negligible
mutation.

Gene flow Simply the movement of genes between
populations. This involves the migration of
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individuals from one population to another and
subsequent successful mating, or the movement of
gametes (e.g. plant pollen) between populations and
subsequent successful fertilization.

Gene genealogy Representation of ancestry and
descent or of evolutionary affinities for a particular
gene (usually represented as a tree or network).

Genetic cline A geographic gradient in the frequency
of alleles or mean trait value. Clines may arise due to
secondary contact of previously geographically isolated
populations, or due to selection or restricted dispersal
across a gradient in environmental features (called a
primary contact zone).

Genetic drift A process driven by random sampling of
gametes each generation that can produce changes in
allele frequencies over time. Genetic drift is more
pronounced in small versus large populations. All else
being equal, the probability of fixation of any given
allele in a population by drift alone, given
sufficient time, is its frequency at any considered time.

Genetic locus The specific location or
position of a gene or other DNA sequence (e.g.
microsatellite) on a chromosome. Loci for a group of
individuals can have many different variants,
referred to as alleles, and can be used to derive a
genotype.

Genotype Often tacitly assumed to be the complete
suite of genes across all loci for a particular individual.
Alternatively, it is the allelic composition of a locus or
set of loci under study.

Haplotype Alternate forms of a particular DNA
sequence or gene. Often used in reference to variants of
genes of haploid genomes of organelles (e.g. the
mitochondrion in vertebrates).

Hardy–Weinberg Equilibrium (HWE) The expected
genotypic proportions in an ideal population
(characteristics of which include random mating, no
selection, and negligible mutation). The HWE may be
treated as a “null” hypothesis, significant statistical
departures from which may indicate the action of such
processes as selection or inbreeding. Expected
genotypic frequencies are predicted from a binomial
expansion of the allele frequencies. For example, for
two alleles A1 and A2 with frequencies p and q, the
expected respective genotypic proportions of A1A1,
A1A2 and A2A2 are (p + q)2 = p2 + 2pq + q2.

Heterozygote excess A higher proportion of observed
heterozygotes (i.e. two different alleles on different
homologous chromosomes at the same locus) than
expected under HWE.

Intron Regions of DNA within a gene that are
transcribed, but do not code for protein. Introns are
spliced out to produce a mature RNA transcript
comprised only of coding exon sequences.

Isolation-by-distance A pattern where populations
that are closer geographically, are less genetically
differentiated, than populations further apart (Wright
1943; Malécot 1948). More recently this pattern has
been extended to include the differentiation or
relatedness among individuals (Rousset 2000).

Linkage The physical association of two or more loci
on a chromosome such that they do not assort
independently during meiosis and gamete formation.

Linkage disequilibrium (LD) The nonrandom
association between alleles at two or more genetic loci.
Disequilibrium can be caused by selection, genetic
drift, or mixing of two genetically differentiated
populations. The persistence or decay of linkage
disequilibrium is related to the physical genetic linkage
between considered loci. Note that the term is a bit
misleading as LD can occur between loci that are
unlinked, and physically linked loci can achieve LE.

Linkage equilib rium (LE) The genotype at one locus
is independent of the genotypes present at other loci.

Markov chain Monte Carlo Algorithms used to
explore probability space of defined models. All the
algorithms are based on the Markov chain, which is a
random process where each new state of a variable is
based on its current state only, and not any previous
values.

Mutation-drift equilibrium A situation where the loss
of genetic diversity within populations due to genetic
drift is balanced by its gain through new mutations.
Populations which have undergone large, recent
changes in size or which are expanding in
geographic range are likely not at mutation-drift
equilibrium.

Next-Generation Sequencing (NGS) Post-Sanger
(Sanger et al. 2007) DNA sequencing techniques,
which allow for the massively parallel sequencing
of many short DNA sequences from a single sample.
NGS sequencing can produce numbers of DNA
sequences (reads) in the tens or hundreds of
millions.

Panmixia Any population in which breeding is at
random (i.e. uninfluenced by the genotypes of breeding
individuals or spatial structure).

Phylogeography The study of the geographic
distribution of genetic variation emphasizing the
evolutionary (genealogical) relationships among
populations.

Polymerase chain reaction Molecular technique used
to amplify a targeted region of DNA from a few copies to
several thousands or millions of copies. It may involve a
single target sequence or multiple sequences (termed a
multiplex reaction).

Population bottleneck A severe, temporary reduction
in effective population size.
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Rarefaction (curve) A curve describing the
relationship between genotyped genetic samples and
the number of unique genotypes (different individuals).
In population genetics, typically used with noninvasive
genetic sampling to estimate census population
size (Nc).

Sibship Either a group of individuals related by descent
from a common ancestor or a group of siblings. The
relatedness among a sample of individuals using
genotypic data can be used in the estimation of
effective population size.

Voronoi tessellation deconstructs a landscape into a
number of spatial polygons with no overlap or gaps. The
polygons are typically built using either free Voronoi

tessellation, which builds a defined number of polygons
independent of sampling locations or constrained
tessellation where polygons are built using the sampling
locations.

Wahlund effect Named after Sven Wahlund
(Wahlund 1928). Indicates departures from
Hardy–Weinberg expectation (e.g. heterozygote
deficiencies) because of mixing of two or more
temporally or spatially genetically distinct populations.

Wright–Fisher model A theoretical ideal population
of finite and constant size, with random mating,
nonoverlapping generations, and selective neutrality
for the markers considered.
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Spatial Structure in Population Data
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Summary

An understanding of population dynamics first requires the determination of a population’s spatial structure. Knowledge about
a population’s spatial structure can be characterized and quantified using various spatial statistics. The selection of the appro-
priate spatial statistics will depend on the question investigated and the available data to address it. In this chapter, I first sum-
marize the key spatial statistics that can be used as an exploratory spatial data analysis (ESDA) to quantify and test the
significance of spatial patterns in population data based on: (i) point data using Ripley’s K; or (ii) abundance data using spatial
autocorrelation coefficients (Moran’s I, Geary’s c) or geostatistics (variograms). Then I present how density data can be esti-
mated and mapped based on point data using kernel density functions. Similarly, spatially interpolated data can be estimated
from quantitative data using spatial interpolation techniques such as Kriging. Next, spatial regressions can be used to relate
spatially structured species abundance to environmental and ecological factors. Last, given that numerous processes may shape
spatial distributions of populations, multiscale analysis (Moran’s Eigenvector Maps [MEM]) should be performed to detect the
key spatial scales of the data. I stress the advantages and limits of the presented spatial methods while highlighting how the
methods can be used in tandem to gain knowledge about species ecology.

12.1 Introduction

Spatial distributions of species are the result of various
biological, ecological, and environmental processes all
occurring at different spatial and temporal scales (Levin
1992; Dungan et al. 2002; Fortin et al. 2012). Environmen-
tal and climatic conditions are exogenous processes that
induce spatial structure in species distributions by affect-
ing nutrient availability, habitat quality and quantity, and
appropriate climatic physiological conditions that define
the species’ ecological niche. Exogenous conditions are
expected to be spatially structured, and species distribu-
tions will mirror spatial patterns of resources at regional
and landscape scales (Wagner and Fortin 2005; Fortin
et al. 2012). At more local scales, biological endogenous
(e.g. animal movement, species interactions, demo-
graphic processes, dispersal) and abiotic exogenous pro-
cesses (e.g. environmental and climatic conditions,
natural disturbances, human-made activities) within
habitat patches also generate spatial patterns. All the
processes and factors affect species spatial patterns at
multiple spatial scales (Fortin et al. 2012). When spatial
patterns are due to endogenous processes it is often

referred to as true spatial autocorrelation, whereas
when they are due to exogenous processes it is considered
as false spatial autocorrelation or spatial dependency
(Legendre 1993). The synergetic interactions between
endogenous and exogenous processes result in embedded
spatial patterns (e.g. trends and patchiness) at different
spatial scales, all of which have their own magnitude, size,
and shape. Species spatial distributions can therefore
show different patterns depending on local, landscape,
region, or continent scales (Fortin et al. 2012) as well as
the level of organization studied being at the individual,
population, metapopulation, or species level (Table 12.1).
Understanding species’ responses to their environment

requires quantitative characterization of spatial patterns
of animal distribution and abundance. By determining
spatial patterns, one can determine the key spatial scales
and ecological processes that generate observed patterns
(Table 12.1). There are many spatial statistics available to
analyze spatial patterns in ecological data (Dale and For-
tin 2014). In ecology, there is a long history of using and
developing spatial statistics to relate complex spatial
patterns to ecological processes and environmental
factors (Watt 1947; Greig-Smith 1961; Lloyd 1967).

299

Population Ecology in Practice, First Edition. Edited by Dennis L. Murray and Brett K. Sandercock.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/MurrayPopulationEcology



Furthermore, different spatial statistics have been devel-
oped in various disciplines ranging from geography, engi-
neering, and epidemiology to economics. Yet, all spatial
statistics are rooted in the statistical principles and
assumptions of time series analysis, which assume that
the processes that generated the pattern are stationary
(i.e. same mean and variance through the study area).
The spatial statistics used by ecologists stem mostly

from human geography (spatial statistics; Cliff and Ord
1981) and mining (geostatistics; Matheron 1970; Journel
and Huijbregts 1978; Cressie 1993). The goal of the spa-
tial statistics developed by geographers is to estimate the
degree of spatial autocorrelation of quantitative data
against various spatial lags. Such estimations can be
assessed and their significance tested using Moran’s I
or Geary’s c spatial autocorrelation coefficients (Cliff
and Ord 1981). The original goal of the geostatistical
methods (semivariance γ and spatial interpolation based
on Kriging) was to infer the quantitative values of a var-
iable at unsampled locations, incorporating knowledge of

the spatial structure and autocorrelation present in the
data with a spatial interpolator algorithm developed by
the engineer Krige (Journel and Huijbregts 1978). Hence,
the estimation of spatial autocorrelation, computed in
term of spatial variance (see Section 12.4), was then not
tested for its significance.
The spatial aggregation of point data was estimated

using other methods based on point pattern methods
such as Ripley’s K statistics (Ripley 1981). With the avail-
ability of various types of sensors, data about individual’s
movement and species abundances are now possible to
obtain over larger study areas, making the assumption
of stationarity of the processes less likely. To deal with
such regionally structured data, Local Indicator of Spatial
Association methods (Local Moran’s I, Local Geary’s c;
Local Getis’ G) have been developed (Anselin 1995; Getis
and Ord 1996).
Yet, the presence of spatial autocorrelated structure in

ecological data invalidates the assumption of independ-
ence of parametric inferential tests such as correlation,

Table 12.1 Spatial scales and spatial analyses.

Spatial
scales

Local/
Home range

Population/
Landscape

Metapopulation/
Region

Species range/
Continent

Sampling
unit • Individuals (x-y

coordinates)
or features related to
each individual (e.g.,
nest locations, home
range centroids, etc.)

• Abundance data sampled at
sampling units. • Habitat patches (shape, size,

and quality). • Sampling units

• Species range
distribution

Processes • Demography

• Movement

• Resource use

• Demography

• Movement

• Dispersal

• Species interactions

• Land use

• Disturbance

• Demography

• Dispersal

• Species interactions

• Land use

• Climate change

• Disturbance

• Speciation

• Dispersal

• Migration

• Species
interactions

• Land use

• Climate change

• Disturbance

Spatial
structure • Patch size and shape

• Spatial heterogeneity • Patch configuration

• Topography

• Spatial heterogeneity

• Patch configuration

• Patch isolation

• Topography

• Spatial heterogeneity

• Barriers

• Topography

• Spatial
heterogeneity

Spatial
analysis • Home range

delineation

• Point pattern analysis

• Spatial autocorrelation

• Spatial variance

• Spatial interpolation

• Multiscale analysis

• Spatial regression

• Spatial autocorrelation

• Spatial variance

• Spatial interpolation

• Multiscale analysis

• Spatial regression

• Gravity model

• Spatial
autocorrelation

• Spatial variance

• Spatial
interpolation

• Multiscale analysis

• Spatial regression

• Species range
delineation

• Species
distribution
models
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regression, and analysis of variance (ANOVA, Cliff and
Ord 1981). To address the statistical issue of dependence
of the errors due to spatial autocorrelation, a series of
corrections have been proposed for bivariate tests
(Clifford et al. 1989; Dutilleul 1993). Recently, the
acknowledgement of the importance of spatial scales in
ecological studies has grown (Fortin et al. 2012). The
determination of the key spatial scales at which processes
shape the spatial patterns of ecological data can be done
using spectral decomposition methods (wavelets; Keitt
and Urban 2005) and eigenfunction methods (Moran
Eigenvector Maps [MEM]; Dray 2011; Dray et al. 2012).
Last, to relate how environmental factors and their spatial
patterns influence species distributions, a wide range of
spatial regressions have been developed by geographers
(Haining 2003) and economists (Anselin 1988).
Before presenting these various spatial statistics in

more detail, it is important to understand the various
aspects of “space,” how space affects the observed spatial
patterns, and our ability to detect spatial relationships
(Table 12.2). Four sets of issues are relevant.
First, one needs to decide how space will be conceptu-

ally measured. Indeed, space can be considered:
(i) implicitly, where distance is measured in terms of rel-
ative topological nearest neighbors; (ii) explicitly, where
distances are measured based on Euclidean distance;
and (iii) functionally, which are weighted distances that

account for species’ behavioral dispersal responses to
landscape heterogeneity.
Second, space is often used as a surrogate for unmeas-

ured factors and processes. Indeed, in the presence of
spatial patterns due to spatial autocorrelation, nearby
values of a variable are most likely to be similar in terms
of magnitude. Therefore, space recorded as x-y coordi-
nates or measured as either Euclidean distance or func-
tional connectivity can be used as a spatial predictor in
a regression model.
Third, current processes and resulting spatial pat-

terns can be influenced by historical events, habitat
composition, or spatial configuration of the landscape.
Such a phenomenon is referred to as a lag effect of
spatial legacy or ecological memory (Peterson 2002;
James et al. 2007).
Fourth, both spatial dependency and spatial autocorre-

lation act together so that the spatial pattern at a given
location is affected by the values of the factors and
processes from the immediate surroundings.
From these four issues, it is clear that space is important

in structuring the spatial distribution of species
(Table 12.2). Hence, one needs to be aware of how these
aspects of space interplay in the spatial analysis of popu-
lation data. In this chapter, I focus on the key methods
used to quantify spatial patterns using either point data
such as x-y coordinates of individuals or abundance data

Table 12.2 Multiple aspects of space: relative, absolute, and realistic.

Conceptual
representations
of space

Implicit/Relative:

Relative position between sampling
locations based on network
topological neighborhoods.

Explicit/Absolute:

Euclidean distances based on x-y
coordinates of sampling locations.

Functional/ Realistic:

Resistance (least-cost) distance
proportional to landscape quality
between the sampled sites.

Space as a
surrogate for
processes

Binary network topology is a
surrogate for dispersal potential and
any other ecological processes
between spatial entities (individuals
or sampling units).

Euclidean distance or x-y coordinates
can be used in the context when the
first law of geography prevails: nearby
locations are more likely to have
similar values.
Hence “space” can be used as a
surrogate for unsampled factors and
processes that would generate spatial
patterns in the observed data.

The actual position of the sampling
locations is considered as well as the
weights (landscape costs in terms of
energetic costs, behavior limitation
to dispersal and mortality risk, etc.)
of area between the sampling
locations. Hence, functional
connectivity weights can be used as
a surrogate for dispersal ability and
movement impediment.

Spatial legacy Influence of past spatial patterns
within patches on current spatial
patterns and processes.

Influence of past patch and matrix
configuration on current spatial
pattern and processes.

Influence of past spatial patterns of
landscapes on current spatial
pattern and processes.

Spatial
contingency

Influence on targeted patch by its
surrounding based on relative
position of other landscape
structures.

Influence on targeted patch by its
surrounding based on Euclidean
distance.

Influence on targeted patch by its
surroundings based on both
Euclidean distance and the
resistance costs (based on telemetry
data, genetic data, or expert
knowledge) of the landscape
structures.
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such as count of individuals per quadrat, stressing the
pros and cons of each method.

12.2 Data Acquisition and Spatial
Scales

Species are constantly moving throughout their life
cycle and, as a result, different life stages (e.g. juveniles
vs. adults) contribute differentially to their spatial distri-
bution. Detection of species spatial distributions is
directly related to the spatial scales of three levels of
investigation: (i) the spatial scales of the processes acting
on a species; (ii) the spatial scale of the sampling design;
and (iii) the spatial scale of the statistical methods used
in an analysis (Dungan et al. 2002). The spatial scale of
study area is referred to as the spatial extent and
determines which of these spatial patterns can be
detected. A good rule of thumb is to delimit the size
of the study area so that it is three to five times greater
than the spatial scale of the main process under study
(O’Neill et al. 1996, 1999). The sampling design to be
used within the study area should then be guided by
prior knowledge about the species dispersal ability: the
spacing among samples should be greater than the daily
animal movement, such as greater than the size of a ter-
ritory or home range, to ensure that the same individual
is not recorded twice.
Then, the spatial analysis can be performed to esti-

mate the spatial pattern: (i) for the entire extent of the
study area using global spatial analysis; or (ii) for each
sampling location using local spatial analysis (Anselin
1995). In the first case – global spatial analysis – the
process that generates the spatial pattern is assumed to
have the same intensity over the entire study area (i.e.
mean and variance): this is the assumption of statio-
narity of the process that is required by most spatial
statistics. Note that the assumption of stationarity is
about the processes, not the data. Yet, such informa-
tion is often unknown such that an exploratory spatial
data analysis (ESDA) should be performed, computing
the mean and variance of the data using a moving win-
dow over the entire extent: if the values are similar
then stationarity can be assumed and hence the global
spatial statistics can be used; if the values vary too
much from one subregion to another then local spatial
statistics should be used. In the second case – local
spatial analysis – the extent may be large enough to
include changes in the intensity of the process or a
mixing of different processes. In such circumstances,
the estimation of spatial pattern at each sampling
location allows the detection of subareas that have
comparable values.

12.3 Point Data Analysis

For sessile species (e.g. plants or sessile marine species),
nests, dens, or territories, we can be interested in deter-
mining whether such point data are spatially underdis-
persed (aggregated) or overdispersed (segregated).
Spatial patterns of point data can be tested using point
data analysis methods such as Ripley’s K statistic
(Ripley 1981). The K statistic quantifies the degree of spa-
tial aggregation of points by counting the number of
points (e.g. individual positions) in increasing circular
search areas, revealing either the presence of spatial clus-
tering or overdispersion of points (Diggle 2003; Illian
et al. 2008; Wiegand and Moloney 2014). Note that Rip-
ley’s K functions by counting the number of points within
a radius and is not measuring the degree of spatial auto-
correlation but rather the degree of spatial aggregation.
Indeed, the degree of spatial autocorrelation is measured
on quantitative values where local deviations in values of
neighboring locations are more likely to be similar. Then,
spatial aggregation is measured on point data while spa-
tial autocorrelation can be estimated for quantitative data
(see Section 12.4).
Ripley’s K function is therefore the overall mean num-

ber of points present within a circular search window of
radius r:

K r = λ−1
n

i=1

n

j= 1

Ir pi,pj n, for i j and r > 0,

12 1

where the point intensity, λ, is estimated as the density
n/A, whereA is the area of the study area and n is the total
number of points. Ir is an indicator function that takes
value 1 when point pj is within a radius distance r of point
pi, (and 0 otherwise). As the search window to compute
the number of points is circular, the resulting Ripley’s
K value is an isotropic cumulative count of all points at
distances from 0 to r. The expected number of events
under a completely random spatial process (CSR) is the
area of a circle, πr2. To test whether the computed Rip-
ley’s K function values are significant, the null hypothesis
uses the CSR position of the points in the entire study
area, creating a confidence interval around the expected
values according to the radius size. Based on a Poisson
distribution of points, the expected number of points
within a radius distance r of an arbitrary point is propor-
tional to the area of a circle (πr2) times the density of
points, λ, over the study area. A plot of the K values
against the radius values r provides insights on how the
spatial aggregation of the points varies according to
distance (Figure 12.1a and b). At short distances, it is
common to have few points and therefore the spatial pat-
tern cannot be distinguished from random dispersion
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(CSR). As distance increases, either spatial aggregation
(underdispersed) or segregation (overdispersed) can be
significantly detected.
At large distances, the circular search window includes

area outside the study area. To avoid such bias, it is
recommended not to use a radius larger than half the
smallest edge length of the study area. For example, if
the study area is 10 × 20 m, then the maximum radius
used to estimate Ripley’s K should be at the most 5 m
(10 m 2). In Figure 12.1, the study area is 20 × 20 units

and to be conservative Ripley’s K was only calculated up
to a radius of 5 units.
Most software packages assume that the sampling

frame for a study area is rectangular (or square).
The Programita software accommodates irregularly
shaped study areas using a mask to outline the study area
(programita.org). Furthermore, as points next to the edge
of the study area have fewer points around them than
points in the middle of the study area, an edge effect that
biases the measures of spatial aggregationmay be present.
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Figure 12.1 Point pattern analysis based on Ripley’s K function. (a) Locations of 70 points in a 20 × 20 unit squared area. (b) Plot of the K
values against the radius distance r where significant values are detected only at a large radius. (c) Plot of the K transformed into L
values against the radius distance r where significant values are detected only at a large radius. (d) Plot of the L values against the radius
distance r while correcting for the inhomogeneity of the study area as all the 70 points are in one sector. Based on the inhomogeneity
test, the Ripley’s values are not significant anymore for the large radius. The observed Ripley’s values are indicated by the solid black
lines, the expected values by the dashed lines, and the 95% confidence intervals by the gray region. To avoid edge effects, the maximum
radius distance used is 5 units.
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Various edge correction weights methods that account
for the amount of the search area that is outside the study
area are available (Haase 1995; Getzin et al. 2008;
Schiffers et al. 2008).
To stabilize the variance of the K values and make the

plot easier to interpret, the linear version of Ripley’s K is
commonly used: Ripley’s L (Figure 12.1c). Under such a
random spatial process, the expected value of L(r) is zero
(Ripley 1981; Diggle 2003). The CSR can be simulated
using a Poisson distribution that assumes a complete
census of all the points within the study area and a point
process that is stationary and isotropic over the study area
(Fortin and Dale 2005). Recording point data for sessile
individuals is straightforward and feasible; it is less so
for mobile individuals. For mobile individuals, surrogate
information needs to be used to represent the location of
an individual such as the centroid of an individual’s
territory (home range) or the location of a bird nest
or den.
Often, Ripley’s K function is used with sampled data

that are a subset of all points instead of census data com-
prised of all points in a study area. Unfortunately, such
use of sampled data will bias both the value of the Ripley’s
K statistic and its significance testing. While delineating
the extent of the study area, one can then select an area
that overlaps different types of soils or environmental
conditions that affect the homogeneity of the spatial
pattern. A lack of homogeneity of the study area will also
result in biased Ripley’s values (Wiegand and Moloney
2004; Schiffers et al. 2008). To correct the nonhomogene-
ity in the data, the modified inhomogeneous Ripley’s
function should be used (Getzin et al. 2008; Illian et al.
2008; Wiegand and Moloney 2014; Figure 12.1d).
Spatial pattern can be the result of several processes

operating at different scales. Thus, a series of hierarchical
null hypotheses, with their respective appropriate
randomization procedures, allow for the testing of alter-
native hypotheses about the underlying processes that
generate spatial patterns (Goovaerts and Jacquez 2004;
Lancaster and Downes 2004). Such hypotheses can be
hierarchically structured as illustrated by Melles et al.
(2009) while studying nest patterns of Hooded Warblers
(Setophaga citrina) in southern Ontario: (i) random
within the study area such as complete spatial random-
ness based on Poisson distribution, the default in most
spatial analysis; (ii) random within habitat with restricted
randomization based on the spatial arrangement of land
cover types; or (iii) random according to distance to mate
with restricted randomization based on spatial arrange-
ment of conspecifics.
Ripley’s K is widely used even though its value is cumu-

lative as the radius increases, so it can inhibit the scale-
dependent patterns that one hopes to detect (Schurr
et al. 2004). For example, spatial aggregation at short

distances may generate above-average aggregation at
larger distances. An alternative to Ripley’s K is the pair-
correlation function g(r) (Stoyan and Stoyan 1994;
Wiegand and Moloney 2004; Melles et al. 2009) which
computes the mean number of points within a given ring
radius rather than within a circle. Under complete spatial
randomness, the g(r) statistic is one; values above one
indicate clumping or spatial aggregation, and values
below one indicate segregation or uniformly spaced
points.

12.4 Abundance Data Analysis

The presence of a spatial pattern implies that the values of
the quantity measured are more similar at short distances
than expected by chance, which is the definition of spatial
autocorrelation. The processes that generate spatial auto-
correlation are numerous and act on species at several
spatial and temporal scales. While there are several pro-
cesses influencing spatial patterns, the spatial statistics
that estimate the degree of spatial autocorrelation cannot
differentiate the source(s) of the spatial pattern. To deter-
mine the relative importance of various processes to the
spatial pattern(s), one should either use an experimental
design to separate the effects of some processes, or spatial
regression (see Section 12.8). To detect significant spatial
patterns from quantitative data (e.g. species abundance
data, environmental data) it is recommended to have at
least 30–50 samples and that the spacing between the
samples be smaller than the habitat patch size or species’
home range size (Dale and Fortin 2014).
The most commonly used measure of spatial autocor-

relation is based on a Pearson correlation coefficient and
has been proposed by Moran (1948): the Moran’s I. The
expected value of autocorrelation of absence of spatial
autocorrelation is close to 0: E(I) = −(n − 1)−1 (Cliff and
Ord 1981). The estimation of spatial autocorrelation
computes deviation from the value at one location to
the mean of the distribution of the variable using an
increasing ring radius d (known as distance class) as
follows:

I d =
n
Wd

n

i= 1
i j

n

j= 1
j i

wij d xi−x

n

i=1
xi−x

2
, 12 2

where xi and xj are the values of the variable x at location i
and j. wij(d) is a weight matrix that indicates if locations i
and j are in the distance class d.W(d) is the sum of wij(d).
Positive autocorrelation values imply that values of
the variable at d distance are similar while negative
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autocorrelation values indicate that different values of the
variable are at d distance. While the denominator should
standardize and bound the range of the Moran’s I values
between −1 to +1, when there are too few pairs of loca-
tions in a distance class d the estimated value is unstable
and can fall outside the range of −1 and +1. Such larger or
smaller values than +1 or −1 occur mostly at the largest
distances where there are the fewest pairs contributing to
the statistic (Figure 12.2a).
Similarly to Ripley’s K, it is recommended to not com-

pute Moran’s I for a larger d distance class than half the
length of the smallest edge of the study area (Cliff andOrd
1981; Fortin and Dale 2005). Hence if the study area is
20 × 50 m, then the maximum radius used to estimate
the degree of spatial autocorrelation should be 20m
divided by 2 (i.e. 10 m).
Moran’s I is widely used for several reasons but the

most important one is the ease of its interpretation as it
is similar to the Pearson’s correlation coefficient. Yet,
Moran’s I can produce biased estimates of spatial

autocorrelation when the distribution of the values of
the quantitative variable is not normally distributed due
to skewed distribution. To avoid measuring the degree
of spatial autocorrelation based on deviation to the mean
of the variable, one can use Geary’s c statistic, c(d), where:

c d =
n−1

2W d

n

i= 1
i j

n

j= 1
i j

wij d xi−xj
2

n

i=1
xi−x

2
12 3

Geary’s c is a distance measure based on the deviations
between values at d distances. Geary’s c varies from 0
which indicates positive autocorrelation up to the
expected value of absence of spatial autocorrelation, E
(c) = 1, while greater values than 1 up to 2 indicate neg-
ative autocorrelation (Figure 12.2c). With too few pairs of
sampling locations or when outlier values due to skewed
data are used to compute Geary’s c, the deviations
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Figure 12.2 Spatial autocorrelation analyses: significant autocorrelation at α = 0.05 is indicated by filled circles; nonsignificant
autocorrelation is indicated by open circles. (a) Locations of λ(s) resampled using 5 by 5 quadrats where numbers of points by quadrat are
shown. (b) Moran’s I correlogram where at the shortest distance the spatial autocorrelation is significantly positive moving to significantly
negative at the third distance class. The two other values are not significant. (c) Geary’s c correlogram is a mirror image of the Moran’s I
correlogram but is interpreted in term of distance so positive autocorrelation is close to 0 and negative autocorrelation is close to 2.
(d) Variogram where the key parameters (spatial range a, sill, nugget effect) are shown.
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between adjacent locations are squared, leading to
extremely biased values of spatial autocorrelation.
Both Moran’s I and Geary’s c coefficient value of spatial

autocorrelation against distance can be tested for their
significance using either an asymptotic test or a random-
ization test (Cliff and Ord 1981; Legendre and Legendre
2012; Figure 12.2).
The degree of spatial autocorrelation can also be com-

puted in terms of spatial variance using geostatistics
(Matheron 1970; Journel and Huijbregts 1978; Cressie
1993). The estimation of spatial variance, γ h (also
known as semi-variance), is:

γ h =
1

2n h

n h

i= 1

z si −z si + h 2, 12 4

where z is the value of the variable at the ith sampling
location si, and n(h) is the number of pairs of sampling
locations located at distance h apart. The equation of
the semi-variance and Geary’s c are similar except that
Geary’s c is standardized whereas the semi-variance is
not. As such, the semi-variance values are in the same
units as the data z(si). The plot of the semi-variance values
against the spatial lag h is a variogram (Figure 12.2d). At
short distances the variance of a quantitative variable var-
ies according to distance up to a given distance or “range”
(a), where the variance plateau at the “sill” is no longer
influenced by distance (Figure 12.2d). When the value
of the semi-variance is interpolated to intercept the
ordinate y-axis, the value at the intercept is the nugget
effect (Figure 12.2d). The magnitude of the nugget effect
is due to several issues related to the sampling design such
as the size of the sampling units, the spatial distance
among the sampling units, and the number of sampling
units, as well as the degree of spatial autocorrelation of
the variable (Fortin 1999; Fortin and Dale 2005). The
estimated parameters from the variogram are subse-
quently used in a spatial interpolation technique known
as Kriging (see Section 12.5).
The spatial autocorrelation and spatial variance

measures as presented above are isotropic such that only
distance classes affect the values of spatial variance and
not directionality. Yet, all can be computed using both
distance and angle (directionality) classes such that
anisotropic, directional, and spatial patterns can be
detected. When both distance and angle classes are used
to compute anisotropic correlograms or variograms,
fewer pairs of locations by distance classes are used as
the pairs are divided into angle classes, potentially result-
ing in biased estimates of autocorrelation. To minimize
bias, one should use larger spatial lags.
Last, depending on the spatial arrangement of the

sampled locations and the species distribution, it is pos-
sible that the assumption of stationarity of the process

does not prevail, such that mean and variance vary over
the entire study area. In such circumstances, one should
either subdivide the study area into homogeneous
subareas using spatial clustering or boundary detection
methods (Dale and Fortin 2014), or use local spatial
statistics known as the local indicator of spatial autocor-
relation (LISA, Anselin 1995; Sokal et al. 1998), which
compute spatial autocorrelation for each sampling
location. All of the above spatial autocorrelation mea-
sures can then be rewritten into local spatial statistics:
local Moran’s Ii and local Geary’s ci. One local spatial sta-
tistic that is often used when analyzing quantitative data
is the local Getis’ Gi statistic (Getis and Ord 1996; Dale
and Fortin 2014). UnlikeMoran’s I andGeary’s c, the local
Gi statistic states the degree of spatial clustering of the
quantitative variable at each sampling location i. In
essence, local Gi is the ratio of the average value of a var-
iable at the sampling location i given the values within a
given spatial lag. If such ratio is greater than the global
mean of the variable, it identifies clusters of high values
known as hot spots. Alternatively, if the ratio is smaller
than the mean, then clusters of low values or cold spots
can also be identified. Local Gi can be used as an ESDA
to determine if the assumption of stationarity about the
mean of the processes is valid: if not significant, clusters
(hot or cold spots) are not detected and the assumption of
stationarity can be assumed; if significant hot and cold
spots are detected and the assumption of stationarity
should not be assumed.

12.5 Spatial Interpolation

Based on animal abundance having spatial pattern, it is
possible to interpolate abundance at unsampled locations
using techniques for spatial interpolation. The key
underlying principle of spatial interpolation techniques
is spatial autocorrelation among the values of a quantita-
tive variable, such that nearby values are more similar in
their magnitude than those further away. The task in
spatial interpolation lies, therefore, in determining the
spatial distance up to which values are spatially autocor-
related. Such a spatial distance is often referred to as the
spatial range in geostatistics, or the zone of influence in
spatial statistics literature (Cressie 1993; Legendre and
Fortin 1989).
Each spatial interpolator has different properties ran-

ging from global spatial interpolators such as polynomial
regressions, local spatial interpolators such as the
inverse distance weighting function, and geostatistical
techniques such as Kriging (Cressie 1993; Haining
2003). Hence, the spatial interpolation methods to use
depends on the goal of the analysis: when the goal is
to produce a map for publication, one may use
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the inverse distance weighting function; when the goal
is to predict values at unsampled locations, Kriging
techniques should be used. Here, I review only the local
spatial interpolator based on Kriging.
The first step of Kriging consists of fitting the best

theoretical variogram model from a series of analytical
models such as linear, spherical, exponential, and
Gaussian to the observed variogram based on the
sampled data. From a fitted theoretical variogram model,
one can then estimate the three parameters: the spatial
range a, the sill, and the nugget effect (Figure 12.2d).
As Kriging aims to maximize the spatial interpolation
based on the degree of spatial autocorrelation, the fitting
of the parameters is often estimated for the shorter spatial
lag distances h. Hence, variograms are usually computed
up to two-thirds of the longest distance between the
sampling locations, to avoid having too few pairs of loca-
tions to compute the semi-variance values as a function of
distance. Based on the three estimated parameters from
the fitted theoretical variogram, Kriging, which is a series
of linear equations, optimizes the best combination of
weights for each sampling location to interpolate values
at unsampled locations. To solve this system of linear
equations, the weights sum to 1 where there are more
equations than unknown parameters to estimate.
There are three advantages to using Kriging to spatially

interpolate data at unsampled locations: (i) it produces
the best linear unbiased predictions (BLUP), implying
that at the sampling locations the observed values are
returned (Figure 12.3a); (ii) the predictions are based
on local weights that maximize the degree of spatial
autocorrelation with which the predictions are computed;
and (iii) given that the interpolated data are based on a
theoretical variogrammodel, each prediction has an asso-
ciated standard error (Figure 12.3b). This last property of
Kriging is to identify the areas of high standard error
values. In a second phase of analysis, one can then use
these maps to optimize the spatial sampling design where
more sampling locations could be added to reduce the
standard error. One needs to keep in mind that these
standard errors are based on the theoretical model
selected and the estimation of the parameters. If an
incorrect theoretical variogram model is selected to fit
the observed variogram or if parameter estimates are
biased (e.g. strong value of sill, too-small or too-large
spatial range a), then the interpolated values will be
biased as well.
While Kriging was developed to model quantitative

data, through the years the technique was expanded to
include several variants, including: blocked Kriging,
punctual Kriging, universal Kriging, multivariate Kriging,
stratified Kriging, co-Kriging, and indicator Kriging
(Cressie 1993). When Kriging is used to map species
ranges in species atlases, stratified Kriging should be used

as it masks the area where the probability of occurrence of
the species is zero, such as open water or urban areas.
Then to model qualitative data, an indicator Kriging algo-
rithm can be used to obtain probability occurrence
values. For example, to mitigate sampling bias of The
Ontario Breeding Bird Atlas (OBBA), Cadman et al.
(2007) based surveys on 10 × 10 km blocks and Pola-
kowska et al. (2012) used indicator Kriging to model
the probability of occurrence of birds in southern Ontario
using only adjacent sampling units to account for location
effects on species occurrence. Then the probability of
occurrence of the birds was used to model the relation-
ship between birds and landscape cover types.
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Figure 12.3 Spatially interpolated quantitative values developed
by Kriging, using quantitative values based on the 25 quadrats as
shown in Figure 12.2a. (a) Kriged (spatially interpolated) values
based on a spherical model having a spatial range of 4.5 units, a
nugget effect of 5.0, and a sill (including the nugget effect) of 10.5.
(b) The standard errors associated with each predicted value
where they are the highest in the region and where there are no
points in the quadrats. The open circles indicate locations of the
70 points.
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Last, when there are spatial patterns that are embedded
in the data, it is recommended to first remove the large-
scale trend before Kriging is performed, using a technique
known as “universal Kriging.”

12.6 Spatial Density Mapping

With the availability of novel sensors, it is possible to
analyze individual movement using telemetry data. Sev-
eral research questions can be addressed with such point
data ranging from delineation of home ranges (Long and
Nelson 2012) or up to species ranges (Fortin et al. 2005).
Though, the golden rule of any spatial analysis is to plot
the data first to have an understanding of the spatial
distribution of individuals, populations, and species.
Such visualization of the spatial aggregation of point data
(as illustrated in Figure 12.1a) can be obtained using a ker-
nel density function (Worton 1989). Kernel density func-
tions estimate the density in term of intensity, λ(s), for a
given location s given the number of points within a ker-
nel search area:

λτ s =
1

δτ s

n

1 = 1

1
τ2
k

s−si
τ

, 12 5

where intensity λ(s), at unsampled location s and given
sampled locations si within the τ bandwidth of the k ker-
nel function, and δτ is an edge correction factor. The
shape of the kernel function can vary according to the
weight one wants to apply to nearby points rather than
those further away. The most commonly used kernel
function, k, is a Gaussian function. Then, the size of the
kernel search area is controlled by the value of τ band-
width parameter: smaller bandwidth results in small con-
centrated intensity values around each observed point,
and larger bandwidth results in a smooth gradient of
intensity values (Figure 12.4).

12.7 Multiple Scale Analysis

Current ecological studies of populations can be carried
out over larger regions due to the availability of novel data
acquisition equipment and analytical tools. When popu-
lations are studied at large spatial scales, several processes
may have shaped their spatial patterns (Table 12.1; Fortin
et al. 2012). In such cases, one should carry out an ESDA
aiming to identify whether there are spatial patterns at
multiple spatial scales reflecting large-scale gradients
and regional patchiness (see Chapter 2).Multiscale anal-
ysis can be performed using multiresolution techniques
such as wavelet decomposition for lattice/grid data such
as remotely sensed data (James and Fortin 2012), while
MEM can be used with regularly or irregularly spaced

spatial data (Dray 2011; Dray et al. 2012). The inherent
principle of these decomposition methods is a spectral
analysis at multiple frequencies and amplitudes
(Griffith 1996; Borcard and Legendre 2002; Dray 2011).
Here, I will summarize the key features of the MEM,
which is an eigenfunction technique that can be used with
sampled data.
The spectral decomposition was first proposed by

Borcard and Legendre (2002) to be performed using a
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Figure 12.4 Kernel density maps based on the same 70 points as
shown in Figure 12.1a. (a) Intensity map based on a τ bandwidth
of 1. (b) Intensity map based on a τ bandwidth of 2. (c) Intensity
map based on a τ bandwidth of 5.
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principal coordinates analysis (PCoA) on a Euclidean dis-
tance matrix based on the x-y coordinates of the sampling
locations. The approach was first named the principal
coordinates of neighbour matrices (PCNM) method,
but nowadays it is also referred to as distance-based
MEM (dbMEM). Another way to perform a spectral
decomposition with the MEM approach is to use a DW

matrix that is the Hadamard product (i.e. element-to-ele-
ment) of an undirected connectivity matrix, C, based on
the relative position of the sampling location and a weight
matrix,W (e.g. Euclidean distance). TheDW is a symmet-
ric matrix that is centred. From the analysis of the DW,

orthogonal eigenvectors can be obtained as well as eigen-
values that are related toMoran’s I coefficient values. The
largest eigenvalue corresponds to the largest value of
Moran’s I, while the last, smallest eigenvalue is the smal-
lest value of Moran’s I. The spatial eigenvectors are
implicitly isotropic and orthogonal. Yet, there are n − 1
spatial eigenvectors so when the sample size n is high,
there is little difference between subsequent spatial
eigenvectors. The next step is therefore to identify the
key spatial scales of the spatial pattern of the data using
a forward selection procedure that relates species data
and MEMs as spatial predictors (Legendre and Legendre

2012). Once key spatial scales are determined, they can
provide insight on which factors and processes shape
the spatial patterns. For example, Munoz (2009) used
dbMEM to determine the key spatial scales in simulated
metapopulation data where known habitat structures
were combined.
For illustration purposes, I use estimates of abundance

based on telemetry data from wolves (Canis lupus) in
Algonquin Provincial Park in Ontario (Rutledge et al.
2009) to determine the key spatial scales using the
dbMEM method (Figure 12.5a). Wolf abundance data
were measured using a 5 × 5 km sampling unit and count-
ing the number of distinct wolf individuals within those
units. A total of 238 sampling units had non-zero values
for a total 237 (n − 1) spatial eigenvectors. To reduce the
number of spatial eigenvectors, a forward selection pro-
cedure relating the abundance data and 238 dbMEMs
was computed. The forward selection procedure reduces
the number of dbMEMs to 151. Figure 12.5b shows a few
of the 151 dbMEMs to illustrate how they reflect large
(e.g. dbMEM 1 is a large east–west trend; dbMEM 3 is
a large north–south trend) and intermediate spatial scales
(dbMEM 30 shows a series of intermingled small patches)
of wolf abundance in Algonquin Provincial Park.

(a)

Figure 12.5 Multiscale analysis of wolf abundance spatial distribution based on telemetry data using distance-based MEM (dbMEM)
(previously known as Principal Coordinates of Neighbour Matrices [PCNM]). (a) Study area in Algonquin Provincial Park in Ontario (as
outlined) covering an area of 175 × 125 kmwhere abundance is sampled in 5 × 5 km sampling units (n = 440 sampling units). (b) Example of
dbMEM with large spatial scale patterns (two first rows: dbMEMs 1–10) and small spatial scale patterns (two lower rows: dbMEMs 21–118).
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12.8 Spatial Regression

The detection of spatial patterns in species abundance is
part of ESDA. Once the spatial pattern and scales of
the data have been determined, the next step is to relate
factors and processes that can explain such spatial
patterns. When there is no spatial structure in the data,
a linear regression framework is used:

y βX+ ε, 12 6

where y is the response variable, β is a vector of regression
coefficients of fixed predictors X, and ε are the random
errors. In linear regression theerrors are assumed tobe inde-
pendent such that var(ε) = σ2I, where I is the n × n identity
matrix. However, the assumption of independence of the
errors is often violated when analyzing ecological data. It is
therefore important to perform a residual analysis
to determine whether or not the residuals are significantly
spatially autocorrelated. Such residual analysis can be
performed by computing Moran’s I correlogram with the
residual values.Different reasons can explain spatially struc-
tured residuals: (i) themodel is lacking somekey covariates/
predictors that could explain the spatial structure of the
response (Melles et al. 2011); and (ii) there existmismatches
among the spatial patterns of the response and predictors.
If no new predictors can be added or if the scales match

but the residuals are still spatially autocorrelated, one
should use spatial regression models. There are three
families of spatial regression methods: spatial filtering
models, spatial error models (SEM), and local spatial
regressions (Beale et al. 2010).
Spatial filtering models are also known as spatial lag

regressions. In essence, spatial filtering regressions
accounts for the effects of spatial structure in the predic-
tor variables using adjacent neighboring samples based
on either sample topology for irregularly spaced data or
eight-neighbors for regularly spaced data. The most com-
monly used spatial filtering models are: conditional auto-
regressive model (CAR) and simultaneous autoregressive
model (SAR). When the data show patterns at multiple
spatial scales, however, one should use instead a spatial
filtering model that includes spatial predictors based on
MEM such that local, intermediate, and large spatial
structures can be accounted in the regression (Bini
et al. 2009; Beale et al. 2010; Manel et al. 2012). As there
are as manyMEM spatial predictors as there are sampling
locations, one needs to perform a selection procedure
(e.g. forward selection) to include in the regression only
the key spatial scales that are having a significant influ-
ence of the values of the response variable. The selected
MEM spatial predictors can be indicators of the spatial
scales at which unsampled processes are shaping the
values of the response variable.
For example, to relate adaptive genes to environmental

conditions, Manel et al. (2012) used broad scaled MEMs

to account for processes that affected the genetic struc-
ture of plants over the European Alps. We can also return
to the earlier example of wolf abundance in Algonquin
Provincial Park and the 151 dbMEMs obtained to com-
pute a spatial filtering regression. When all 151 dbMEMs
are used as spatial predictors, the adjusted R2 of the linear
regression is 0.87. Such high adjusted R2 explaining most
of the variability in wolf abundance solely based on spatial
predictors is quite impressive. When only the 8 dbMEMs
illustrated in Figure 12.5 are used, the adjusted R2 drops
to 0.27. This example illustrates the fact that spatial
eigenvectors can improve the fit of the regression very
well. Unfortunately, such spatial predictors do not pro-
vide any predictive power as they are specific to the study
area analyzed. Hence, when possible, one should therefore
include variables that correspond to factors and processes
that can explain the response variables rather than using
only the relative spacing between sampling locations in
the regression.
The next type of spatial regression accounts for the spa-

tial structure in the errors of the model directly and is
called SEM. Generalized least-squares regression (GLS)
is recommended as a good method to account for spatial
errors (Beale et al. 2010). In GLS, the spatial structure is
parameterized in the errors as a spatial covariance matrix
using an inverse distance function, an autoregressive
function, or a variogram model. The parameterization
of the covariance matrix is achieved through an interac-
tive process, between fitting the regression coefficients
and then fitting the spatial structure of the residuals.
Regression Kriging is also another spatial error model
that is similar in essence to GLS (Hengl et al. 2004).
Last, local spatial regression models such geographically

weighted regressions (GWR; Fotheringham et al. 2002)
model as many regressions as there are sampled locations.
GWR is the regression equivalent of local Moran’s statis-
tic. As GWR is always fitting the best model for each sam-
pling location, the residuals are not spatially structured.
The major drawback of GWR, however, is that they overfit
the data as no single model exists for prediction purpose.
Yet, GWR can be used as an ESDA tool to identify subre-
gions where to relationship between the response and the
predictors are comparable. For example, McNew et al.
(2013) used GWR to model habitat selection of Greater
Prairie-Chickens (Tympanuchus cupido) because the
assumption of stationarity was not valid. The GWR anal-
ysis determined that nest site selection by female prairie-
chickens occurred at multiple spatial scales. To determine
how the distribution of Ovenbirds (Seiurus aurocapilla) in
southern Ontario can be explained by forest cover, Fortin
andMelles (2009) compared OLS, regression Kriging, and
GWR. They found that although the R2 of the OLS (ordi-
nary least squares) was 0.43, the residuals of OLS showed
significant spatial autocorrelation. Then with the GWR,
the pseudo-R2 ranged between 0.19 and 0.82 and there
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was no significant spatial autocorrelation in the residuals.
Last, the R2 of the regression Kriging was 0.68 and as for
the GWR there was no significant spatial autocorrelation
in the residuals. This example illustrates the importance of
using spatial regression models to account for spatial
structure in the data. Furthermore, the wide range of
pseudo-R2 values can be used as an indicator that some
regionalization exists over southern Ontario and that
the study area should be divided into sub-regions having
comparable range of values. Hence in such a case, GWR
can be used as ESDA tool.

12.9 Software Tools

Free software packages such as PASSaGE (Rosenberg and
Anderson 2011) and SAM (Rangel et al. 2010) perform
most of the spatial statistics and spatial regressions pre-
sented in this chapter. Spatial aggregation based on point
data and kernel density functions can be computed using
the spatstat package in R. The Programita
software (http://programita.org) computed the univari-
ate, bivariate and multivariate versions of point pattern
analysis methods (e.g. Ripley’s K, Ripley’s L, pair correla-
tion function). Furthermore, Programita accommo-
dates irregularly-shaped study areas using a mask to
outline the study area. Spatial autocorrelation (e.g. Mor-
an’s I) based on quantitative data can be computed
through different R libraries: ade4, ape, ncf, pgir-
mess, raster, spdep, and mpmcorrelogram. Semi-
variance and Kriging can be estimated using geoR in R or
GS+ commercial software (https://www.gammadesign.
com). Spatial regressions such as GLS can be computed
using gls and nlme in R while GWR can be computed
using spdep in R or with the GWR4 software (https://geo-
dacenter.asu.edu/software/downloads/gwr_downloads).
Finally, dbMEM can be computed using vegan in R.

12.10 Online Exercises

The online exercises for this chapter illustrate the basics
of point pattern analysis, area pattern analysis, and spatial
interpolation. Exercise 1 provides an example of spatial
data in a quadrat sampling scheme. The tools of the

spatstat package in R are used to calculate different
versions of Ripley’sK and to calculate kernel density func-
tions. The effect of outliers is illustrated by repeating the
calculations on different subsets of the dataset. Exercise 2
illustrates spatial modeling where point data are trans-
formed into abundance data. The correlog function
in the ncf package is used to calculate Moran’s I and
to examine patterns of spatial autocorrelation. Last, func-
tions in the geoR, fields, and maps packages are
used to illustrate spatial interpolation based on kriging
techniques. Potential useful R packages are also illus-
trated in Fletcher and Fortin (2019).

12.11 Future Directions

Understanding population spatial dynamics requires ana-
lyzing the spatial pattern of ecological data. I have pre-
sented an overview of key spatial statistics, providing
their advantages and disadvantages. The most important
take-home message from a statistical perspective is that
all descriptive and inferential spatial statistics are sensitive
to the assumption of stationarity, the sampling design used
to collect the data, and the parameters selected to perform
spatial statistics analyses. As larger regions are studied, the
likelihood of violating the assumption of stationarity
increases, requiring the use of a local version of the spatial
statistics that will test for spatial structure at each sampling
location. It is therefore important to perform an ESDA to
first determine the degree of spatial autocorrelation in the
data allowing one to establish which inferential model to
use. Furthermore, the ESDA can reveal that either multi-
scale or a regionalized analysis is required before perform-
ing a spatial regression. Then with the availability of spatial
and temporal data, more spatiotemporal analysis of eco-
logical data will be become possible. Most spatial statistics
have beenmodified to analyze bivariate data where the two
variables can bemeasurements taken at different time per-
iods. Cressie and Wikle (2011) presented various spatio-
temporal statistics and how to use them. Yet, the power
of detection of the signal will strongly depend on the ratio
of data spacing in space and time, and the intensity of the
structures analyzed.

Glossary

False spatial autocorrelation Spatial autocorrelation
generated by exogenous processes such as
disturbances and spatially structured environmental
factors.

Spatial autocorrelation Spatial pattern where values
of a variable at nearby locations are more similar

(positive autocorrelation) or less similar (negative
autocorrelation) than expected due to random
chance.

True spatial autocorrelation Spatial autocorrelation
generated by endogenous processes such as dispersal,
species interaction, and species behavior.
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Summary

Estimatinganimalhomeranges andunderstanding theprocesses that influencehomerange behavior are important components of
ecological investigations.While ecologists have been interested in the concept of home range for many decades, turning this con-
cept into a usable statisticalmodel orquantifiablemetric for scientific purposes has beenquite challenging. Keys to overcoming this
challenge are (i) letting well-defined questions, and a solid understanding of the study systempoint to a specific home rangemetric
to be quantified; (ii) choosing an appropriate estimator of this target metric; (iii) collecting location data during appropriate time
periods and at the right sampling frequency; and (iv) understanding the trade-off between simplicity and complexity in modeling
ecological data. If researchers follow these recommendations, many of the traditional challenges to studying animal home ranges
will be alleviated due to technological advances in tracking systems and a solid foundation ofmodels for understanding space use.
However,we should continue to strive formore fundamental approaches tounderstandinganimalmovements. Inparticular,we see
great opportunity for the continued development of agent-based models (ABM) of animal movements that allow for home range
behavior to be an emergent property of the model instead of an a priori structure imposed on the data.

13.1 What Is a Home Range?

The important role of animal movements in natural
selection and evolution was first discussed by Charles
Darwin (1859) in On the Origin of Species. Individual
movements are generally not random, but instead repre-
sent specific behavioral responses to certain needs or sti-
muli (Turchin 1998). Examples include movements to
seek out resources or social partners, respond to environ-
mental change, escape predators, or mitigate competitive
pressures (Nathan et al. 2008). To accomplish these goals,
many animals restrict their movements to certain con-
fined areas that are smaller than the potential areas they
could explore given their movement capacities − a behav-
ior known as site fidelity, and the restricted areas used by
animals known as the home range (Börger et al. 2008).
Thus, home range behavior is fundamental to many
ecological processes including resource selection
(Moorcroft and Barnett 2008), social interactions
(Emlen and Oring 1977; Wilson 1979), predator–prey
interactions (Moorcroft and Lewis 2006), population

(Gautestad and Mysterud 2005) and metapopulation
dynamics (Matthiopoulos et al. 2005), and community
structure (Holyoak et al. 2005). Consequently, investigat-
ing home ranges has been a dominant component of eco-
logical research, allowing us to gain insight into
important processes that shape the distribution and
abundance of species.
Although not the first to use the term “home range,”

William Henry Burt has been credited with formally
defining the concept in 1943. Prior to that time, the terms
home range and territory were used loosely and often
interchangeably. To set the record straight, Burt (1943)
wrote in his seminal paper that “the home range concept
is, in my opinion, entirely different from, although asso-
ciated with, the territoriality concept” and suggested that
the home range be defined as “the area, usually around a
home site, over which the animal normally travels in
search of food” (Burt 1943) whereas territory be restricted
to “… the protected part of the home range.” The key dis-
tinction is that a home range is the general area within
which an animal lives, while a territory is that portion
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of the home range that is defended against conspecific or
interspecific intrusion. Burt (1943) further narrowed the
definition by suggesting that “…Occasional sallies outside
the area, perhaps exploratory in nature, should not be
considered part of the home range.” Thus, home ranges
need not incorporate the entire area an animal uses,
but should be restricted only to those areas that we expect
the animal to use repeatedly during its normal activities.
Last, Burt commented on the concept of temporal stabil-
ity in the area occupied, stating “it is only after they estab-
lish themselves, normally for the remainder of their lives,
unless disturbed, that one can rightfully speak of the
home range.” Home ranges, therefore, are formed after
animals have demonstrated site fidelity, defined as the
tendency for an animal to remain in the same area for
an extended period of time (White and Garrott 1990).
Thus, three characteristics emerge from Burt’s original
definition and have provided the foundation for how ecol-
ogists view animal home ranges: (i) Home ranges are the
consequence of behavioral and environmental processes
such as forage acquisition, mating, predator avoidance,
and conspecific attraction or avoidance that result in pre-
dictable patterns of restricted space use on the landscape;
(ii) Animals might occasionally make exploratory forays,
but home ranges should be those areas that are normally
used; and (iii) Temporal stability in the area used is
expected such that an animal will make repeated visits
to places within the home range.
Burt’s original definition of home range has been amaz-

ingly stable and resilient, but a great deal of work has been
necessary to operationalize this definition as a usable sta-
tistical model or quantifiable metric for scientific pur-
poses. For example, how do we conclude that an
individual has displayed sufficient site fidelity to consider
estimating a home range? Or, how should researchers
separate exploratory movements from normal activities?
Additionally, while it was clear that Burt thought animal
home ranges should be described by the area in two-
dimensional space, Aebischer et al. (1993) noted that
an animal’s movements actually define a line or “trajec-
tory through space and time.” Thus, the question arises,
with complete knowledge of an animal’s continuous path
or trajectory over a period of time (i.e. a line), what should
be the home range area? A major goal of this chapter is to
explore these issues and suggest approaches for turning
the behavioral concept of animal home range into a bio-
logically informative model from which valuable metrics
can be derived for use in scientific research. Keys to achiev-
ing this goal are (i) letting well-defined questions, and a
solid biological understanding of the study system, point
to a specific home range metric to be quantified;
(ii) choosing an appropriate estimator of this target metric;
(iii) collecting location data during appropriate time
periods and at the right sampling frequency; and

(iv) understanding the trade-offs between simplicity and
complexity in modeling ecological data (Murtaugh 2007).

13.1.1 Quantifying Animal Home Ranges
as a Probability Density Function

Not long after Burt promoted a formal definition of home
range, others began working on ways to quantify it. Ini-
tially, home ranges were described by drawing polygons
around observed locations (Figure 13.1a; Mohr 1947),
but ecologists quickly realized that it would be better to
view home ranges as a distribution describing the relative
frequency of use across the landscape (Hayne 1949). Cal-
houn and Casby (1958) suggested defining home ranges
as a density function describing the probability of an ani-
mal being present in some arbitrarily small area. This
density function was subsequently deemed the utilization
distribution by Jennrich and Turner (1969) and the term
became synonymous with themathematical expression of
an animal’s home range (Anderson 1982; Horne and Gar-
ton 2006a). Most contemporary definitions and descrip-
tors of an animal’s home range are formulated as a two-
dimensional probability density function UD(x, y), but
can be extended to additional dimensions (Keating and
Cherry 2009; Tracey et al. 2014). As with any probability
density function, the probability associated with any point
in continuous space is 0, but non-zero probabilities of
occurrence in any spatial region (A) can be found by inte-
grating UD(x, y) over the region A:

P A =

A

UD x,y dxdy 13 1

where P(A) is the volume under UD(x, y) and is defined as
the probability that a randomly drawn “location” will
occur in that area (Evans et al. 2000). The key concept,
for any probability density function, including those
describing animal home ranges, is the relative frequency
with which a random event is expected to occur. Thus,
the definition of home range is incomplete without
explicit specification of what is to be considered the ran-
dom event drawn from UD(x, y). Below, we describe two
specifications with each producing distinctly different
estimates of an animal’s home range (Fleming et al.
2015; Figures 13.1 and 13.2).
For our first specification, the occurrence distribution,

the actual movement trajectory of the animal under
investigation is the target of our model. In this case, we
are interested in answering the question, “What propor-
tion of time during the study was the animal in area A?”
or, stated in terms of a probability function, “What is the
probability that the animal was inA if we were to choose a
time at random from the period of observation?”. In the
ideal case when the complete trajectory of an individual is
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known, P(A) equals the amount of time spent inA divided
by the length of the observation period. Our second spec-
ification, the range distribution, considers animal move-
ments more generally. For this specification, our goal is
not to characterize where the animal went, but rather
to describe the underlying stochastic process responsible
for the animal’s movement trajectory. By using a stochas-
tic modeling framework, we allow for multiple possible
trajectories and space-use patterns, all of which could
have occurred during the observation period or perhaps
some other time period of interest. For the range distri-
bution, P(A) maps the probability of finding the

individual in A at a randomly chosen time, if we were
to generate a novel movement path using the same rules
that generated the original path. Hence, the range distri-
bution seeks to answer the question, “Given a set of
behavioral and environmental states, what proportion
of time would we expect to find the animal in area A?”.
To reiterate, the occurrence distribution is focused on
describing where the animal went (retrospective), while
the range distribution describes where the animal could
have gone or, in some instances, could go in the future
(predictive). Although this might appear to be a subtle
difference, the appropriate choice of a home range

Arctic Ocean

Probability distribution

Telemetry locations
High–use road

Low

High

(a) (b)

(c) (d)

Figure 13.1 Home range estimates of an individual caribou in northern Alaska when the occurrence distribution is the target of estimation.
Estimators include: (a) theminimum convex polygon (MCP) (open circles represent location data taken at approximately five-hour intervals),
(b) kernel density estimate with smoothing parameter chosen using likelihood cross-validation (CVh), (c) the Brownian bridge movement
model (BBMM), and (d) Kriging based on a Ornstein-Uhlenbeck with foraging movement model; Kriging based on the continuous-time
correlated random walk model (CTCRW) was virtually indistinguishable from this estimate.
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estimator or model will depend on the specification that
most appropriately answers the research question of
interest.

13.1.2 Why Estimate Animal Home Ranges?

Estimates of home range have been used to address a wide
variety of ecological questions. Many early natural history
studies described patterns of space use by animals seeking
to simply establish the existence of home ranges. Seton

(1920) was instrumental in elevating the “home range
of the individual” to a life history parameter of biological
interest, and studies published during subsequent dec-
ades provided basic descriptors of home ranges focused
primarily on size (Hall and Linsdale 1929; Hamilton
1937; Lay and Baker 1938). Following these studies,
others began to look for relationships between funda-
mental ecological or biological processes and home range
characteristics. For example, McNab (1963) demon-
strated that the area used by mammals increased with

Arctic Ocean
Probability distribution

Low

High

Telemetry locations

High-use road

(a) (b)

(c) (d)

Figure 13.2 Home range estimates of an individual caribou in northern Alaska when the range distribution is the target of estimation.
Estimators include: (a) the bivariate normal distribution based on the Ornstein–Uhlenbeck (OU) diffusion process (open circles represent
location data taken at approximately five-hour intervals), (b) kernel density estimate with hopt (Eq. 13.3) for the smoothing parameter,
(c) autocorrelated kernel density estimate, and (d) the synoptic model. The synoptic model included covariates related to landscape cover,
roads, and topographic position index (TPI). Selection for TPI was found to vary with the amount of mosquito activity and the distribution
depicted here represents expected space use when mosquito activity is high.
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body mass at a rate consistent with metabolism, suggest-
ing that energetic requirements determine the size of
areas used by individuals.
Questions related to the structuring of animal popula-

tions and their management have also relied on analyses
of home ranges. For example, estimates of the size of
either individual or group home ranges, together with
information about overlap among adjacent ranges, com-
monly have been used to estimate population densities
(Fuller et al. 1992). In addition, the location and size of
home ranges are sometimes estimated to guide species
control or removal programs (Sparklin et al. 2009; Beng-
sen et al. 2012) and to delineate areas for habitat conser-
vation or restoration (Johnson et al. 2010).
One of themost prominent uses of home range estimates

in the ecological literature is due to the hierarchical frame-
work for habitat selection outlined by Johnson (1980). Fol-
lowing this publication, decades of research have
delineated the home range as an independent step in the
processofquantifying resource selection: choice of the geo-
graphic range (first order), selectionof a home range froma
larger surrounding area (second order), and then selection
of general areas or habitats within the home range (third
order). A more recent line of investigation has sought to
examine the effects of landscape patterns and habitat fea-
tures onmetrics of animal space use, including home range
size (Walter et al. 2009;Massé andCôté 2012; Naidoo et al.
2012) and movement patterns (Mueller et al. 2011).
Last, the recognition that intrinsic as well as extrinsic

factors also affect decisions about space use has motivated
studies investigating the influence of sex, age, reproductive
state, and dominance status on movement behaviors
(Börger et al. 2006a; Murray et al. 2007; Anadón et al.
2012; van Beest et al. 2011). A variety ofmethods have been
proposed for quantifying overlap in use of space among
individuals of the same species (Fieberg and Kochanny
2005), and home range overlap indices have been used
to evaluate the potential for disease transmission (Marsh
et al. 2011), habitat quality (McLoughlin et al. 2000), and
social associations relative to kinship (Frère et al. 2010).
Similarly, estimates of spatial interactions between species
have been employed to evaluate mechanisms of coexist-
ence (Edelman 2012), predation (Whittington et al.
2011), and competition (Grassel et al. 2015).

13.2 Estimating Home Ranges:
Preliminary Considerations

As with any scientific study, it is important to have
clearly defined research questions and objectives (see
Chapter 1 and 2). In Section 13.1.2, we provided a small
sample of studies that have estimated some aspect of ani-
mal home ranges to answer questions about the behavior,

ecology, and management of species. However, even
within this small sample, it is clear that there is a great
breadth of questions we might ask related to home range,
and these questions should influence what we choose to
estimate, how precise the estimate needs to be, and the
most cost-effective methods of data collection. Thus, we
strongly urge researchers to guard against a “one size fits
all” approach to studying home ranges and instead take
an approach that allows research questions to drive deci-
sions related to various design and analysis strategies
(Fieberg and Börger 2012).
To begin with, well-defined research objectives should

identify an appropriate target population, defined by its
geographic range and possibly limited to one or more
unique population segments such as a particular age or
sex class. Substantial thought and effort should be
expended to ensure a representative sample of individuals
is obtained from this target population (Morrison et al.
2001; Millspaugh et al. 2012). Researchers should also
be cognizant that monitoring techniques have the poten-
tial to interfere with the natural behavior of individuals in
the study (Dennis and Shah 2012; Rachlow et al. 2014;
Coughlin and van Heezik 2015) and plan to account for
or mitigate these effects. Finally, research objectives
should identify whether the range distribution or occur-
rence distribution best answers the research question(s).
This estimation target will play an important role in
determining the frequency and duration for obtaining
location data (Börger et al. 2006a, 2006b; Fieberg and Bör-
ger 2012) as well as guide the choice of an appropriate
home range estimator.
With regard to how often location data should be col-

lected on individuals, observations taken close in time will
generally be close in space, thus they will be autocorre-
lated. The shorter the time interval separating two
observed locations, the more strongly autocorrelated they
will be. While autocorrelation was traditionally viewed as
a significant obstacle to home range estimation (Harris
et al. 1990), modern analyses recognize that autocorrela-
tion is actually beneficial for estimating the occurrence
distribution and can be either accommodated with an
appropriate sampling schedule (Fieberg 2007a), or
directly modeled (Fleming et al. 2015) when estimating
the range distribution. For practical purposes, it will often
be beneficial to sample frequently when estimating the
occurrence distribution, whereas infrequent locations
collected over an extended period of time might be suffi-
cient for estimating the range distribution. Once a sched-
ule has been determined, researchers should be aware
that some methods of obtaining telemetry data have
the potential to miss locations due to topography, vegeta-
tion cover, or individual behaviors (Frair et al. 2010). Sim-
ilar to bias in selecting individuals, researchers should
plan to mitigate observation bias or correct for it when
estimating the home range (Horne et al. 2007b).
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With regard to how long individuals should be moni-
tored, it is important to remember that one of the defin-
ing tenets of animal home ranges is site fidelity. With an
understanding of the behavior of the target species,
researchers should plan a study that will be long enough
such that they can expect temporal stability in the esti-
mate of space use (Fieberg and Börger 2012). Following
data collection, this concept should be revisited by plot-
ting the area occupied by an individual versus time, which
should asymptote as the area occupied becomes tempo-
rally stable (Laver and Kelly 2008).
To determine time periods during which the individual

is demonstrating home range behavior versus other
movement modes such as dispersal or migration,
researchers will need to do some preliminary analyses
of their location data. We strongly recommend visualiz-
ing each individual’s location data within a GIS (geo-
graphic information system) to get familiar with their
data and better understand the species’ behavior and
ecology. Visualizing location data is also helpful for find-
ing “outliers” in space-use patterns, such as when an indi-
vidual might have taken an occasional sally (Figure 13.3);
how one treats these outliers will depend on one’s study
objectives as well as the reason for that particular behav-
ior. Like statistical outliers more generally, we suggest
researchers critically evaluate these locations as they
may be some of the most interesting points offering
insight into rare, but potentially critical, behaviors.
In addition to visualizing location data, a convenient

metric for understanding movement modes is an animal’s
squared displacement over time (Börger and Fryxell

2012). Specifically, for any organism or object moving
for a certain interval, the straight-line distance from the
start to the end point is called the net displacement,
and the square of this value is the net squared displace-
ment (NSD; Turchin 1998). NSD is a fundamental quan-
tity for studying movements of organisms or particles
(Skellam 1951; Turchin 1998; Nouvellet et al. 2009) and
is defined as:

NSD t = xt −x0
2 + yt −y0

2, 13 2

where (x0, y0) is the location of the animal’s first obser-
vation, and (xt, yt) is the location of the animal at time t.
Different patterns of NSD can be predicted a priori for
individuals exhibiting different movement behaviors
(Börger and Fryxell 2012). By plotting NSD over time,
researchers can gain insights into periods when animals
are wandering nomadically, dispersing, displaying site
fidelity within a home range, or migrating between sea-
sonal ranges (Figure 13.4). For a nomadic or dispersing
animal, it can be demonstrated that the value of the
NSDwill continuously increase over time. For a resident
animal that moves within a home range, the rate of
increase of NSD over time will decrease and approach
an asymptote (Turchin 1998). We also note that a
related approach to identify stationary movement per-
iods that makes more complete use of the location data
was recently developed based on the empirical vario-
gram of the data (Fleming et al. 2014a; implemented
in the ctmm package of R). Similar to the NSD, if the
empirical variogram does not show a clear asymptote,
then home range analysis of any kind is tenuous because

0 12.5 25 50 Kilometers

Exploratory
sally

Figure 13.3 Telemetry locations for an
individual caribou during four winters
illustrating an “exploratory sally” (dashed line),
as defined in early descriptions of home range
behavior (Burt 1943).
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the individual’s movement did not show evidence of site
fidelity.
Last, with regard to choosing an estimator, contempo-

rary ecologists are faced with a daunting array of possi-
ble home range models, but many of the models are
better suited for characterizing the occurrence distribu-
tion versus the range distribution, and vice versa. To
assist with this dichotomy, we describe several home
range estimators by placing each under the estimation
target to which we think they are best suited, while fully
recognizing that the distinction is not always clear.
Thus, our goal is not to necessarily force a particular
model into a particular estimation target but to encour-
age researchers to critically think about the connections
among research questions, estimation targets, and home
range estimators.

13.3 Estimating Home Ranges:
The Occurrence Distribution

The occurrence distribution provides estimates of where
an animal went based on a set of known locations
(Figure 13.1). It is the most common conceptualization
of home range and has the longest history of use by ecol-
ogists. Occurrence models are well-suited to addressing
questions that require fine-scale information about where
the animals went (Figures 13.1c and d). For example, they
have been used to quantify the area used by individuals
for evaluating resource selection (Kittle et al. 2015), delin-
eate movement corridors (Sawyer et al. 2009), and define
space use for animals that wander over great extents such
as pelagic mammals (Lowther et al. 2013) and birds
(Adams et al. 2012).
While estimating the occurrence distribution from lim-

ited data can be quite challenging, modern telemetry

devices often enable researchers to collect location data
over larger spatial extents, with greater frequency, and
with much better accuracy than traditional methods.
We now have the ability to estimate the occurrence dis-
tribution with greater accuracy, and the development of
models for estimating an animal’s actual movement path
from location data is an active area of ecological research.
Thus, we begin by describing models that simply define
an outer boundary of the occurrence distribution; then,
we describe popular methods based on kernel smoothing;
and end this section with more contemporary models
that recognize the time series nature of telemetry data
and model the occurrence distribution based on animal
movement processes.

13.3.1 Minimum Convex Polygon

The minimum convex polygon (MCP) utilized by Mohr
(1947) is the oldest and most commonly used method
for estimating animal home ranges (Laver and Kelly
2008). It is simply the smallest convex polygon that con-
tains all locations (Figure 13.1a). MCP is a crude estimate
of the occurrence distribution that is sensitive to extreme
data points and sample size, ignores the interior data
points, and implies uniform use within the boundary
(White and Garrott 1990; Powell 2000). Nevertheless,
MCPs may provide an adequate estimate of home range
in some cases such as when (i) comparing sizes across
taxa where large differences in range size mask smaller
differences due to the choice of home range estimator
(Nilsen et al. 2008); (ii) generating abundance estimates
based on territory occupation and size (Adams et al.
2008; Suwanrat et al. 2015); or (iii) defining used habitats
for second-order resource selection (Horne et al. 2009) or
an outer boundary of availability for third-order resource
selection (Zeale et al. 2012).
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Figure 13.4 Analysis of net squared
displacement (NSD) used to identify
movement behaviors of an individual caribou
on the north slope of Alaska. For easier
interpretation, we report the square root of
NSD. Small open circles are the actual values
calculated for each observation and the solid
line are these values smoothed with a spline
function in R.
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13.3.2 Kernel Smoothing

Kernel density estimation (KDE) has been used across sci-
entific disciplines as a nonparametric approach to esti-
mate an unknown probability distribution (Silverman
1986). KDE works by placing small kernels or bumps over
each data point and then averaging the contribution from
all kernels to obtain an estimate of the probability distri-
bution at any point in space (Figure 13.5). A key compo-
nent of KDE is adjusting the width of the kernels, often
called the smoothing parameter or bandwidth, to best
represent the target probability distribution. The band-
width can have a substantial impact on the resulting esti-
mate and there are several methods available for choosing
its value based on statistical properties of the data
(Silverman 1986 Jones et al. 1996). If the true underlying
distribution is assumed to be a bivariate normal, the opti-
mal level of smoothing is calculated using

hopt = σ2 × n−1 6, 13 3

where σ2 is the average marginal covariance estimated
from the x and y coordinates of the locations and n is
the sample size (Silverman 1986). If the true underlying

distribution is multimodal, other data-based methods
can be used such as least-squares cross-validation
(LSCVh) or likelihood cross-validation (CVh) which seek
tominimize the “distance” between the KDE estimate and
the true distribution that generated the data. For LSCVh,
distance is measured based on the integrated squared
error, and for CVh, it is measured based on the Kull-
back–Leibler discrepancy (Silverman 1986; Horne and
Garton 2006b).
As for home range estimation, KDE was first suggested

by the seminal work of Bruce Worton (1989). It is impor-
tant to understand that when KDE was introduced
for home range estimation, VHF telemetry dominated
ecological studies, so most location data were spaced
relatively far apart in time and could generally be consid-
ered independent observations from an animal’s range
distribution. Indeed, when there is little autocorrelation
or a relatively large smoothing parameter is used, tradi-
tional KDE can be a convenient approach for estimating
the range distribution of animals as we discuss in
Section 13.4.4; but what about using KDE to estimate
the occurrence distribution with autocorrelated data?
In fact, as the time between locations goes to zero, many
of the data-based choices of bandwidth selection, for
example LSCVh or CVh, will also approach zero. This
means that as location data are acquired at smaller and
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Figure 13.5 One-dimensional kernel density estimate from six
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h = 0.8; bottom: h = 0.5). Estimated density at a position x is
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Figure 13.6 Probability density based on the Brownian bridge
movement model (BBMM) describing where the animal could have
been knowing that it had to get from location (a) to location (b)
within the observed time interval and that its possible movement
path, represented by the spread of the distribution, is constrained
by its mobility (governed by parameter σ2m).

13 Animal Home Ranges322



smaller intervals, KDE will become closer and closer to
the animal’s movement path. Therefore, with frequently
sampled location data and a small enough smoothing
parameter, KDE can be an adequate estimator of the
occurrence distribution (Figure 13.1c; also see Figure 3
of Horne et al. 2007a). However, if traditional KDE is
to be used for estimating the occurrence distribution,
researchers must give careful thought to the sampling
schedule as well as how to choose the smoothing
parameter, because as time intervals between locations
become larger or bandwidths increase, KDE will tend
to produce estimates more characteristic of the range
distribution versus the occurrence distribution (compare
Figure 13.1b versus Figure 13.2b).

13.3.3 Models Based on Animal Movements

The increasing availability of high-frequency and accu-
rate location data has spurred several advances that allow
researchers to model the occurrence distribution of ani-
mals based on actual movement processes. As part of his
Master’s thesis, Floyd Bullard (1999) recognized that pre-
vious approaches to home range estimation ignored the
time component of location data despite the fact that
locations were being taken with increasing frequency.
Bullard thought that it would be far better to base
home range estimation on a movement process that con-
siders the temporal sequence of locations, and suggested
estimating the unknown movement path between
observed locations by assuming animals moved accord-
ing to Brownian motion, characterized by unpredictable
or random movement, between any pair of consecutive
locations. Additionally, the potential movement path
would be constrained by the fact that the animal had to
get from one location to the next within the observed
time interval and the animal’s mobility, represented by
the parameter σ2m, would restrict the potential paths it
could have taken (Figure 13.6). Subsequent to Bullard’s
work, Horne et al. (2007a) further developed the Brow-
nian bridge movement model (BBMM) by describing an
approach for estimating σ2m. Kranstauber et al. (2012)
then generalized the BBMM by allowing the mobility
parameter to vary over the movement path. More
recently, Pozdnyakov et al. (2014) derived the exact
full-dataset likelihood function for the BBMMwhich pro-
vided a method for unbiased and more efficient estima-
tion of σ2m and allowed the observation error to be
simultaneously estimated from the data when it is
unknown.
A key characteristic of the BBMM is that Brownian

motion has no directional persistence, while real animals
may exhibit a tendency to keep moving in a particular
direction and speed. Thus, an alternative to the BBMM

is the continuous-time correlated random walk model
(CTCRW; Johnson et al. 2008a), more generally known
as the Integrated Ornstein–Uhlenbeck (IOU) process.
The CTCRW adds a layer of biological realism by incor-
porating directional persistence in movement via auto-
correlated velocities, where velocity of movement
includes both direction of travel and movement speed.
Thus, autocorrelation in velocity means that an indivi-
dual’s direction and speed at one point in time will be
similar to those same quantities at other neighbor-
ing times.
The BBMM and the CTCRWmodels will often be ade-

quate for estimating the movement path (Figure 13.1c
and d). However, depending on the frequency of the loca-
tion data and the behavior of the animals under investi-
gation, alternative movement models might need to be
considered. For example, if location data are taken at
long enough time intervals such that home range behav-
ior or the tendency to remain in a restricted area, needs to
be incorporated, the Ornstein–Uhlenbeck (OU) process
(Uhlenbeck and Ornstein 1930; Dunn and Gipson
1977) or the recently introduced Ornstein–Uhlenbeck
with foraging (OUF) process (Figure 13.1d; Fleming et al.
2014a, 2014b) could be used.
Any of the movement models described in this

section could be used to provide a probabilistic estimate
of an animal’s movement path. However, a priori choice
of a particular movement model requires an understand-
ing of how autocorrelation in velocities is affected by the
interaction between the time interval between location
data and the characteristics of real animals moving
through their environment. In recent work, Fleming
et al. (2016) described a more general approach to prob-
abilistic path reconstruction based on the time series ana-
log of Kriging from geostatistics (Chapter 12; Cressie
1993; Diggle and Ribeiro 2007). Under their approach,
researchers are free to hypothesize and fit a variety of
movement models to the location data, including all of
the models described in this section; then use model
selection criteria to help decide which movement model
is most appropriate (Fleming et al. 2014a, 2014b); and
finally, estimate the occurrence distribution using the
movement model that best fits the observed location data.
Thus, the general Kriging approach alleviates the need to
choose amovementmodel a priori, a significant benefit to
those researchers who do not have the knowledge and
expertise to appropriately match a particular movement
model to the behavior of the focal individuals and their
location data. The downside to this approach is that there
is added time and effort required for implementation and
depending on the objectives of the study and the partic-
ular dataset, the practical difference between alternative
movement models might be insignificant (for example,
see Figures 13.1c and d).
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13.3.4 Estimation from a One-dimensional Path

The occurrence distribution quantifies our uncertainty
about where the animal was located during the observation
period, including times when no locations were observed.
In the limit, when the time between location observations
and the magnitude of location errors both go to zero, the
occurrence distribution will collapse to the individual’s
movement path. Ongoing advances in tracking technology
are beginning to make this mathematical limit a reality (Li
et al. 2015), and even if we never get there, it is still an inter-
esting methodological exercise to contemplate this situa-
tion. Thus, to conclude this section, we return to a
question posed at the beginning of our chapter: “With
complete knowledge of an animal’s continuous path or tra-
jectory over a period of time, what should be the home
range area?” Indeed, this question should give the reader
pause as the answer is not obvious. However, we can look
to a field study by Ostro et al. (1999a) to help guide our
thinking. While studying the spatial ecology of a translo-
cated population of black howler monkeys (Alouatta
pigra) in Belize, Ostro et al. (1999a) confronted this ques-
tion after following groups of monkeys continuously dur-
ing their daily movements and recording their position
without error. Thus, they had observed a one-dimensional
path for animal movements. To estimate a home range,
they developed a technique that assumes animals actually
utilize an area around the traveled path (Ostro et al.
1999b). Defining the occurrence distribution was a simple
process involving three steps: (i) map the observed
trajectory in a GIS; (ii) buffer the observed trajectory by
a distance appropriate for the individual(s) under investi-
gation and superimpose a MCP on the resulting map;
and (iii) incorporate lacunae, the gaps or spaces within
the outer boundary not filled by the buffer, smaller than
a designated minimum size into the digitized polygon
home range. While straightforward, the approach requires
two somewhat subjective decisions. First is the choice of a
buffer width for the observed trajectory. For Ostro et al.’s
(1999a) study of howler monkeys, mean group spread was
used. For other situations, Ostro et al. (1999b) suggested it
might be more appropriate to use the area visually sur-
veyed, or otherwise “perceived,” by the study animals. Sec-
ond, researchers must choose the size of lacunae to be
incorporated into the home range. For this, Ostro et al.
(1999b) incorporated lacunae for which the area was
<1% of the MCP.

13.4 Estimating Home Ranges:
The Range Distribution

Recall that the range distribution aims to predict where
an animal might go rather than define where it went

(Figure 13.2). Historically, one of the most common uses
of the range distribution was to define availability for
third-order resource selection (Shirk et al. 2014). But
because these models describe the process resulting in
a particular home range, they allow researchers to ask
questions about why animals move the way they do.
For example, study questionsmight include:Which beha-
viors lead to the emergence of a home range?; How will
the structure of an individual’s home range vary under
changing environmental conditions or in response to var-
iation in the density of neighboring individuals (e.g. com-
petitors, mates, predators, prey)?; or How do resource-
use strategies structure animal home ranges? Using a
process-based approach, hypotheses for these questions
can be formulated as mathematical models and evaluated
for their predictive ability. Models that provide good pre-
dictions can then be used not only to describe the home
range, but also to provide a greater understanding of the
ecological processes driving home range behavior.

13.4.1 Bivariate Normal Models

Some of the earlymodels of animal home ranges were focal
point attraction models that depicted space use of animals
as having a centralized area where activity was focused.
The first of these, introduced by Calhoun and Casby
(1958), was the circular bivariate normal model. The cir-
cular distribution was later generalized by Jennrich and
Turner (1969) to allow elongate or elliptical home ranges
(Figure 13.2a). Recognizing the need to accommodate the
fact that telemetry data are autocorrelated, Dunn and Gip-
son (1977) developed a bivariate normal home range
model based on the OU diffusion process, which allowed
for bivariate normal parameters to be estimated from auto-
correlated location data typical of telemetry studies. More
importantly, the OU model was the first that linked indi-
vidual behavior with a statistical model of home range.
For example, the focal attraction point may be due to a
den or nest site from which movements radiate out, or it
could be the result of behavior designed to retain familiar-
ity of resources within the home range. Subsequent to the
work of Dunn and Gipson (1977), Blackwell (1997, 2003)
introduced a broad generalization of the OU model that
addresses many of the criticisms leveled against earlier
models. In particular, it allows an individual animal to
switch between different movement processes or behav-
ioral states within the home range.

13.4.2 The Synoptic Model

One of the main criticisms of the focal point attraction
models described in Section 13.4.1 is that they are too
unrealistic for describing the complex space use of
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animals in real landscapes. However, these models can
provide the basis for more realistic descriptions of the
home range if additional information, in the form of spa-
tiotemporal covariates such as habitat or locations of
other organisms, is included in the model. This is the
approach taken by Horne et al. (2008) who developed
the synoptic model that estimates the range distribution
as an explicit function of environmental and behavioral
variables in a model comparison framework (see also
Horne and Garton 2006a). Different sets of covariates
represent different hypotheses about the ecological pro-
cesses determining animal space use allowing one to
simultaneously estimate the home range while evaluating
the set of covariates that most likely determine that form.
Interestingly, an analogous model of space use was simul-
taneously proposed by Johnson et al. (2008b) from the
perspective of estimating resource selection. The two ave-
nues of inquiry converged because home ranges emerge,
in part, as a consequence of resource selection or avoid-
ance (Horne et al. 2008; Powell and Mitchell 2012), and
resource selection cannot be evaluated independently
of home range behavior (Rhodes et al. 2005). The synop-
tic model is defined as

gu s, t =
ga s ×wt s
ga z ×wt z dz

, 13 4

where

gu(s,t) the range distribution defined as the probability
density of use at spatial location s at time t

wt(s) a weighting function describing habitat preferences
at time t,

ga(s) the probability of use in the absence of habitat selec-
tion, also viewed as null model of the home range in a
homogeneous environment.

The denominator of Eq. (13.4) integrates over space
and is simply the normalizing constant for a weighted dis-
tribution that ensures gu(s,t) integrates to 1 and thus, is a
proper probability density function. Under a resource
selection paradigm, the form of ga is an explicit definition
of what is considered “available” for subsequent resource
selection. In the context of home range estimation, ga is
viewed as a null model of the home range in the absence
of any effect from habitat selection. Thus far, ga has taken
the form of a bivariate normal distribution, which is char-
acteristic of animals as having a centralized area of activ-
ity, or a bivariate exponential power distribution allowing
for a more uniform distribution of use characteristic of
territorial animals (Horne et al. 2008). The weighting
function for habitat selection is based on a proportional
change in ga,

wt s = Exp βt Xt s , 13 5

where β is a vector of selection coefficients to be esti-
mated and X is a vector of habitat covariates. The sub-
script t on X and β allows for temporal changes in
habitat as well as changes in selection over time.
The synoptic model is particularly well suited when the

study has dual goals of both providing a description of
areas that could be utilized within a home range as well
as investigating the environmental characteristics that
influence space use (Horne et al. 2014; Wilson et al.
2014). Furthermore, the ability of this model to incorpo-
rate temporally dynamic selection or habitat conditions
makes it particularly useful for describing space use under
variable environmental conditions. For example, as part
of a study to investigating space use of caribou (Rangifer
tarandus) in northern Alaska, synoptic models were
developed to estimate individual home ranges as a func-
tion of habitat type and amount of human infrastructure.
Combined with selection for other landscape covariates,
the best synoptic model suggested that selection for ridge
tops versus valley bottoms depended on the level of mos-
quito activity, a temporally dynamic process with high
activity driven by a combination of warm temperature
and low-velocity wind speed. By allowing selection for
topographic position to vary temporally as a function of
temperature and wind speed, researchers were able to
derive a general estimate of home range that could be
used to predict where an individual would be expected
to occur within its home range on days of high versus
low mosquito activity (Figure 13.2d).

13.4.3 Mechanistic Models

A powerful approach to answer questions about the eco-
logical processes that determine and structure animal
home ranges is to use what are calledmechanistic model-
ing approaches (reviewed in Börger et al. 2008), that is,
analytical or individual-based modeling approaches that
aim to develop spatially explicit predictions of animal
space use by modeling specific individual movement pro-
cesses (Mitchell and Powell 2012; Moorcroft 2012). The
resulting probability density functions from contrasting
models are then compared to the observed distribution
of location data to evaluate alternative hypotheses of
space use. Mechanistic models are directly based on the
processes generating patterns of space use. Thus, they
are especially useful for predicting space-use responses
to environmental change, as well as for understanding
the evolutionary significance of movement behaviors
(Moorcroft and Lewis 2006). In general, two approaches
have been used for mechanistic modeling of home ranges:
an analytical approach stemming from the field of
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statistical physics and random walks (Turchin 1998;
Okubo and Levin 2001; Moorcroft and Lewis 2006),
and an individual-based approach developed from opti-
mal foraging theory (Mitchell and Powell 2004). Interest-
ingly, a convergence is developing between these two
approaches as both are increasingly focusing on including
resource selection processes (Mitchell and Powell 2012;
Moorcroft 2012).
The analytic approach uses computer-based simula-

tions of a random walk model to translate movement
behavior to space-use predictions. Specifically, the trajec-
tory of an individual animal is modeled through a
sequence of moves with a certain length, duration, and
orientation, all drawn from a redistribution kernel that
describes the probability of moving from one location
to the next (Moorcroft and Lewis 2006). Movement can
then be directly simulated on a computer, and the out-
come of multiple simulations compared to observed
space-use patterns. For example, Van Moorter et al.
(2009) used simulations to show that a complex combina-
tion of short-term and long-term memory processes
might be necessary to lead to the emergence of home
range patterns for noncentral place foraging animals.
An alternative to using simulated random walks is to

formulate partial differential equations to model the
spread of individual locations within a home range or ter-
ritory (Lewis and Murray 1993; Blackwell 2003; Moor-
croft and Lewis 2006). Here, movement processes are
translated into a set of partial differential equations com-
posed of two parts, one modeling diffusive movement
component(s) and one modeling directed movement
component(s) – a simple example would be a focal point
of activity to which an animal returns repeatedly
(Moorcroft and Lewis 2006). Other behaviors can be
incorporated into the diffusive or directed movement
part, such as scent marking and olfactory orientation
(Benhamou 1989), area-restricted foraging (Benhamou
1994), conspecific avoidance and prey availability
(Lewis and Murray 1993; Moorcroft and Lewis 2006),
and memory processes (Moorcroft 2012).
A different set of mechanistic models has been devel-

oped by Mitchell and Powell (2004, 2007, 2012). These
behavior-based models of animal movement attempt to
develop an understanding of the processes that determine
the structure and size of home ranges and which
resource-use strategies are most profitable to an individ-
ual. The models are derived from optimal foraging theory
which is based on the assumption that animals make
space-use decisions by evaluating trade-offs between
patch profitability versus travel costs. Each model repre-
sents contrasting strategies that animals might use to
decide which resource patches to include within the
home range under different spatiotemporal resource dis-
tribution scenarios.

13.4.4 Kernel Smoothing

We previously described how KDE can be used to esti-
mate the occurrence distribution if location data are
highly autocorrelated (Section 13.3.2). KDE can also be
used to estimate the range distribution provided that
the location data can be considered independent observa-
tions from the range distribution. In this case, one only
needs to choose an appropriate smoothing parameter: href
if the range distribution is assumed to be a bivariate nor-
mal or one of the data-based methods, such as LSCV or
CV, that seek to minimize the difference between KDE
and the true range distribution. Of course, the trend in
location data is toward increasingly finely sampled obser-
vations through time (Li et al. 2015). For these types of
locations, Fleming et al. (2015) rederived the KDE explic-
itly assuming that the data are autocorrelated. The result-
ing autocorrelated kernel density estimate (AKDE) is
based on finding the optimal smoothing bandwidth for
estimating the range distribution when data are
autocorrelated.
An AKDE analysis proceeds in similar fashion to the

Kriging approach (Section 13.3.3). Like Kriging, the
AKDE conditions upon both the data and a previously
selected movement model that accurately represents
the autocorrelation structure of the data. This means that
first, one must select an appropriate movement model for
the data using the model identification, fitting, and selec-
tion tools described in Fleming et al. (2014a, 2014b).
Once an appropriate movement model has been fitted
and selected, it can be used within the AKDE to yield
an estimate of the range distribution (Figure 13.2d).
Importantly, only models that feature restricted space
use, such as the OU and OUF models, should be used
in AKDE.

13.5 Software Tools

Contemporary home range analysis requires significant
effort devoted to data management, visualization, and
manipulation. Software such as ESRI’s ArcGIS software,
or open-source alternatives such as GRASS or QGIS, can
assist with these tasks. Additionally, there are at least two
ArcGIS extensions that implement several home range
analyses including HRT (Home Range Tools for ArcGIS)
and ArcMET (Movement Ecology Tools for ArcGIS).
A powerful set of tools for conducting a wide variety of
movement and home range analyses is the Geospatial
Modeling Environment (GME) which is stand-alone soft-
ware that utilizes both ArcGIS and Program R for func-
tionality. Last, there is a relatively new software program
called Agent Analyst for ArcGIS that can be used to
facilitate agent-based modeling of animal movements.
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Specific packages for Program R related to analysis of
animal space use include the ctmm package for calculat-
ing movement variograms, for fitting several movement
models, and for implementing the Kriging and AKDE
approaches. The BBMM can be estimated with the BBMM,
move or smam packages, as well as within the Kriging
framework by using a Brownian motion movement
model. The CTCRW model can be implemented within
the package crawl or within the Kriging framework by
using a movement model based on the IOU process. Last,
the adehabitat and rhr packages implement many of
the recent and traditional home range models, including
KDE and MCP.

13.6 Online Exercises

The online exercises for this chapter illustrate represen-
tative analyses of animal movement data based on func-
tions in the R packages adehabitHR and ctmm. Exercise
1 presents movement data from two caribou and shows
how movement modes can be calculated from location
data with estimates of NSD and variograms. Exercise 2
presents movement data from three caribou and illus-
trates alternative methods for estimating occurrence dis-
tributions, including MCPs, kernel density estimators,
BBMMs, and Kriging as a generalization to non-
Brownian movement models. Exercise 3 uses the same
dataset on summer locations of caribou to estimate pre-
dicted range distributions based on a synoptic model of
home range, or an ADKE.

13.7 Future Directions

13.7.1 Choosing a Home Range Model

The study of animal home ranges has been, and will con-
tinue to be, integral to advancing our ecological under-
standing. Indeed, the complexity and generality of the
home range concept has allowed for fruitful studies of a
myriad of ecological processes including habitat selec-
tion, sociality, predation, competition, and population
dynamics, among others. But it is this same breadth
and generality of the home range concept that has led
to a variety of estimation targets and models to estimate
these targets, presenting a persistent challenge for practi-
cing ecologists needing to choose among home range
estimators.
Often, researchers will promote a particular approach

or method as “one size fits all,” as if there is a single best
model for answering all questions involving animal home
ranges. We think this viewpoint is counterproductive and
emphasize that the first and most important step in

choosing a home range model is to have well-defined
research questions that point to a particular estimation
target, for example the occurrence or range distribution.
This initial step is critical because it will help direct
researchers toward a particular class of home range esti-
mators, and will assist with development of the sampling
design for location data. After ensuring that a group of
home range estimators will provide the appropriate met-
ric to answer your research question, the next step is to
evaluate available choices, paying particular attention to
sampling considerations, robustness to misspecification
of model parameters, and the availability of software tools
or computer code to implement the method.
In general, models that allow for more accurate estima-

tion of the home range also require better location data
both in terms of quantity and quality, greater understand-
ing of complex modeling approaches, and more time to
compile and analyze the data. Thus, as is true for ecolog-
ical modeling in general, there are trade-offs between
simple models that are easy to implement but are crude
approximations of the real process versus complex mod-
els that have greater potential to accurately depict reality
but are more difficult to implement. Simulation studies
can be a powerful approach for vetting different estima-
tors but to be useful, they should attempt to mimic the
true underlying processes that generated the location
data. These goals can be met by simulating animals mov-
ing on realistic landscapes, with locations collected
according to a prespecified sampling schedule (Siniff
and Jessen 1969; Fieberg 2007a, 2007b; Signer et al.
2015). Additionally, simulation studies should evaluate
the implications of using alternative home range estima-
tors on actual research questions. In other words, estima-
tors should be compared in terms of their ability to
capture meaningful biological signals, such as trends in
space use, rather than simply address whether estimates
include or exclude particular areas that are used or
unused (Fieberg and Börger 2012; Signer et al. 2015).
Recent studies by Börger et al. (2006b), Nilsen et al.
(2008), and Signer et al. (2015) are examples that we hope
will become more commonplace in the future, because
their work demonstrates that oftentimes conclusions will
be robust to the choice of analytical method even when
absolute estimates differ considerably (Signer et al.
2015). As such, it may be reasonable to pick a simple
method that is easy to understand and implement.

13.7.2 The Future of Home Range Modeling

Historically, studies of animal home ranges involved
efforts to describe patterns of space use and then use sub-
sequent analyses to try to explain these observed patterns.
In the future, productive analysis of home range behavior
will be facilitated by research that seeks a more direct
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understanding of the physiological, behavioral, and eco-
logical processes that influence animal movements. By
modeling these fundamental processes, we should be able
to estimate home ranges as an emergent property instead
of simply a description of observed location data. Over
five decades ago, Sanderson (1966) encouraged research-
ers to focus less on calculating home range metrics and
more on asking questions about why animals move the
way they do, a call that has been frequently repeated
(Fieberg and Börger 2012; Powell 2012). We believe there
is still ample room for progress toward this goal. The
recent surge of process-based models coupled with finer
resolution and accuracy of location and environmental
data has opened the door for ecologists to link ecological
processes with statistical models more directly (Börger
et al. 2008; See also Chapter 2). We view these process-
based models as important advancements in the study
of animal home ranges and believe they will lead to a
greater understanding of the ecology of animal space use.
A relatively new and promising approach to gain a dee-

per understanding of ecological processes, including ani-
mal movements and space use, is the use of agent-based
models (ABM; McLane et al. 2011). In fact, the analytical
approach to mechanistic home range modeling we
described earlier is an example of a relatively simple
ABM. The goal of an ABM is to explicitly consider the
“agents” of a system, in our case the individuals moving
about a landscape, and use the fundamental processes
influencing these agents to understand and predict the
emergent properties of the system. For example, an
ABM could be used to simulate an individual’s move-
ments by incorporating processes such as memory, learn-
ing, energy gain versus expenditure, predator avoidance,
interactions with other individuals, and reproductive
strategies. The emergent properties might include predic-
tions related to site fidelity, habitat selection, and social
interactions, among others; all of which are important
components and processes related to home range behav-
ior. Thus, instead of using location data to describe
home range behavior, an ABM would predict home-
range behavior based on an understanding of the interac-
tions between individuals and their environment. These
predictions could then be compared to observed location
data to evaluate alternative research hypotheses. While
this approach is still in its infancy, we strongly believe that
it will constitute the next frontier in the study of animal
home ranges.
Last, it is important to recognize that home range

behavior is not isolated from other processes affecting
animal movements. For example, in the past, research
on animal movements often split into separate interest
groups, including home range, dispersal, or migration.
Currently, most researchers agree that animal move-
ments encompass a continuum of different movement

modes, from sedentarism (home range) to migration, dis-
persal, and nomadism (Börger et al. 2011; Mueller et al.
2011). Thus, a realistic representation of the population
effects of animal movements might require explicit con-
sideration of the dynamic connections among different
movement modes (Wang and Grimm 2007).
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Summary

The studyof resource selectionbyanimalshasbeenof great interest toecologists formanydecades.A renewed senseofurgencyhas
arisen in studies of resource selection given new environmental challenges such as climate change, conservation planning, and
habitat loss. Technological and analytical advancements have furthered our ability to collect data and model resource selection
over largeareas.Here,wediscuss several importantconsiderations inresourceselectionstudies includingsamplingstrategies, study
design, and potential sources of bias.We also provide advice on selecting analytical methods, linking resource selection to fitness,
and on incorporating animal behavior and biological seasons in studies of resource selection. All inference begins and ends with
sampling sowe stress the importance of applying rigorous study designs and sampling strategies while avoiding the temptations of
convenience samplingand the idea that some information isbetter thannone.Weemphasize theuseof radio-tracking technologies
because such tools have greatly enhanced studies of resource selection, but also include othermethods of data collection. A theme
linking analytical methods is the development of resource selection functions (RSFs) and resource selection probability functions
(RSPFs), which are the primary means to assess selection of resources by animals. We describe many of the most common pro-
cedures to analyze resource selection data, including compositional analysis, logistic regression, discrete choice models, Poisson
regression, ecological niche factor analysis, andmixed-effect models. We describe some of the key assumptions and highlight the
necessary data.Wegenerally recommendprocess-based resource selectionmodels because the statistical properties of thesemod-
els arebetterunderstood, theyhavea longhistoryofapplicationanddevelopment in the statistical literature, andbecause theymake
good biological sense. We caution that global recommendations on analytical methods and study designs are not possible given
suchchoices shouldbealignedwithstudyobjectives, data types, andassumptions inherent indifferent samplingprotocols. Looking
ahead, we anticipate several new developments in the future of resource selection studies, including continued development of
individual-animal-basedmodelswhich are scaledup to thepopulation level, applications ofnew technology, and increased reliance
on mixed models and Bayesian methods which handle highly complex models and appropriately propagate uncertainty.

14.1 Introduction

Resource selection is the study of resource “choices”made
by animals (Manly et al. 2002; Lele et al. 2013). Resources
can includeenvironmental features suchasvegetation, food,
and water; anthropogenic disturbance; and landscape attri-
butes. Resource selection has often been viewed in a cost–
benefit framework, where costs and benefits derived from

different resources are weighed by an animal, consciously
or instinctively, to determine which resources should be
used (Hildén1965; Jones2001). Factors suchascompetition
(MacArthur and Levins 1964; Martin 1996), predation
(Creel et al. 2005; White et al. 2008), parasitism (Stamp
et al. 2002), temporal changes in the availability of resources
(Arthur et al. 1996), and climate (Mysterud 1996; Martin
2001) can all affect patterns of resource selection.
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There are many practical and theoretical motivations
to study resource selection. From a practical perspective,
natural resource managers seek to provide resources
such as food and cover that promote survival of species
(Manly et al. 2002), map the occurrence of species for
planning purposes (Dzialak et al. 2013; Sawyer and Bra-
shares 2013), conduct quantitative risk assessments for
wildlife populations (McDonald and McDonald 2002),
delineate conservation corridors (Chetkiewicz and Boyce
2009; Squires et al. 2013), prioritize animal translocation
sites (Bodinof et al. 2012), and understand the effects of
human activities and development on wildlife (Jobes
et al. 2004; Sawyer et al. 2006; McNew et al. 2014). At
other times, such as in the case of wildlife damage man-
agement, it is useful to know which resources might
dissuade animals from using certain areas (McArthur
et al. 2000). Theoretical interest in resource selection
addresses fundamental questions pertaining to species
distributions (Fretwell and Lucas 1970; Fretwell 1972),
the evolutionary costs and benefits of differential habitat
use (Martin 1996), the role of ontogeny in resource
selection (Wiens 1972), interspecific competition and
niche overlap (MacArthur and Levins 1964; Rosenzweig
1991), and the interplay between use of habitats and
genetic flow (Scribner et al. 2005). Regardless of the
motivations for a resource selection study, it should be
carried out with knowledge of the state of the art of
design elements and considerations, data types, and
methods of analysis.
The study of resource selection has strong historical

roots, but has developed tremendously in recent years.
Resource selection by birds has been studied for many
decades (Kendeigh 1945; Svärdson 1949) and key con-
cepts identified 50 years ago remain widely applicable
today (Hildén 1965). Issues of spatial scale (Wiens
1973; Orians and Wittenberger 1991; DeCesare et al.
2012), the relative role of proximate and ultimate factors
(Hutto 1985), and prior experience (Wiens 1972) have
been discussed for many decades and remain critically
important to contemporary conservation issues invol-
ving resource selection. Modern studies, involving the
development of resource selection functions (RSFs),
can be traced to applications in the early 1990s
(McDonald et al. 1990). However, renewed interest in
the study of resource selection has grown (Jones
2001), due to interest in conservation planning initiatives
(Johnson et al. 2004; Millspaugh and Thompson III
2009) and the need to understand how species may
respond to climate change (Martin 2001; Durner et al.
2009; Wiens et al. 2009) and ongoing habitat loss
(Oppel et al. 2004; Sawyer et al. 2006; Dzialak et al.
2011). The past 20 years have seen a surge in the number
of resource selection studies and the development and
application of sophisticated technological tools and

analytical techniques (Aarts et al. 2012; McDonald
et al. 2013; Renner et al. 2015).
New technologies have facilitated the recent growth in

resource selection research. For instance, subminiaturi-
zation of radio tags, the development of new global track-
ing technologies, accessibility of camera traps, and the
availability of new sensors that allow for more detailed
studies of wild animals have greatly expanded the breadth
and scope of resource selection research (Moll et al. 2007;
Cagnacci et al. 2010; Rota et al. 2016). Researchers have
the ability to collect more detailed information from a
greater diversity of species for longer periods of time than
ever before (Bridge et al. 2011; Kranstauber et al. 2011).
Technological advances are important to studies of
resource selection, but such developments carry new
assumptions with analysis and interpretation and poten-
tial issues such as spatial and temporal autocorrelation,
which must be addressed using modern techniques
(Johnson et al. 2008; Brost et al. 2015). Technological
advancements also involve trade-offs regarding financial
costs and reduced field effort, which can be critically
important in providing context for data.
Advances in statistical methodology have closely

tracked technological advancements (Gillies et al.
2006). As with all statistical analyses, one needs to care-
fully consider methodological assumptions when model-
ing resource selection. In studies involving wild animals
in field environments, some otherwise reasonable
assumptions may be difficult to meet, or the effort of
meeting these assumptions may not sufficiently minimize
biases. Further, careful interpretation of model output
requires researchers to consider whether one can inter-
pret the result as a relative probability of resource use,
or as an absolute probability of resource use – a funda-
mental distinction in resource selection studies.
Our chapter focuses on the design, analysis, and inter-

pretation of resource selection studies. Radio-tracking
technology is a primary method to study resource selec-
tion, so much of this chapter discusses telemetry-based
designs and analysis. However, many of these designs
and analyses are well-suited to other data collection
efforts. We focus on practical motivations for studies of
resource selection, such as mapping the occurrence of
species or understanding which resources are associated
with the probability an animal will use a particular area.
As a theme for this chapter, we make a distinction
between RSFs (McDonald et al. 1990; Manly et al.
2002) and resource selection probability functions (RSPFs;
Sólymos and Lele 2016). We have attempted to highlight
the most commonly used procedures with the greatest
value for studying resource selection by animals. We first
introduce readers to basic terminology, which is followed
by important considerations in resources selection stud-
ies, before ending with descriptions of analytical options.
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Throughout this chapter, we emphasize that choice of an
appropriate analytical method and the quality of a
resource selection study should be driven by study objec-
tives and fundamental principles of experimental design.

14.2 Definitions

14.2.1 Terminology and Currencies of Use and
Availability

The study of resource selection comes with its own for-
malized terminology. As you will note later, this terminol-
ogy describes concepts that should drive study design,
choice of analytical methods, and interpretation of
results. We focus on seven primary terms: resource, use,
availability, non-use, selection, preference, and avoided.
A resource is a discrete unit an animal may encounter

(Lele et al. 2013). The exact definition of a resource
depends on the context of a study, but could include dis-
crete food items, a vegetation cover type, or other features
expressed in a pixel in a geographic information system
(GIS) map. Resource units typically have a set of one or
more attributes that animals may use to discriminate
among resource units, such as the type of food item,
the specific cover type, or the elevation a particular pixel

represents. These attributes are commonly referred to as
covariates or environmental variables. An available
resource unit is one that can potentially be encountered
by an animal, whereas a used resource unit is one that has
received some investment by an animal. The exact nature
of this investment depends on the context of the study,
but can include the quantity of resource units obtained
in a fixed period (Johnson 1980); or the time spent, dis-
tance traveled, energy expended, or presence within a
resource unit (Buskirk and Millspaugh 2006). In contrast,
non-use considers resources at sample units where no use
occurred. It is necessary to confirm the lack of use to
declare that a site or resource was not used, since failure
to detect an animal does not mean use did not occur and
lack of use may be confounded with imperfect detection
(MacKenzie et al. 2002; Chapter 3).
Because non-use of a resource is often impossible to

determine, many studies compare used resources to avail-
able resources (Figure 14.1). Note that available resources
are called background or pseudo-absences in some con-
texts (Phillips and Dudik 2008; Renner et al. 2015;
Chapter 15). In some studies of resource selection, such
as food choice studies where animals are offered different
food types, availability of resources may be known pre-
cisely (Carter et al. 1999). However, in field studies,
resource availability is often difficult to determine
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Figure 14.1 Conceptual diagram of several commonly used methods to fit resource selection models. Many of these categories are not
mutually exclusive, but rather represent commonly used methods given sample strategy, whether individuals are identified, and whether
they use process-based models.
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because it can be affected by social hierarchies, risk of pre-
dation, and other uncontrolled factors (Otis 1997, 1998;
Mysterud and Ims 1998). Thus, available resources are
often defined within specific spatial bounds determined
by the researcher. The definition of availability is critically
important in resource selection studies because it deter-
mines the distribution of resources against which use is
compared (Buskirk and Millspaugh 2006; Benson 2012;
Northrup et al. 2013).
Comparing used resource units to unused or available

resource units allows inference regarding preference and
selection. Preference for a resource reflects the relative
likelihood that a resource is chosen if offered on an equal
basis with others (Johnson 1980). Inferring preference
from field studies is difficult because resources are not
equally and randomly available (Marzluff et al. 2001).
For this reason, the term preference is not appropriate
in most studies of resource selection and use of the term
should be generally restricted to controlled feeding trials.
The term “selection” is used when resource use is dispro-
portionately greater than resource availability (Johnson
1980). Conversely, resources are “avoided”when resource
use is disproportionately less than would be expected
based on the availability of that resource (Johnson
1980). Avoidance can be a misleading term because even
avoided resources may still be used by animals.

14.2.2 Use-availability, Paired Use-availability,
Use and Non-use (Case-control), and Use-only
Designs

A common goal of many resource selection studies is to
predict either the relative or absolute probability a
resource unit is used, depending on how sample units
were selected and categorized (Keating and Cherry
2004). There are many different methods for sampling
used, unused, and available resources, each of which
implies its own statistical model. The first online exercise
accompanying this chapter demonstrates how modeling
and interpretation of RSFs and RSPF scan depend on
sampling methodologies.
Perhaps the simplest conceptual design in a resource

selection study is to collect a random sample of available
resource units from the population of interest and deter-
mine if each unit was used or unused. While useful as a
starting point in considering different sampling designs,
this deceptively simple sampling protocol is usually diffi-
cult to implement. Inmost practical settings, non-use can-
not be determined with certainty, and replicate surveys to
determine detection andnondetection are often necessary
to account for imperfect detection. In many other practi-
cal settings, a random sample of available resource units
will result in few or no observations of use. This situation
may occur, for example, with rare or difficult-to-detect

species. In these settings, a random sample of used
resources units may be obtained such as with radio telem-
etry and a separate sample of unused but available
resources may be obtained, which is a so-called case-
control design. Alternatively, a randomly sampled used
resource unit could be paired with one or more resource
units that were unused at that time such as sampling a
choice set in discrete choice analysis (Cooper and Mill-
spaugh 1999). Such an approach avoids ambiguity in
establishing non-use, since an animal cannot use two
resource units simultaneously, but also limits the types
of predictions that can bemade. The difficulty of establish-
ingnon-use leadsmany to collect a randomsample of used
resource units, and a separate random sample of available
resource units, acknowledging that available units may or
may not be used themselves. Last, the difficulty of estab-
lishing non-use leads to some sampling schemes that only
collect random samples of used resources.

14.2.3 Differences Between RSF, RSPF, and RUF

When describing resource selection by animals, it is
important to distinguish among three distinct categories
of analytical methods: RSF, RSPF, and resource utilization
functions (RUF). RSFs are proportional to RSPFs up to an
arbitrary constant and can be used to estimate the relative
probability of use. In contrast, the estimated parameter
coefficients in a RSPF allow prediction of the absolute
probability that a particular sampling unit will be used
by an animal (Manly et al. 2002; Lele and Keim 2006;
Sólymos and Lele 2016). RSFs may not be insightful if
the absolute probabilities of use are close to 0 or 1. For
example, consider a case where use of one resource is
10× more likely than another. However, if the absolute
probability of using one resource is 0.01 and the other
resource is 0.10, neither resource is likely to be used.
For this reason, RSPFs offer a more intuitive and useful
interpretation. Furthermore, we caution users of RSFs
against a probabilistic interpretation, even when predic-
tions are scaled between 0 and 1, because the relative
probability might not be proportional to the absolute
probability of use. The underlying data, choice of analyt-
ical methods, and study objectives ultimately determine
whether a RSF or RSPF is used, but we recommend using
RSPFs whenever possible, given their ability to estimate
absolute probability of use and the resulting more-direct
interpretation of outputs.
RSFs and RSPFs can both be used when the response

variable is discrete: used versus unused, or use versus
availability. In contrast, RUFs can be used to model
resource selection when a continuous density estimate
derived from a utilization distribution (UD) is treated
as the response variable (Marzluff et al. 2004; Millspaugh
et al. 2006; Figure 14.2).
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Figure 14.2 Kernel-based utilization distributions (UD) quantify the probability of use computed from locations obtained from radio
tracking of white-tailed deer (Odocoileus virginianus) in Missouri. Locations of the animal (a) and choice of bandwidth (h) aka smoothing
factor has a substantial impact on the shape of the UD surface. (b) h = 250, (c) h = 500, (d) h = 1000.
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14.3 Considerations in Studies
of Resource Selection

In studies of resource selection, there is no “one size fits
all” strategy to design and analysis, in part because each
study has unique objectives, sampling requirements,
and factors that might affect the accuracy of the data
including telemetry location error and fix rate bias. The
choice of design and analysis options should be driven
by careful consideration of fundamental issues such as
the desired temporal and spatial scale of inference, the
value of linking resource use to fitness effects, the benefits
of considering behavior associated with resource use, and
a clear question needed to inform management decision-
making. Here, we discuss some of the fundamental con-
siderations in studies of resource selection and how to
address them.
Before any decision is made about design or analysis, it

is important to clarify the scope of inference. In studies of
resource selection, there are several critical questions
about the animals under study and data to be collected.
For example, is the intent to describe the ecology of males
or females or both? Is inference desired for all time per-
iods? What is the temporal extent: a year, a season, a
month?What is the biological period of interest: breeding
season, nesting period, winter? What is the spatial extent
that the study intends to characterize? These are all
important considerations that ultimately affect how,
when, and where data are collected.

14.3.1 Two Important Sampling
Considerations: Selecting Sample Units
and Time of Day

A critical step when considering sampling design is to
clearly identify the level at which replicate observations
are made. Throughout, we use the term sample unit to
identify the unit from which a response and predictor
variables are measured. Sample units can be defined in
several ways in resource selection studies. Studies that
monitor animals using radio tracking, where the animal
is repeatedly observed through time, can define either
the individual animal or the observed use sites as the sam-
ple unit, depending on how they are applied in the anal-
ysis (Aebischer et al. 1993; Marzluff et al. 2004). For
example, if individual-based models are developed, the
animal is the sample unit, but if all observations across
multiple individuals are pooled, then the individual ani-
mal locations are the sample unit. Alternatively, events
such as nest visits may be considered sample units. In this
example, nest survival or failure, which is the response
variable, and associated vegetation characteristics, which
are the predictor variables, are recorded during each nest

visit. Last, spatial locations based on coordinates or GIS
pixels may be considered sample units, where use and
non-use is recorded as the response variable, and the
associated resource attributes are the predictor variables.
In our discussion below we attempt to set context for
these different approaches to selecting sample units.
Because the goal of field studies is accurate and defensible
inference about a target population, it is important that
sampling be conducted appropriately.
Selection of sample units should reflect random, prob-

abilistic sampling to the fullest extent possible. However,
logistical and biological realities sometimes prohibit
completely probabilistic sampling practices, such as
behavioral differences among animals that influence sus-
ceptibility to capture or observability (Lundy et al. 2012).
Logistical and biological constraints are not excuses to
apply convenience sampling, and researchers should
make every attempt to minimize sources of bias that
are at least partially controllable.
Another important consideration is the timing of data

collection. Biologists need to clearly consider the desired
temporal scope of inference and should consider the biol-
ogy of the animal and activity patterns when designing a
resource selection study (Beyer and Haufler 1994). In
telemetry-based studies, it is imperative that the underly-
ing sampling strategy fully covers the temporal window of
interest because resource selection could differ by time of
day or season. Either all portions of this window need to
be represented equally, or unequal allocation of effort
should reflect a predetermined scope of inference
(Fieberg 2007). Our recommendation can be met most
easily with a systematic schedule for data collection
across both a 24-hour cycle, or the period of activity if
diurnal, and the longer-term period of interest (Otis
and White 1999), though more complex sampling strate-
gies can also be considered if appropriate and efficient.
There are other advantages to applying standard sam-
pling designs such as the ability to assess economic costs
of alternative sampling strategies.

14.3.2 Estimating the Number of Animals
and Locations Needed

It is always advisable to consider the sample sizes neces-
sary to achieve study objectives. Calculations of sample
sizes necessary to achieve a desired level of precision of
parameter estimates, statistical power, or ability to dis-
criminate among competingmodels requires initial infor-
mation about expected variability within and among
animals, effect sizes, and the desired significance level.
Pilot data can often explore potential variability in param-
eter estimates, which can be used to evaluate sample size
trade-offs. For any individual study, the most useful sam-
ple size guidance comes from simulations or analyses
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tailored to the specific designs being considered and the
focal study area (Baasch et al. 2010).We encourage others
to use a study-specific approach when considering sam-
ple size requirements for particular methods of analysis.
Resource selection studies based on radio tracking con-

tain two levels of sampling. One level is the sampling of
individual animals from the population of interest. The
other level is the sampling of sites from all possible sites
at which each study animal could have been recorded
while radio-tagged. The appropriate allocation of survey
effort between these two levels must be considered when
evaluating sample sizes. For example, if population-level
inference on resource selection coefficients is desired,
then many individuals should be included with relatively
few observations per individual. Conversely, if individual-
level inference is desired, more observations should be
made from fewer individuals. In general, population-level
inference is more useful for answering management-
oriented and theoretical resource selection questions
whereas individual-level inference is more useful for
questions in behavioral ecology.
There is some general guidance available to estimate

the number of animals and observations needed per ani-
mal when using observational or radio-tracking data to
estimate the parameters of an RSF or RSPF. Most of
the simulation work involving statistical models that con-
sider only one categorical resource feature, such as vege-
tation cover type, suggests that 20–25 animals with 30–50
observations per animal each is adequate (Alldredge and
Ratti 1986, 1992; Leban et al. 2001). Other methods, such
as species distribution models, have their own guidelines
(Wisz et al. 2008; Chapter 15). However, we caution
against broad application of these recommendations to
studies involving multiple resource features or studies
with great individual variation in selection patterns.
Baasch et al. (2010) provide a useful framework for
addressing site-specific sample size requirements in stud-
ies of resource selection because they are tailored to the
study area and animals under study.

14.3.3 Location Error and Fix Rate Bias Resource
Selection Studies

An important source of bias in resource selection studies
arises if location error varies systematically with terrain or
habitat. For example, bias will be introduced if GPS loca-
tions cannot be obtained from particular areas within ani-
mal’s home range such as low elevation sites with poor
signal transmission. The issue becomes particularly
important with interactions among habitat use (Frair
et al. 2004, 2010; Hebblewhite et al. 2007), time of day,
or the ability of a biologist to collect observations during
those periods. The twomain sources of bias that influence
the reliability of telemetry technology are fix rate and

locational error. Fix rate is the probability of obtaining
a location (Frair et al. 2004, 2010; Lewis et al. 2007)
whereas locational error is the distance between the esti-
mated and actual location of an animal. GPS locational
errors can range into the 100s of meters, though errors
averaging less than 12m are common (Rempel et al.
1995; D’Eon et al. 2002; Cargnelutti et al. 2007). In con-
trast, very high frequency (VHF) locational error from tri-
angulation can range into the thousands of meters (White
1985; Nams and Boutin 1991) and geolocators can be ±30
km which can preclude an assessment of resource selec-
tion. In light of these potential errors, we encourage
researchers to evaluate the accuracy of location data in
each study situation. Fix rate and locational error are
problematic for resource selection models because they
can lead to misidentification of resource selection (Saltz
1994; Johnson and Gillingham 2008). The potential for
misidentification of resource selection may be particu-
larly acute for species that select edge habitats, small
habitat patches, or rare habitats (McKenzie et al. 2009;
Nielson et al. 2009).
Once locational accuracy is assessed, analytical

approaches can be applied to minimize the effects of
locational error (Frair et al. 2004, 2010). Methods include
data screening for fixes with poor precision (Lewis et al.
2007), modeling resource selection in relation to contin-
uous covariates rather than categorical covariates
(Montgomery et al. 2010), altering the scale of inference
associated with the model results according to the meas-
urement error inherent to the data (Findholdt et al. 2002),
explicitly incorporating the error into the modeling
design (Montgomery et al. 2010, 2011; Brost et al.
2015), or using techniques such a kernel density estimates
which are more robust to lack of precision with locations
(Moser and Garton 2007).

14.3.4 Consideration of Animal Behavior
in Resource Selection Studies

With the exception of event site studies of resource selec-
tion, which consider specific behavioral events such as
nesting, den sites, and roosting, we may not know why
an animal uses a resource. Visual confirmation of activity
(Eads et al. 2011, 2012), remote monitoring of behavior
via sensors (Moll et al. 2009), or still images can be col-
lected (O’Connell et al. 2010), but most often we only
know the timing of use within a sample unit. Patterns
of resource selection are likely to vary depending on
the particular behavior an animal is engaged in. For
example, Cooper and Millspaugh (2001) found that
parameter coefficients for RSFs varied depending on
the behavior of elk (Cervus canadensis). In particular,
they found canopy cover was important only for particu-
lar behaviors, such as bedding, which did not adequately
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capture resource needs for foraging. Indeed, Marzluff
et al. (2004) cautioned that pooling animal use data in
studies of resource selection might mask the importance
of some resources should resource use differ by behavior.
Additionally, knowledge of animal behavior when using
specific resource units improves our understanding of
why the animal uses certain units and the potential
importance of those resources to animals (Marzluff
et al. 2004; Forester et al. 2007; Lundy et al. 2012).

14.3.5 Biological Seasons in Resource Selection
Studies

Researchers should consider the phenology and seasonal-
ity of environmental conditions when designing resource
selection studies. For many species and in many regions,
organisms respond to seasonal variation in temperature
and precipitation with large-scale and long-term phe-
nomena like migration, breeding, postbreeding, or
dispersal. Phenological timing can be driven by endoge-
nous and exogenous factors as diverse as hormone cycles,
resources, climate, and mate availability. Biological sea-
sons often alter the relationship between animals and
resource use because there are seasonal changes in the
resource needs of study animals and in the availability
of resources in the environment.
Biological seasons can be defined with a number of cri-

teria, but most approaches use the ecology and climatic
patterns of the study system in light of the natural history
of focal species. For example, the energy needed by a 21 g
White-breasted Nuthatch (Sitta carolinensis) to survive
at winter temperatures of 0 C is approximately twice
what is required during summer conditions at 30 C
(Kendeigh 1970; Grubb and Pravosudov 2008). Changes
in energy needs translate to substantially altered food
resource requirements during each season. An investiga-
tor wishing to evaluate resource selection in nuthatches
would thus be wise to carefully define the biological sea-
sons of interest before embarking on an investigation.
Alternatively, investigators could consider potential

biological influences by aligning data to account for dif-
ferences in timing among individuals. For example, an
investigator might have resource-use data for 20 pairs
of birds, collected across a 60-day period encompassing
prebreeding, incubation, nestling-rearing, and fledging.
If nest initiation dates for those birds were spread across
a 15-day period, ordinal dates would serve as poor bounds
for resource selection analyses. Rather, the investigator
might classify resource-use data for each study animal
in the context of its reproductive timing. Data collected
before the first egg was laid on each territory would be
considered prebreeding and analyzed separately from
resource-use data collected during incubation and
brood-rearing phases. Resource selection analyses could

then be aimed at natural history phases, despite slightly
shifted seasonal phases among individual birds. The
interpretation of results from such carefully designed
studies may be much more straightforward when placed
in the context of biological seasons, and inference will
ultimately tie to the biology of the study animal much
better.

14.3.6 Scaling in Resource Selection Studies

Scale is a ubiquitous issue in ecology, and the heteroge-
neity and patterns of resources across landscapes is inher-
ently scale dependent (Turner 1990; Levin 1992; Boyce
2006). Within the context of resource selection, scale
refers to the spatial and temporal extent at which organ-
isms make decisions and researchers evaluate resource
selection (Boyce 2006). Thomas and Taylor (2006)
described four general designs for resource selection
studies based on whether use and availability data are col-
lected at the individual or population scale (Figure 14.4).
Johnson’s (1980) classification scheme for orders of

selection illustrates that resource selection, whether at
the individual, population, or species level is inherently
hierarchical (Johnson 1980; Manly et al. 2002;
Figure 14.5). Thus, organisms are adapted to niches of
varying breadth at the species range, at the home range
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Figure 14.4 Four study designs for resource selection studies. The
first design (I) collects use and defines availability at the population
level. Under this design, observations of individual animals (the Xs)
are not distinguished. Under study design (II), use is recorded for
individual animals (denoted by “A” and “B”), but availability is still
defined at the population level. Study design (III) estimates use and
availability separately for each animal. Design (IV) summarizes use
of individual animals, but availability is defined per individual use
location or event (designated by subscripts).
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scale, and among habitat patches within the home range
(Kie et al. 2002).
Assessing an ecological question at an inappropriate

scale increases the probability of misidentifying resource
selection (Boyce 2006). At the core of this issue is the rec-
ognition that scale directly influences the relationship
between response variables such as abundance, occu-
pancy, and the predictor variables, such as biotic and abi-
otic environmental characteristics of the landscape. For
example, Orians and Wittenberger (1991) described
how Yellow-headed Blackbirds (Xanthocephalus xantho-
cephalus) used cues about insect availability to determine
where they would locate a territory (second-order selec-
tion). However, nest sites were selected based on vegeta-
tion density (third-order selection), not on insect
availability, so if the scale of analysis had only considered
nest site selection, they might have underestimated the
importance of insect availability in the overall pattern
of resource selection. When considering spatial and tem-
poral scale it is important to consider both extent due to
the range of data and an organism’s distribution, as well as
resolution due to the finest grain of the analysis (Turner
et al. 2001).
Identifying an appropriate spatiotemporal scale is based

on several factors: including the biology of the species,

population, and/or individual organism, the resolution
and extent of the covariate data, and the temporal resolu-
tion and extent required to evaluate the question of inter-
est. For example, if a species is particularly adapted to and
dependent upon a rare habitat type, then the analysis
must be designed at a spatial scale that will capture that
landscape heterogeneity. A critical issue is that it may be
necessary to evaluate ecological relationships at finer
resolutions to comprehend ecological processes occur-
ring at broader spatial scales (Turner et al. 1989). It is
always possible to scale up, but not to scale down: mean-
ing that inferences cannot be made at resolutions finer
than the grain of the analysis.

14.3.7 Linking Resource Selection to Fitness

An implied assumption is that resource selection is cor-
related with fitness of an animal. However, such an asso-
ciation is not guaranteed (Van Horne 1983; Buskirk and
Millspaugh 2006). While it is often possible to relate
resources to the distribution of a species in time and
space, the ultimate consequences of resource selection
to the animal often remain unknown. Few studies have
tested the assumption that resource selection is associ-
ated with fitness (Both and Visser 2000; Franklin et al.

(a) First order: Range (b) Second order: Landscape

(c) Third order: Local (d) Fourth order: Microhabitat

Figure 14.5 An example of the orders of resource selection for a representative songbird in the Midwestern U.S.A. (Johnson 1980). The first
order of selection is the geographical range of a species (a). Within that range the bird selects a home rangewith heavily forested landscapes
(second-order selection; b). Within the home range, the bird selects heavily dissected southwest facing slopes (third-order selection; c). For
the fourth order of selection, the bird chooses to nest in a tree (d) having greater than 50% canopy closure (green cells).
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2000; McLoughlin et al. 2007). Linking resource selection
to biological outcomes such as survival and reproduction
will improve the value of resource selection studies tre-
mendously (Garshelis 2000; Garton et al. 2001). Recent
developments begin to explicitly link resource selection
and demography (Matthiopoulos et al. 2015), and spatial
capture-recapture models are an area of active research
that offer exciting opportunities to link demography
and resource selection (Royle et al. 2013).

14.4 Methods of Analysis and
Examples

Choice of methods to analyze resource selection data is
diverse and dependent on many factors such as research
objectives, study design, sampling strategies, and availa-
ble data (Figure 14.1). It is important to note that several
analytical techniques could be used to analyze the same
data in a resource selection study and Figure 14.1 is
intended to serve as only a general guide to common
methods used for criteria shown.

14.4.1 Compositional Analysis

Aebischer et al. (1993) introduced the use of composi-
tional analysis (Aitchison 1986) for studies of resource
selection to overcome issues with earlier methods (Neu

et al. 1974; Quade 1979; Johnson 1980) such as the
unit-sum constraint, nonindependence of sample units,
and consideration of differential resource selection by
individuals. Compositional analysis was recommended
by Aebischer et al. (1993) who suggested a two-stage anal-
ysis, first examining home range selection within the
study area and then examining resource selection within
the home range (Figure 14.5). The response variable is the
proportion of each discrete level of a resource variable
within the home range of an individual animal, and must
sum to one over all discrete vegetation types, defined as
the “unit-sum constraint.” Thus, the individual animal
is the sample unit, which also helps overcome problems
of nonequal weighting among animals when the number
of locations across animals is not equal (Pendleton et al.
1998). Availability is similarly defined by the proportional
occurrence of discrete levels of a resource variable, but at
a scale that is appropriate to the question being posed
(Figure 14.6).
Compositional analysis uses multivariate analysis of

variance (MANOVA) to compare proportional use of
discrete vegetation types to proportional availability
(Aebischer et al. 1993). Once the proportional use and
availability data are obtained, these data are transformed
to ln-ratios y (used) and yo (available), and the difference
in the ln transformed data for each pairwise comparison
(i.e., animal) is calculated (d = y – yo) to test the hypoth-
esis that d = 0 (use = availability). The overall test for
selection is derived from the MANOVA statistics. If d 0,

Landcover

Open Water

(a) (b)

Developed

Forest

Pasture Hay

Cultivated Crops

Figure 14.6 An example of compositional analysis. Compositional analysis uses a paired used-availability design to rank categories of
a resource variable with discrete levels (e.g. different cover types of vegetation such as forest, pasture hay, cultivated crops). In this
example, the proportion of land cover used by a white-tailed deer (Odocoileus virginianus) in Missouri is quantified using the animal’s
home range (a). The used proportions are compared to those found in the study area (b) to determine that forested areas are used in greater
proportion than their availability in the larger area.
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separate t-tests (Aebischer et al. 1993) or randomization
tests (Manly 1991) are used to determine how selection
differs by resource pairs (Erickson et al. 2001). Using this
information, Aebischer et al. (1993) describe ranking each
discrete level based on the number of times it was selected
over another level.
Despite these advantages, a few challenges complicate

use of compositional analysis. First, ln-ratios are unde-
fined for zeros, which are observed when a discrete veg-
etation type remained unused. Aebischer et al. (1993)
suggested that zeros be replaced by a small constant
(e.g. 0.01) but this solution is problematic because the
model assumes this value is a real number, so misclassi-
fication is highly probable (Bingham and Brennan 2004;
Bingham et al. 2007). To address this issue, researchers
can drop vegetation categories that are not used by an
animal, reclassify discrete vegetation categories by group-
ing types to eliminate unused types, or omit individual
animals that have not used all available vegetation types.

Although we agree that reclassifying habitat types can be
sensible, we do not recommend the omission of habitat
types or individual animals because it results in loss of
observation data. Last, when using the animal’s home
range boundary to quantify proportional use, there is
no consideration of the amount of time spent in each hab-
itat type. Millspaugh et al. (2006) address this problem by
incorporating use intensity into estimates of proportional
use of habitats through incorporation of the UD. Using
this approach, the study showed selection results that
were biased when random use was assumed through
the range.

14.4.2 Logistic Regression

In studies of resource selection, we are often interested in
estimating the probability that a particular sample unit is
used by an animal as a function of the resources present
in that sample unit. Perhaps the most straightforward
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Figure 14.7 Defining choice sets for discrete choice models. Using the paired use-availability design within discrete choice allows for the
use of choice sets to characterize availability. Variation in resource availability can be incorporated on a per use location basis and in a
biologically informed way. For example, the extent of availability for successive elk (Cervus elaphus) radio-tracking locations in a forested
landscape (a) could be dependent on its movement rates between successive use locations. As distances between locations 2, 3, and 4
increase, a larger spatial area might be considered available. For an elk whose successive locations demonstrate a seasonal movement to
lower elevations (b), individual choice sets capture the increased availability of quaking aspen surrounding locations 4, 5, and 6 after the
animal has moved to lower elevations.
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approach is to divide an area of interest into a population
of N discrete sample units such as GIS pixels, and assess
use and non-use at a random collection of sample units.
Importantly, sample units are selected without regard to
use. We can then correlate the use or non-use of each
sample unit with associated covariates to infer the
strength and direction of selection of particular resources.
Logistic regression is a commonly used analytical method
for such data.
In the simplest applications of logistic regression, we are

interested in estimating the probability that a species uses a
discrete sampling unit, and in determining the effects that
a suite ofm resources, written as x1,…, xm, may have on the
probability of using each sample unit. The probability that
a species uses sample unit i can be written as:

ψ i =
eβ0 + β1xi1+…+ βmxim

1 + eβ0 + β1xi1+…+ βmxim
, 14 1

where ψi is the probability that a species occurs in sam-
pling unit i, β0 is the intercept parameter, β1, …, βm are
parameter coefficients associated with the M resources,
and xim is the value of resource unit m at sample unit i.
If we survey n sample units, recording use or non-use of

the species of interest and measuringm resources at each
of these sample units, we can write the log-likelihood as:

ln L β0,β1,…,βm y,x =
n

i= 1

yiln ψ i + 1−yi ln 1−ψ i

14 2

Here yi = 1 if a species used sample unit i, and yi = 0 if a
species did not use sample unit I. Maximum likelihood
techniques can then be used to estimate parameters β0,
β1,…,βm.Withabasicunderstandingof logistic regression,
we now consider a series of sampling protocols that repre-
sent variations on the general model described above. The
appropriateness and interpretation of logistic regression
models, and the choice between logistic regression and
other similar models, depends on the sampling design.

14.4.3 Sampling Designs for Logistic
Regression Modeling

14.4.3.1 Random Sampling of Units within the
Study Area
A common sampling design in resource selection studies
involves sampling a collection of n sample units, usually
discrete sites, within a study area and measuring use ver-
sus non-use at each sample unit. The researcher can use
manymethods to select the n sample units, such as simple
random sampling, systematic sampling, or stratified
random sampling, though methods other than simple
random samplingmay add complexity to analytical meth-
ods. Most resource selection studies use model-based

inference, but with probability sampling of discrete sites
from a finite population of sites, inference can be either
design- or model-based.
An important distinction between a sampling design

which involves random sampling of units within the study
area and those discussed later, is that each sample unit is
selected without regard to whether the unit has been
used. Once the n sample units are selected, survey meth-
ods such as point-counts or camera traps are used to
detect use and non-use. Additionally, a suite ofm covari-
ates, the resources, are measured at each sample unit.
An important assumption of logistic regression is that

use and non-use are detected without error. However,
many animal species are elusive and difficult to detect,
leading to imperfect detection probabilities. This limita-
tion applies to virtually all forms of use versus non-use
analysis, whether it be via radio telemetry, visual observa-
tion, or passive monitoring. A variation on the basic logis-
tic regression model allows researchers to account for
imperfect detection when estimating the probability a
sample unit is used, which can be accounted for through
multiple surveys at each sample unit and careful record-
ing of detection and nondetection events (MacKenzie
et al. 2002). Sampling units must be closed to changes
in occurrence between surveys so that a species that is
present at a sample unit during one survey must be pres-
ent during all surveys and multiple repeated surveys at
each sample unit can be used to estimate detection prob-
ability. Under this sampling protocol, we can write the
log-likelihood as:

ln L β0,β1,…,βm,p

=
n

i= 1

yiln ψ ip
ji 1−p J − ji + 1−yi ln ψ i 1−p

J + 1−ψ i
,

14 3

where p is the probability of detecting a species during a
single survey, J is the number of replicate surveys con-
ducted at each sample unit, ji is the number of sampling
occasions at site i when a species was detected, and yi = 1
if ji > 0, or yi = 0 if ji = 0. In this model, detection prob-
ability, p, can be modeled as a function of covariates in
the manner described for ψ i in Eq. (14.1) above
(MacKenzie 2006).

14.4.3.2 Random Sampling of Used and Unused Units
Instead of drawing a single sample from the overall pop-
ulation in the study area and then determining use for
each selected survey unit, it may be desirable to sample
directly from the two populations of used and unused
sample units within a study area. The case-control design
is commonly considered when use is rare across the study
area and a random sample from the overall population
may lead to few observations of use (Hosmer and
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Lemeshow 2000; Keating and Cherry 2004). With the
case-control design, a random sample of used sites,
denoted n1, is collected from the population of all used
sites throughout the study area, denoted as N1. Next, a
random sample of unused sites, denoted as n0, is collected
from the population of all unused sites throughout the
study area (N0). In practice, a random sample of used sites
is generally obtained through use of radio telemetry or a
similar method to determine which sites are used, and a
random sample of unused sites is then selected from the
population of sites within the study area where the animal
was never observed. The case-control design described
below assumes that use and non-use can be determined
with certainty, an assumption we will later relax.
Under a case-control sampling design, the probability

that site i is occupied is:

ψ cc
i =

e
β0+ ln S1

S0
+ β1xi1+…+ βmxim

1 + e
β0+ ln S1

S0
+ β1xi1+…+ βmxim

, 14 4

where S1 = n1/N1 and S0 = n0/N0 (Keating and Cherry
2004). Note that this equation is similar to Eq. 14.1, except
that now the intercept parameter β0 is adjusted by the nat-
ural log of the ratio S1/S0, which accounts for the dispro-
portionate occurrence of used and unused samples in the
dataset. The log-likelihood can then be written as:

ln L β0,β1,…,βm =
n

i=1

yiln ψ cc
i + 1−yi ln 1−ψ cc

i

14 5

Note that this equation is identical to the log-likelihood
for the basic logistic regression model described in
equation 14.2. If the proportion S1/S0 is known, then
the case-control logistic regression model can be used
to estimate a RSPF. In this situation, the case-control
model can be fit with standard logistic regression soft-
ware routines and the estimated value of the intercept
parameter, β0, can be obtained by subtracting ln(S1/S0)
from the estimate of β0 or by including an offset term.
In most field studies, the proportion S1/S0 is rarely

known. In this situation, case-control logistic regression
still provides unbiased estimates of parameter coefficients
β1, …,βm, but estimates of the intercept parameter β0 are
confounded with ln(S1/S0). In this situation, logistic
regression techniques can only be used to estimate a
RSF. However, unbiased estimates of linear model slope
parameters can still be obtained if none of the unused
sample units are contaminated because imperfect knowl-
edge of the number of used and unused samples only
introduces bias into estimates of the linear model inter-
cept parameter (Keating and Cherry 2004). In such set-
tings, estimates of odds ratios can be obtained to rank

the relative probability a sample unit is used relative to
a user-defined baseline, but inference cannot be obtained
on the absolute probability a sample unit is used. To dem-
onstrate more precisely, let:

πx =
e β0 + xβ1

1+ e β0 + xβ1
14 6

denote the absolute probability a sample unit is occupied
when a specific covariate takes the value x, with β0 and β1
denoting intercept and slope parameters of linear predic-
tors, respectively. Theodds of usewhen the covariate takes
value x is defined as oddsx = πx/(1 – πx) = exp(β0 + xβ1).
Finally, the odds ratio when the covariate takes the value
x + z, relative to baseline value x, is defined as:

ORx+ z =
e β0 + x+ z β1

e β0 + xβ1
= e zβ1 14 7

There are several important items to note here. First,
interpretation of model predictions as odds ratios does
not depend on the intercept parameter, which makes
case-control logistic regression useful even if the number
of used and unused sample units is unknown. Second,
interpretation of odds ratios is relative to a baseline set
of covariates – it is important to explicitly acknowledge
such baselines when reporting odds ratios. Third, the
resulting odds ratios are not directly proportional to
the absolute probability of use. In other words, the abso-
lute probability of use is not simply a constant multiplied
by the odds ratio. Practically, this issue means predictions
from case-control models when the number of used and
unused samples in the population is unknown can only be
used to rank sample units from low to high probability of
use relative to an explicit baseline. Last, the expected
value for an odds ratio under no resource selection is one.
For case-control sampling to be appropriately used, the

researcher must know with certainty which sample units
are used versus unused. While use can usually be deter-
mined with certainty in many animal studies, non-use
can rarely be determined with certainty. This situation
may lead to cases where sample units classified as
unused may actually have been used at some point, but
this use is not observed by the researcher. This situation
is commonly referred to as “contamination” (Lancaster
and Imbens 1996). Case-control logistic regression
should not be used when contamination is possible, as
is most commonly the case with animal field research.
Instead, researchers should use a use-availability sam-
pling scheme, which is described in the next section.

14.4.3.3 Random Sample of Used and Available
Sampling Units
Like the case-control sampling scheme above, a use and
availability sampling scheme draws samples from two
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populations: all sample units that were used and all avail-
able sample units. Under this sampling design, a random
sample of used sample units, denoted n1, is collected from
the population of all used sample units throughout the
study area, denoted as N1. A second random sample of
available sample units, denoted na, is then drawn from
the entire population of all sample units, denoted as N.
Note that the random sample of available sample units
is made without regard to whether a site is used or
unused, since non-use is not known with certainty. Ran-
dom sampling of used and available sampling units is a
common design when animals are fitted with radio-
transmitters or GPS units. In these situations, only use
is observed with certainty, and units where use was not
observed may or may not have remained unused; there-
fore these units are classified simply as available.
Logistic regression is commonly used when data are

collected with this random use-availability sampling
scheme (Manly et al. 2002). Once a model is fit to use-
availability data, estimated slope parameters are used to
construct a RSF, typically with an exponential form:

RSF = exp x β , 14 8

where x is a vector of covariates and β is as associated vec-
tor of estimated slope coefficients, excluding an intercept
term. The slope coefficients estimated under such a
model are not guaranteed to be unbiased, and the result-
ing RSF is neither guaranteed to be proportional to the
absolute probability of use, nor a reasonable ranking of
relative probabilities of use (Keating and Cherry 2004).
Despite these shortcomings, logistic regression is still a
commonly used and useful tool for modeling resource
selection with use-availability data (Johnson et al. 2006;
see also its use as an approximation to point processmod-
els below).
When estimating an RSPF with random use-availability

data, we are interested in estimating the probability that a
sample unit is observed to be used, conditional on that
unit being included in the sample (ϕi, Keating and Cherry
2004). This probability can be written as:

ϕi =

h
q 1−h

ψ i

1 +
h

q 1−h
ψ i

, 14 9

where h = n1/n (with n = na + n1) is the ratio of used sam-
ple units to the total number of sample units, ψ i is the
probability of use defined in Eq. (14.1), and q is the uncon-
ditional probability of use, or prevalence (see online
exercises).
Manly et al. (2002) suggested, for convenience of fitting

a use and availability model, that the probability of use, ψ i,
take an exponential form. Assuming the exponential form
for ψ i, one could rewrite the equation above as:

ϕRSF
i = e

β0+ ln h
q 1−h + β1xi1+…+ βmxim

1 + e
β0+ ln h

q 1−h + β1xi1+…+ βmxim

14 10

Assuming this form for ϕi, one can use readily available
logistic regression software packages to estimate the
regression coefficients β1, …, βm. However, β0 is con-

founded with the ratio ln
h

q 1−h
, and assuming the

exponential form for ψ iwill only yield an RSF, where esti-
mated probability of use is proportional, but not equal, to
the “true” probability of use.
Assuming the exponential form for ψ i, the log-

likelihood of the use-availability model can be written as:

ln L β0,β1,…,βm =
n

i=1

ziln ϕi + 1−zi ln 1−ϕi ,

14 11

where zi = 1 if sampling unit i was observed to be used, 0
otherwise. While this equation looks similar to the logis-
tic regression log-likelihood above, use of logistic regres-
sion to estimate parameter coefficients in this context has
been heavily criticized (Keating and Cherry 2004). Several
authors have proposed techniques closely related to case-
control logistic regression that enable users to estimate
absolute probabilities of use from use-availability data
(Lele and Keim 2006; Royle et al. 2012; Rota et al. 2013).
These techniques, however, require strong assumptions
regarding the functional form of the absolute probability
of use (Fithian and Hastie 2013), precluding their use in
many practical settings. Indeed, estimating absolute prob-
abilities of use fromuse-availability data remains an impor-
tant area of methodological research.
Last, the use of point process models represents an

exciting area of development in the analysis of use-
availability data (Warton and Shepherd 2010; Renner
et al. 2015). Point-process models assume the location
and number of used points is random and can be used
to estimate the intensity of presences as a function of cov-
ariates. In fact, in many cases, point-process models have
been found to be equivalent tomany of the logistic regres-
sion and maximum entropy techniques ecologists have
been using for years (Warton and Shepherd 2010; Renner
and Warton 2013).

14.4.4 Discrete Choice Models

Case-control logistic regression requires one to assume
there is little or no contamination in unused sample units,
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which is not met in many practical field settings. An alter-
native approach to identifying unused sample units is to
pair used sample units with one ormore sample units that
were not used at the same time. For example, Rota et al.
(2014) paired trees used for foraging by Black-backed
Woodpeckers (Picoides arcticus) with trees that wood-
peckers could have used, but did not use at the time of
sampling. Unused sample units may have been used at
a previous or future time, but they were not used at the
same time as the used sample unit. Additionally, there
may be other advantages to pairing used and unused sam-
ple units, such as when available resources are not uni-
formly distributed in space, perhaps because of changes
in resource characteristics through time, differences in
spatial availability, or restrictions in access to resources
(see online exercises). In these settings, the used and asso-
ciated unused sample units are commonly referred to as a
choice set, and comprise a single replicate.
The approach offers great flexibility in defining avail-

ability, which can change spatially and temporally
(Figure 14.6). For example, Cooper and Millspaugh
(1999) defined availability as a 1 km circle centered
on a point between a telemetry location and a used
bed site. Durner et al. (2009) defined the center of a
choice set on an animal’s location at the previous time
step with the radius of that circle, dependent on the
time between locations and the distance an animal
could move in that interval. They computed a radius
of available habitat as [a + (b × 2)] × c where a is the
mean hourly movement rate for all animals being
sampled, b is the standard deviation of that movement
rate, and c is the number of hours between locations.
We advocate the use of these biologically appropriate
measures of defining availability to guide realistic defi-
nitions of resource availability provided they meet
objectives of the study.
Discrete choice models are commonly applied when

used sample units are paired with one or more unused
sample units (Ben-Akiva and Lerman 1985; McCracken
et al. 1998; Cooper and Millspaugh 1999; Figure 14.1).
Predictions from discrete choice models can be made
in terms of odds ratios. Additionally, predictions can be
made in terms of the probability a sample unit is used, rel-
ative to the other sample units within the choice set. To
demonstrate, consider the probability of selecting a sam-
ple unit with covariate value x + z, when an animal has a
choice between sample units with covariates x and x + z.
We can write this probability as:

πx+ z =
e x+ z β1

e x+ z β1 + e xβ1
=

e zβ1
1+ e zβ1

14 12

Notice that this probability depends strongly on the
denominator and will change depending on the number
of choices available. To convince yourself, consider a

choice set with a third alternative that has covariate value
x + y and calculate πx + z. Notice also that discrete choice
models do not require an intercept parameter (you could
place an intercept parameter in the linear predictors
above, but it will cancel from all terms), again indicating
that predictions of odds ratios and probabilities of use are
made relative to a set of defined conditions.

14.4.5 Poisson Regression

In some resource selection studies, investigators are
interested in understanding relative intensity of use
across sample units, with use measured as discrete
counts, typically from animal encounters or sign counts,
in each cell. For example, one could grid a study area into
sample units, and count the number of times use
occurred in each sample unit based on a camera trap
array, counts of animal tracks, scat, burrows, or other sign
or a tally of direct visual observations (Eads et al. 2011;
Kays et al. 2016). In these situations, Poisson regression
models and other extensions to this analysis use counts
as the response variable for modeling resource selection.
How sample units are delineated is important because the
size of the units should not be arbitrary, but might con-
sider the scale of resource choices made by an animal
and whether variation in the intensity of animal use can
be expected. The size of sample units is analogous to
bandwidth smoothing in the RUF analysis described in
Section 14.4.6 (Millspaugh et al. 2006). Poisson regression
could be considered a use-only method if only sample
units where the animal is observed are included in the
analysis or it could be a use-availability method if areas
where animals are not observed are included in the anal-
ysis (see online exercises).
Poisson regression with an offset term can estimate an

RSF, the relative frequency of use within sample units.
Count ci, collected at sample unit i can be modeled as a
Poisson random variable:

ci Poisson λi , 14 13

where ln(λi) = β0 + β1x1, i + … + βpxp,i, + ln(total). Here,
ln(total) is an offset term equal to the sum of all counts
across the study area. In this manner, β0 + β1x1,i +…
+ βpxp,i, represents the relative intensity of use at sample
unit i. Thus, Poisson regression is a logical extension from
the logistic regression approach described above with
increased complexity in the response variable reflecting
intensity rather than simply presence or absence. Poisson
regression is a generalized linear model with the distribu-
tional assumption that ci comes from a Poisson distribu-
tion with parameter λ = E(ci). The offset term ln(total) is a
quantitative variable whose regression coefficient is set to
1.0. Because the offset in this model is the same for all
sampled habitat units within the study area or home
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range for a particular animal, it is absorbed into the esti-
mate of β0 and ensures that we are modeling relative fre-
quency of use, instead of counts of use, although the
response variable specified is the counts of use
(Millspaugh et al. 2006). That is, subtracting the offset
term from both sides of the equation above, the left hand
side becomes ln[E(ri)]-[ln(total)] = ln[E(ri/total)] = ln[E
(Relative Frequencyi)].
Advantages of Poisson regression include flexibility in

study design for use-only, use-availability, and use-non-
use (Figure 14.1) and a response variable based on inten-
sity of use. Additionally, extensions to the basic Poisson
model allow modeling of overdispersed and zero-inflated
data (Zuur et al. 2009). However, additional evaluations of
such applications of Poisson models, particularly accu-
racy and precision of estimates of probability of resource
use with varying densities of animal locations, are
warranted.

14.4.6 Resource Utilization Functions

RUF are an alternative analytical technique that repre-
sents a departure from the binary use and non-use and
use-availability techniques described in previous sections
(Marzluff et al. 2004; Millspaugh et al. 2006). The RUF
method is a logical extension of techniques that use indi-
vidual animal observations as the sample unit by sum-
marizing those individual observations as a probabilistic
and continuous measure of activity in an animal’s home
range. The RUF method first requires a collection of spa-
tially referenced used sample units. Once obtained, coor-
dinates of the used sample units are used to obtain a two-
dimension UD, which approximates the probability den-
sity function giving rise to the observed use locations.
Last, the UD is treated as the response variable in a regres-
sion model with spatial covariates as explanatory vari-
ables, often with spatially correlated errors. Many
decisions must be made when fitting RUFmodels, includ-
ing choice of UD estimation method (Kernohan et al.
2001; Getz and Wilmers 2004), the bandwidth to use
when estimating UDs (Seaman et al. 1999; Kie et al.
2010; Lichti and Swihart 2011), and what covariance
function, if any, to assume when fitting the regression
model. Furthermore, because the method is a two-stage
analysis, additional effort is required if one wishes to
propagate uncertainty in the estimated UD. The method
is attractive because it does not require collection of
unused or available sample units, and Hooten et al.
(2013) suggest this model is most useful when telemetry
points are subject to location error.
The process of relating the UD density estimate to

underlying resources is typically done at the individual
level, using multiple linear regression. It is possible to
account for spatial autocorrelation induced by smoothing

the UD (Marzluff et al. 2004), but recent work indicates
bias in parameter estimates is most substantially reduced
by applying the same level of smoothing to the predictor
variables (Hooten et al. 2013). More work is needed to
address the spatial autocorrelation function in RUF mod-
els and to determine whether other functions are more
appropriate than the spatial covariance model used by
Marzluff et al. (2004).
Once individualmodels are fit, it is possible to scale up to

a population-level model (see online exercises). First, fit
the samemodel to eachof then individuals. Then, estimate
population-level model coefficients as the empirical mean
and variance of individual-level regression coefficients
(Marzluff et al. 2004; Sawyer et al. 2006). In principle, this
approach could be extended to a hierarchical modeling
framework where individual-level slope coefficients are
themselves assumed to be random variables drawn from
a higher-level distribution, but we are unaware of any such
developments. Standard or bootstrap test statistics or con-
fidence intervals could be used to assess the statistical sig-
nificance of the population-level model coefficients. The
equations give equal weight to each study animal, but
can be adjusted to incorporate sampling weights.
There are several advantages to using a RUF. The

method is intuitive in that animal space use can be gen-
eralized as a continuous variable. By using the UD as the
response variable, problems with relating estimated loca-
tions with specific resource covariates are avoided. This
issue can make analyses based on a model-estimated
UD more appropriate than analysis of individual used
locations when telemetry error is an issue (Moser and
Garton 2007; Hooten et al. 2013). Further, because the
animal is the sample unit and the “height” of the UD at
each cell is used as the response variable, issues such as
independence of observations become less of a concern.
Instead, additional location data, which might be corre-
lated, offer a better UD estimate, provided data were col-
lected in a systematic manner.

14.4.7 Ecological Niche Factor Analysis

An important sampling design issue facing investigators
conducting resource selection studies is the difficulty in
determining absence of animals from areas or habitats
of interest. Although presence can be readily quantified,
absence is challenging to confirm given the difficulty in
knowing whether the habitat is unsuitable, has not yet
been occupied (e.g. by colonizing species), or use was
not detected (Basille et al. 2008). Multiple analytical
approaches are available to evaluate resource selection
using presence and “background” data on resource avail-
ability (Elith et al. 2006). Here, we note the functional
equivalence among terms like “background,” “pseudo-
absence,” and “available.” One of the most common
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methods is ecological-niche factor analysis (ENFA; Hirzel
et al. 2002), which is based on the ecological niche con-
cept (Hutchinson 1957), and is meant to assess habitat
suitability for the individual, population, or species, rather
than the probability of respective occurrences (Hirzel
et al. 2001). Therefore, an ecological niche is quantified
using suitability functions that compare distributions of
environmental characteristics between sites occupied
by the species and the available area of interest.
ENFA models species presence data and ecogeographi-

cal variables, which are the resources. Ecogeographical
variables are environmental characteristics presumed to
describe the ecological niche for a species. The ENFA
uses a geometric mean distance algorithm to model suit-
ability based on the ecogeographical variables (Cianfrani
et al. 2010). Thus, the niche is defined by uncorrelated
measures of marginality and specialization factors that
are calculated for each environmental characteristic.
Marginality defines the deviation between values of a
given environmental characteristic using sites with
known animal use or presence and values of available
sites without known use. Marginality is measured as
the squared distance between the mean available sam-
pling unit to the mean used sampling unit. Thus, with
characteristics of each sampling unit, marginality calcu-
lates the magnitude of deviation of the niche relative to
available sampling units. Higher marginality scores repre-
sent greater deviations of the occupied niche relative to
available resources (Basille et al. 2008).
Once marginality is calculated, ENFA calculates a spe-

cialization factor. Specialization measures dispersion of
the ecological niche, or niche width, and is the ratio of
the variation of the distribution of an environmental var-
iable at all used sample units to the variation of the distri-
bution of that same variable at all available sample units
(Hirzel et al. 2001; Unger et al. 2008; Cianfrani et al.
2010). As specialization values increase, the niche
becomes more restricted along the axis relative to the ref-
erence. Applications of ENFAhave included development
of predictive habitat suitability maps (Dettki et al. 2003;
Sattler et al. 2007), and recent improvements have been
made to identify mechanistic explanations of observed
space use. For example, Basille et al. (2008) described
the use of biplots with marginality and specialization axes
to characterize relative contributions of ecogeographical
variables in defining habitat selection. For reviews of
ENFA and similar modeling approaches, see Hirzel et al.
(2001), Pearce and Boyce (2006), and Elith et al. (2011).

14.4.8 Mixed Models

Mixed models, consisting of both fixed and random
effects, are often appropriate for RSF or RSPF analyses.
For example, consider a Poisson regression analysis in

which the same set of sample units were observed in each
of two years, with n unique sites visit once per year.
Assuming the 2∗n counts were independent would ignore
potential correlation between the repeated counts at each
site. Instead, a random site effect could be added, which
would account for dependence between multiple obser-
vations at the same site. Most commonly, the random site
effect would be assumed to come from a normal distribu-
tion with mean 0 and variance parameter σ2site, although
random slope models can be specified differently, with
the mean of the higher-level distribution equal to the
population-level mean of the slope parameter.
The use of random effects also automatically accounts

for differences in the number of observations per site, indi-
vidual, or other factor modeled with a random effect. The
power of incorporating random effects into resource
selection models should not be seen simply as their ability
to account for dependence among observations. Most
importantly, in the resource selection context, random
effects can be used tomodel variation in parameter coeffi-
cients among individuals or subpopulations (Gillies et al.
2006; Thomas et al. 2006). In turn, higher-order covariates
can be incorporated to examine hypotheses about factors
associated with variation among individuals in selection
(Wagner et al. 2011), such as functional responses. Fur-
ther, such procedures are useful for examining both pop-
ulation-level questions and consequences of individual-
level resource selection on fitness (Gillies et al. 2006),
while effectively treating individual animals as the sample
units. Random effects are tied to variance parameters,
which may be of high interest in themselves for assessing
the magnitude of different sources of variation.
The past decade has seen increased use of mixed-effects

models in the study of resource selection (Gillies et al.
2006; Thomas et al. 2006; Hebblewhite and Merrill
2008). Hebblewhite and Merrill (2008) found that
mixed-effects models in studies of resource selection
received much stronger support than models with fixed
effects only. Gillies et al. (2006) provided similar evidence
of the utility of random effects and noted improvements
to model fit and the ability to discern patterns of resource
selection. Given such benefits, we have observed increase
application of mixed-effects models in the study of
resource selection (Rota et al. 2014; Jachowski et al.
2016). Random effects can be directly integrated in any
of the procedures described above for studies of resource
selection in wildlife species (Thomas et al. 2006).

14.5 Software Tools

Many statistical techniques for the analysis of resource
selection data are available within Program R (R Core
Team 2016). All of the common off-the-shelf methods,
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such as linear models, generalized linear models, and gen-
eralized linear mixed-effects models, are available within
the basic installation of Program R. Many specialized
packages are also available for analysis of resource selec-
tion data. Useful packages include ResourceSelec-
tion (Lele et al. 2016), adehabitat (including
adehabitatMA, adehabitatHS, adehabitatLT,
and adehabitatLT; Calenge 2006), mlogit
(Croissant 2013), and unmarked (Fiske and Chandler
2011), with custom functions to fit a variety of specialized
models described in this chapter. Program R also inter-
faces with several stand-alone programs useful for con-
ducting resource selection analyses, including MaxEnt
(Elith et al. 2011, with the dismo package [Hijmans
et al. 2016]) and Program MARK (with the “RMark” pack-
age [Laake 2013]). Program R also interfaces with soft-
ware designed to fit Bayesian models, including Stan
(Carpenter et al. 2017, with rstan [Stan Development
Team 2016]) and OpenBUGS (Lunn et al. 2000, with
R2OpenBUGS [Sturtz et al. 2005]). Additionally, there
are many stand-alone software packages that are com-
pletely independent of R, such as Program PRESENCE
for fitting occupancy models (www.mbr-pwrc.usgs.gov/
software/presence.html), ENFA in Biomapper for Eco-
logical Niche Factor Analysis (http://www2.unil.ch/bio-
mapper/enfa.html), and programs such as FRAGSTATS
which compute habitat metrics within a GIS framework.

14.6 Online Exercises

We include five online exercises intended to provide users
with practical applications of the analysis of resource
selection data. Throughout this chapter we have high-
lighted the importance of sampling design and how differ-
ent strategies to collect data affect the appropriateness of
analysis choices. Exercise 1 uses a simulation approach
reflecting different common sampling methods. This
exercise highlights the importance of simulation work
for evaluating bias and precision of parameter estimates
and different common designs used in studies of resource
selection. Exercise 2 demonstrates the use of discrete
choice models to identify important resource features
for reintroducedhellbenders (Cryptobranchusalleganien-
sis bishopi) in the Ozark Mountains of Missouri. The
example highlights the use of discrete choice models
which can be used when there are explicitly paired used
and available resources, which was important for this spe-
cies given that resource availability changed over short
temporal scales. Exercise 3demonstrates the development
of a RUF which demonstrates the application of a contin-
uous response variable as estimated by a UD. It also
demonstrates how to fit individual animal models and

scale up for population-level inference. Exercise 4 pro-
vides an application of Poisson Regression to investigate
resource selection by black-footed ferrets (Mustela
nigripes). This method applies count data of individually
identifiable ferrets and relates those observations to
resource features associated with their prey, prairie dogs
(Cynomys spp.). Exercise 5 assesses the effects of resource
use on percentage body fat of black bears (Ursus ameri-
canus). This exercise highlights how resource use can be
tied with a species condition.

14.7 Future Directions

Resource selection studies are a cornerstone of ecological
research as fundamental models for understanding spe-
cies distributions and animal–habitat relationships.
Indeed, many new applications of RSFs and RSPFs dem-
onstrate their utility in addressing urgent conservation
issues (Sawyer et al. 2006; Bodinof et al. 2012; Squires
et al. 2013). For most species, we have moved beyond
the need for simple, observational studies that describe
basic resource relationships. Placing radio tags on a small
sample of animals is not likely to yield robust data
(Lindberg andWalker 2007). The wealth of available tools
and guidance means that there is no excuse for not devel-
oping robust and defensible projects. These expectations,
coupled with increasing availability of statistical tools and
advanced technology, have increased the quantitative
value of resource selection studies.
A theme for our chapter has been RSFs and RSPFs and

we see their continued application and development.
These types of models are intuitively appealing, flexible,
and robust for addressing resource-animal questions.
These techniques are also increasingly available to ecolo-
gists through specialized software packages (Elith et al.
2011; Fiske and Chandler 2011). While we promote the
availability of software through open sharing of analysis
code, we caution choices of analytical options based on
ease of analysis. Instead, it is of paramount importance
to line up objectives, hypotheses, and data types with
the choice of analysis. Nearly all of the methods we have
discussed can produce a colorful predictive map, but the
utility of that map should be robust relative to the objec-
tives and data in hand. Further, such maps should explic-
itly report accuracy and not obscure the uncertainty in
projections on the landscape.
We see continued development and application of

models that take full advantage of GPS equipment and
other technological advancements in field techniques
(Benson 2010). Even relatively small animals can carry
radio-tracking devices and GPS units now contain prox-
imity sensors and remote cameras (Moll et al. 2007; Rutz
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et al. 2007; Kays et al. 2016). Such advancements continue
to expand the range of species, questions, and available
analytical options. Further, the availability of sensors such
as accelerometers will provide greater insights into ani-
mal behavior which will likely be more cleverly integrated
into resource selection analyses. Challenges of integrating
emerging data streams in existing data analyses has been
an ongoing issue in resource selection studies for decades.
Despite advancements in available data, we cannot rely on
technology to make up for pitfalls in study design and the
need to continue collecting in-field data and observations
on animals.
Great attention has been paid to new analytical techni-

ques that, at their core, are RSFs or RSPFs because they
seek to relate occurrence or abundance of animals to
resources. We see species distributionmodels collectively
falling under the RSF and RSPF umbrella. The models
have some differences in assumptions, data requirements,
and interpretation, but ultimately the general objectives
of both approaches are to understand how resources
affect the occurrence of wildlife. Terminology has been
an impediment when trying to interpret model results
because each approach has its own jargon. It is important
we avoid getting caught up in semantics, and instead take
care to delineate assumptions, appropriate application,
and interpretation of alternative models.
We see great utility in sharing data to promote

increased comparisons of animal-resource relationships
across time and space. For example, the Movebank data
model for radio tracking and similar approaches is an
important new resource (Kranstauber et al. 2011). Move-
bank is an online database which stores, processes, ana-
lyzes, and allows sharing of animal radio-tracking data.
Contributors have control over sharing options, which
helps ensure proper use of data. The availability of shared
data facilitates comparisons across a species range and
improves opportunities for meta-analyses. In a resource
selection context, rather than individual studies of species
x at location y, Movebank provides an opportunity for
more comprehensive assessments of species x or location
y. It also facilitates reanalysis if newmodels become avail-
able in the future. While site- and species-specific studies
will always be needed to address many of the pressing
resource selection issues such as climate change and hab-
itat loss, additional spatial and temporal replication will
be advantageous.
We expect continued development of individual-ani-

mal-based models which are scaled up to the population
level and an increased reliance on mixed models and
Bayesian methods. Bayesian statistical techniques are
becoming increasingly popular in resource selection
studies because of their ability to fit complex models that
are often unavailable within a frequentist paradigm
(Hobbs and Hooten 2015). In many cases, the field and

analytical technology is available to estimate individual-
animal-based models within a hierarchical modeling
framework. Novel analytical techniques will prove helpful
in addressing issues such as spatial and temporal autocor-
relation (Gillies et al. 2006; McLoughlin et al. 2010),
dependence between two or more species (Rota et al.
2016), the link between resource selection and demogra-
phy (Matthiopoulos et al. 2015), and numerous other eco-
logical processes that influence patterns of resource
selection.
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Summary

Species distribution modeling is one of the fastest growing areas of ecology. Although most research in population ecology
occurs at relatively small spatial scales, species distributionmodels (SDMs) are often applied to understand large-scale patterns
in the distribution and abundance of species. SDMs may be used to address a myriad of different issues, ranging from the
predicted response of species to environmental change to the discovery of new biodiversity. The goal of this chapter is to pro-
vide a brief overview of SDMs and their implementation, as well as detail current developments and advances in the field. The
literature on species distribution modeling is vast and growing rapidly, but our chapter provides a starting point to better
understand these methods. At its core, species distribution modeling entails using a statistical model to relate locations of
species occurrence (and perhaps locations of confirmed absence) with environmental variables. While a simple concept, SDMs
require complex theoretical and methodological considerations. Development of an SDM starts with the nontrivial steps of
collecting and processing species and environmental data, then choosing an appropriate statistical model while making impor-
tant decisions related to the application of the model (such as how to deal with sampling bias), and then fitting and potentially
evaluating the model. Interpretation of SDMs is complex and requires a careful consideration of niche ecology, the nature of
the analysis employed, and the meaning of the derived output. As the field of distribution modeling progresses, new techniques
are being utilized to address key limitations of existingmethods. Innovations include incorporation of dispersal constraints and
biotic interactions into SDMs, and coupling of SDMswithmore complex populationmodels. Newmethods hold great promise
for developing a new generation of SDMs that will further advance our understanding of species–environment relationships at
large spatial scales.

15.1 Introduction

Species distribution models (SDMs) are being applied to
address some of the most important issues in ecology and
conservation, including niche characterization and con-
servatism, predictions of species response to climate
and land use change, and characterization of species inva-
sive potential, disease dynamics, and conservation pla-
nning (Box 15.1; Guisan and Thuiller 2005; Elith and
Leathwick 2009). The application of species distribution
modeling has increased markedly over the past 20 years,
and is a current “hot topic” in ecological and conservation
research (Lobo et al. 2010). Although this rapid growth
has led to a degree of methodological and conceptual
uncertainty in the application and interpretation of SDMs
(Peterson et al. 2011; Warren 2012), the use of these

techniques shows no signs of abating, and they remain
a powerful, and sometimes the only available tool, to
address a variety of theoretical and applied questions in
ecology. For the purposes of this chapter, we define SDMs
as large-scale correlative models of the environmental
tolerances of species based on presence-only, presence-
background, or presence-absence data (Franklin 2009;
Peterson et al. 2011). By large-scale, we are referring to
analyses conducted at large spatial extents that span a
good portion of, or the entirety of, a species’ range, and
that typically consist of species or environmental data col-
lected at a relatively coarse grain or resolution. As such,
SDMs ideally represent some of the limiting environmen-
tal factors that are important in determining range-wide
distribution patterns. SDMs provide parameter estima-
tions used typically to map probability of occurrence,
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Box 15.1 Applications of SDMs to Ecology and Conservation Biology

Species distribution models can be applied to provide
insight into some of the most important questions in ecol-
ogy and conservation. These include, among others, pre-
dicting species invasions, assessing impact of climate
change on species, discovering new populations or new
species, supporting conservation planning efforts, disease
mapping, and testing biogeographical and evolutionary
hypotheses. We highlight a few of these here.

1) Climate change: One of the most common applications
of species distributionmodeling is the prediction of the
impacts of climate change on species. For example,
SDMs can indicate future range shifts of species as
the climate warms, identifying areas of contraction
and expansion (Figure B15.1.1). Although such extrap-
olation may be a tenuous application of species distri-
bution modeling, forward prediction of SDMs is rapidly
becoming a key tool in management and conservation
of species. A recent application of this kind of analysis
comes from Benito et al. (2014), who used SDMs to pre-
dict future range shifts in 176 plant species in the Med-
iterranean Basin. They found that although extinction
and quasi-extinction would occur for a variety of spe-
cies in the twenty-first century, accounting for dispersal
in SDMs decreased the expected number of species
experiencing substantial range contractions. Working
at an even larger scale, Lawler et al. (2013) applied

SDMs to 2903 vertebrates to model shifts in suitable
climates and identify likely routes of movement for
these species across the Americas. Their work
revealed regions of high densities of climate-driven
movements of species that also were heavily
impacted by people, highlighting the need for pro-
tection efforts in those areas.

2) Discovering new biodiversity: Because SDMs often pre-
dict habitat beyond the known distribution limits of
species, they can be used to indicate suitable areas
for future surveys of poorly studied species. For exam-
ple, Guisan et al. (2006) used SDMs to indicate poten-
tially suitable areas for rare and endangered plants in
Switzerland, improving their sampling efficiency when
searching for new populations. Raxworthy et al. (2003)
developed SDMs for a variety of chameleon species in
Madagascar, overlapped the models, and then used
areas that were highly suitable for multiple species
as targets of likely occurrence of undiscovered species
(this approach resulted in the discovery of 7 new cha-
meleon species).

3) Conservation planning: SDMs have a large potential to
inform conservation planning and decision-making,
but to date, examples of the use of SDMs for addres-
sing such issues remain scarce in the peer-review liter-
ature (Guisan et al. 2013). However, some examples

Lynx habitat suitability present day Lynx habitat suitability 2080

Figure B15.1.1 Predicted species distribution of Canada lynx based on habitat suitability in present day versus possible changes
in 2080.
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indicate the high potential of SDMs in this area.
Araújo et al. (2004) developed SDMs for 1200 plant
species across Europe in current and future time
steps, and used those data to compare the perfor-
mance of different reserve selection algorithms in
conserving biodiversity. They conclude that new
approaches are needed for reserve selection in the
face of climate change. SDMs are also being applied
to aid in planning reintroduction sites for species.
Given that one of the most important criteria for
reintroduction success is suitable habitat, SDMs
can be used to indicate areas that most likely meet
this criteria. Kuemmerle et al. (2010) used SDMs to
predict areas of suitable habitat for European bison
(Bison bonasus) and were able to confirm the suita-
bility of a proposed Romanian reintroduction site. In
an innovative application, we have used SDMs to
predict the past, current, and future suitability of
protected areas for Passenger Pigeons (E. migrator-
ius) as part of assessment of the feasibility of this
species as a de-extinction candidate (Peers et al.
2016). Our results reveals that many of the areas that
were historically suitable for pigeons are no longer
suitable, but areas outside the current range may
become suitable in the future (Figure B15.1.2).

4) Evolutionary history: SDMs are increasingly being com-
bined with genetic and phylogeographic data to pro-
vide insight into past evolutionary history of species.
For example, Hugall et al. (2002), integrated molecular
phylogeography with predictions from SDMs that were
projected backward in time using paleoclimatic data to
examine the evolutionary history of an endemic

snail. The authors conclude that combining these two
approaches provides a powerful means to assess loca-
tion of past refugia and how species responded to
them. Schorr et al. (2013) combined SDMs with phylo-
geographic approaches to study past refugia of alpine
Primula species during the last glacial maximum. They
conclude that the two sources of data were comple-
mentary in providing a fuller picture of past ranges:
the phylogeographic data permitted the estimation
of likely source areas for recolonization after range con-
traction, and the SDMs predicted larger and more
divergent refugia than could have been accomplished
with phylogeographic data alone.

5) Niche conservatism: SDMs are also being applied to
address questions related to niche conservatism, or
the degree to which niches are conserved in space
and time. This question has been addressed largely
in literature on species invasions, where niche con-
servatisms of an invader between its native and
non-native range is key to understanding their inva-
sion potential and the successful application of SDMs
to predict invasion spread. Although niche shifts
have been documented in some cases, debate
remains regarding the ubiquity of niche shift vs. con-
servatism. For example, Strubbe et al. (2015) docu-
ment conservatism between native and invasive
range niches for 29 vertebrate species in Europe
and North America, whereas Early and Sax (2014)
document a large number of niche shifts in 51 plant
species between their native (European) and intro-
duced ranges (USA).

Historic Future

Figure B15.1.2 Species distribution models (SDMs) for the extinct Passenger Pigeon. We examined how a changing climate would
change suitable habitats (gray) to unsuitable habitats (white) between historic versus future periods, and in relation to distributions of
protected areas in the northeast (black).
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or habitat suitability, across geographic space. These
models may be more appropriately called ecological niche
models (ENM), because they implicitly or explicitly esti-
mate some components of a species’ niche (Warren
2012). We refer to them as SDMs given the common
usage of this term in the literature, and because both
terms are used interchangeably to address similar or iden-
tical questions (Peterson and Soberon 2012). Previous
chapters have considered occupancy models (Chapter 3)
and resource selection functions (Chapter 14). These two
techniques sometimes fall under the general rubric of
species distribution modeling, but we did not include
them here because they are usually conducted at rela-
tively smaller spatial scales, in both extent and resolution.

15.1.1 Relationship of Distribution to Other
Population Parameters

Given the topic of this book, a useful starting point is to
examine the relationship between the distribution of a
species and other population parameters such as abun-
dance, density, and population variability. A positive rela-
tionship between distribution and abundance of species is
well documented as one of the most common patterns in
macroecology (Brown 1984; Gaston and Blackburn
2000), and is usually referred to as an occupancy-abun-
dance or distribution-abundance relationship. The rela-
tionship refers to the fact that widely distributed
species also tend to be locally abundant, and has been
documented in a variety of forms for a diversity of taxa
(Borregaard and Rahbek 2010). Occupancy-abundance
relationships are often nonlinear (Gaston et al. 2000),
and depend critically on a number of factors, including
how distribution and abundance are measured
(Blackburn et al. 2006). For example, if distribution is
measured as the extent of occurrence or range size, the
positive distribution-abundance relationship is much less
strong than when distribution is measured as the propor-
tion of sites occupied (Blackburn et al. 2006). Interspecific
patterns in the distribution-abundance relationships are
well supported: species that occupy a high proportion
of sites across their range tend to be more abundant than
those that have low rates of occupancy. However, intra-
specific patterns also exist, where areas of high levels of
occupancy within a species’ range tend to be the same
areas with highmean abundance (Borregaard and Rahbek
2010). Positive intraspecific distribution-abundance pat-
terns have important conservation implications: as a spe-
cies range contracts due to human pressures, we expect
the average density within sites to also decline, and so
the proportional loss of individuals is greater than
expected based on range contraction alone (Gaston
et al. 2000). The exact mechanisms behind the distribu-
tion-abundance relationship remain poorly understood,

and likely involve a variety of processes acting at different
scales. Processes may include niche-related mechanisms,
such that species with greater niche breadth can occupy
more sites at higher average abundance than those with
lesser niche breadth, or demographic mechanisms, such
that colonization and persistence within regions is posi-
tively linked to average abundance due tometapopulation
processes, among others (Holt et al. 2002; Borregaard and
Rahbek 2010). Regardless of the mechanism, the link
between distribution and abundance suggests that pat-
terns in distribution among or within a species can reveal
important information about other components of its
population ecology.
In a related question, intraspecific links between distri-

bution and abundance have also been studied to deter-
mine if there are consistent patterns in how abundance
varies across the geographic distributional range of a spe-
cies. The abundant-center hypothesis states that abun-
dance declines as one moves away from the center of a
species’ range and approaches the edge (Hengeveld and
Haeck 1982). The hypothesis is a widely cited concept
in ecological literature, but empirical support remains
equivocal (Sagarin and Gaines 2002). A recent analysis
by Martínez-Meyer et al. (2013) suggests that abundance
declines, not with distance from the center of the distri-
butional range, but rather with distance from the centroid
of the species’ ecological niche, which has been termed
the distance to the niche centroid hypothesis (DNC).
Under this formulation, distance in ecological space is
the most important driver of abundance patterns across
a species range, not distance in geographical space. Given
that distance from the geographic center of a species’
range will sometimes, but not always, correspond to dis-
tance from the centroid of the niche, the DNC hypothesis
provides an explanation for the disparate results of empir-
ical tests of the abundant-center hypothesis to date. The
idea of abundance declining away from the niche centroid
has received some empirical support (Yañez-Arenas et al.
2012; Lira-Noriega and Manthey 2013; Martínez-Meyer
et al. 2013), but remains little explored. Recent simulation
work suggests that DNC estimates account for 52–99% of
geographic variability in density, with the utility of DNC
being heavily influenced by the bias and sample size of
presence data used to estimate niche parameters
(Yaňez-Arenas et al. 2014). The DNC hypothesis provides
a rationale for linking SDMs and population processes,
given that SDMs can potentially be used to characterize
some components of the niche of a species
(Section 15.1.2). Along those lines, the relationship
between SDM model output – probability of occupancy
or habitat suitability maps – and population density or
abundance, has also been explored recently. To date,
strong, weak, and no relationships have been observed
between SDM model output and other population
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metrics (Thuiller et al. 2010; Oliver et al. 2012;
Yañez-Arenas et al. 2012; Gutiérrez et al. 2013; Van
Couwenberghe et al. 2013). The relationship between
SDM output and population processes may be complex,
and can vary with the type of population metric (such as
stability vs. density), species identity, and adequacy of the
SDM. For example, Törres et al. (2012) developed SDMs
for jaguars and correlated SDM output (habitat suitabil-
ity) with independent density estimates for the species,
and found that SDMs were better at predicting locations
of high density vs. low density. Taken together, the above
evidence is suggestive that range-wide estimates of occu-
pancy, suitability, or niche characteristics from SDMs
may go beyondmerely providing information on distribu-
tion, but rather inform about other population processes.
The importance of the possible relationship between dis-
tribution and other population processes cannot be over-
stated. If distribution or habitat suitability relates strongly
to other population metrics, our ability to investigate
macroecological questions and design conservation stra-
tegies will be greatly enhanced, given the relative ease
with which distribution data can be collected compared
to population parameters such as abundance, density,
or demography. Thus, the relationship between distribu-
tion and population processes remains an important area
of future research in population ecology.

15.1.2 Species Distribution Models and the
Niche Concept

The basic process for developing most SDMs involves
collecting data on species presence (or presence-
absence) across a geographic area, developing a statis-
tical model that relates those presences to a suite of
environmental variables by comparing environmental
characteristics at presence sites with those from the
available background (or absence) sites, and projecting
the resultant model across the study area to develop
maps of habitat suitability or probability of occurrence
(Figure 15.1). SDMs thus integrate across both geo-
graphic space (G-space) and environmental space (E-
space). The initial data processing is carried out in
G-space, model fitting occurs in E-space, and model
outputs are projected and visualized in G-space
(Peterson and Soberon 2012). However, note that
SDMs can also be developed based solely on spatial
relationships between points of species occurrence,
without reference to environmental variables.
Although these spatial interpolation methods can pro-
duce accurate models of occupied distributional area
(Bahn and McGil 2007), they are not widely implemen-
ted and suffer some restrictions due to their ignorance
of environmental constraints on distribution patterns,
such as an inability to project the models to other time

periods or geographic areas (Warren 2012). Most types
of SDMs relate species occurrence to environmental
variables in the model fitting process, and identify
the environmental domain permitting existence of
the species (Figure 15.2), leading to a natural connec-
tion between SDMs and niche concepts (Peterson et al.
2011; Higgins et al. 2012). Indeed, the development
and wide implementation of SDMs has led to a resur-
gence of “niche ecology.”
However, the idea that SDMs can be used to estimate

the characteristics of a species’ niche is fraught with dif-
ficulties. To begin with, niches may be defined in various
ways that have stronger and weaker connections with
SDMs. One of the most obvious distinctions is between
Grinnellian and Eltonian niche concepts, where a Grin-
nellian niche refers to a coarse-scale definition of a niche
that typically considers only abiotic limiting factors,
whereas an Eltonian niche refer to local-scale definitions
of niches that can include biotic interactions between spe-
cies (Peterson et al. 2011). Because Grinnellian niches
operate at larger scales, they are thought to provide a
more natural connection with SDMs (Peterson et al.
2011), and most distribution modeling exercises rely on
abiotic factors such as climate to explain occurrence pat-
terns. However, whether or not SDMs should incorporate
more Eltonian concepts, such as biotic interactions,
as part of the modeling process, remains heavily debated
(Araújo and Rozenfeld 2014; de Araújo et al., 2014).
Regardless, further complexities confront the application
of SDMs to niche ecology. Species may not occupy all
suitable habitats, defined as areas within their environ-
mental tolerance, due to restrictions on dispersal or
movement. Therefore, presence records of the species
will not occur in those areas, and SDMs developed from
the full set of records may underestimate environmental
tolerance. The same issue can arise due to biotic interac-
tions: a species may be absent from environmentally suit-
able areas due to lack of a key resource or presence of a
competitor. For example, Canada lynx (Lynx canadensis)
may not occur in areas without their key prey species,
snowshoe hares (Lepus americanus), even if the unoccu-
pied areas are climatically suitable. On the other hand,
some presence records from species may occur in sink
habitats, which are not in environmentally suitable habi-
tats, overestimating environmental tolerances. Complica-
tions with presence records, and how they relate to the
output of SDMs, have been conceptualized through a
simple heuristic called a Biotic Abiotic Movement dia-
gram (BAM; Box 15.2), depicting the interactions among
abiotic, biotic, and movement factors (Peterson et al.
2011). Various distributional areas and their correspond-
ing environmental niches can be defined based on this
diagram. The bottom line of this heuristic is that several
different components of a niche can be estimated from
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Species Data Environmental Data

Pre-processing:

• removing “bad” or highly uncertain data

• assessing and dealing with sampling bias (e.g.,
  subsampling, target group background development)

• test and training data selection

Pre-processing:

• determining appropriate resolution

Post-processing:

CAREFUL interpretation of output dependent on the input  data
and question of interest:

• incorporating dispersal constraints or biotic
interactions,
• coupling output with population models

• what component of niche is being estimated?

• examination of MESS maps when extrapolating model results

• aligning of images if necessary

• choice of background extent (for presence-
  background analyses)

Modeling framework (e.g., logistic regression,

MaxEnt, point process models)

Model validation/ calibration and sensitivity

analysis of output to choices made during model

fitting (algorithm, background extent, etc.)

Maps of predicted occurrence or suitability

Figure 15.1 Diagram of the essential steps in species distributionmodeling. Species and environmental data may need to be pre-processed
in various ways prior to analysis. Once the input data are ready, model fitting can proceed, with the algorithm chosen dependent on the data
types (e.g. presence-only vs. presence-absence), as well as the nature of the study question. After model fitting, models should be evaluated
for discrimination and calibration, and sensitivity to modeling choices should also be assessed as a means to explore the impact of
methodology on model results (e.g. choice of background size). If satisfied with modeling outcomes, results can be used to create maps
predicting occurrence/suitability, or address questions of interest. Some post-processing may be necessary, particularly if trying to
incorporate added complexity such as dispersal constraints. Note that adding complexity can also occur during the model-fitting stage (for
example, including biotic interactions as covariates in the models). Post-processing could include a number of different tasks, including but
not limited to: constraining distributions to biotically suitable or accessible areas, and ensemble forecasting of species distribution (i.e.
combining output from multiple species distribution models (SDMs); Araújo and New 2007). Finally, model results must be interpreted
cautiously, taking into account the assumptions and limitations of SDMs, particularly as it relates to interpretation of model output and
extrapolation to new regions/time periods.



distribution data, dependent on how abiotic, biotic, and
movement factors have shaped the distribution of a par-
ticular species (see Box 15.2 for further explanation).
Recognizing that not all SDMs will estimate the same

components of a species’ niche, and understanding where
limitations in our interpretation of SDM model output
may occur, is important to keep in mind when using
SDMs to characterize species niche space (Warren 2012).
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Figure 15.2 Scatterplot of environmental
characteristics of bobcat presence records.
Points indicate location of presence records
along three environmental axes. This
multidimensional volume indicates, to some
degree, the environmental tolerance of the
species. For example, bobcats (Lynx rufus) do
not appear to occupy areas where the annual
temperature is below 0 C.

Box 15.2 Species Distribution Models Versus the Niche – The BAM Diagram

The BAM diagram is a useful heuristic for thinking about
how SDMs relate to the niche of a species
(Figure B15.2.1). The three domains of the Venn diagram
include: the biotically suitable areas for the species (B),
the abiotically suitable areas for the species (A), and the
areas accessible to the species by movements (M). Given
these three intersecting domains, several distinct distribu-
tional areas can be defined, including the occupied distri-
butional area (G0, those areas that are simultaneously
abiotically and biotically suitable, and accessible to the
species), the invadable distributional area (GI, those areas
that are abiotically and biotically suitable but are not
reachable by the species), and the abiotically suitable area
(GA, those areas within the geographic region that are
abiotically suitable). The geographic spaces (G) can be
translated to environmental space (E) with the corre-
sponding niches: E0 = occupied niche (the set of environ-
mental conditions currently occupied by the species),
EI = invadable niche (regions in environmental space that
the species can tolerate, but which are not represented
within the set of conditions that are reachable by the

species), and EA = existing fundamental niche (the exis-
ting subset of E that is within the tolerance limits of the
species).

Biotic (B) Abiotic (A)

Movements (M)

G0

G1 GA

Figure B15.2.1 The Biotic Abiotic Movement (BAM) diagram
for visualizing the geographic and environmental space
occupied by species with domains for biotic (B), abiotic (A),
and movements (M).
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15.2 Building a Species
Distribution Model

15.2.1 Species Data

SDMs require information on species distribution pat-
terns at large spatial extents, represented as grid cells
or as georeferenced point locations on a map. Species dis-
tribution data are usually presence-only where data exist
for the presence of the species, but not its absence, or
alternatively, presence-absence data where data include
location of both species presence and absence. Distinc-
tions between the two categories have implications for
the fitting and interpretation of SDMs, which will be dis-
cussed later in the chapter. Various sources of pre-
existing information on species distribution patterns exist
(Table 15.1), and prior data often serve as the basis for
the development of SDMs. Data sources can include
museums or herbaria, biodiversity inventories, atlases,
large-scale field surveys, or citizen-science initiatives.
The vast majority of pre-existing data on species distribu-
tions at large scales only provides information on species
presence but not species absence. However, rigorously
designed surveys do exist that provide presence-absence
data at large spatial extents, such as the Breeding Bird
Survey in North America.
Museum and herbaria records have become increas-

ingly accessible as collection information is made availa-
ble through data portals on the internet (Graham et al.
2004). However, many museum collections remain to
be digitized, and many existing records of species pres-
ence are still widely scattered and difficult to access
(Newbold 2010; Beck et al. 2013). Furthermore, locations

with large positional uncertainties are fairly common
with biodiversity inventory data from online repositories,
as are gross errors in location. For example, a location for
a specimen record may be recorded as the centroid of a
state or province, and the actual location may not be
known more precisely. Location errors can create a sub-
stantial amount of work that must be done to “clean” a
dataset prior to use in distribution modeling. Positional
uncertainty is an aspect of species presence data that is
commonly ignored or unreported in SDM literature.
However, positional uncertainty of location records has
the possibility of substantially reducing the accuracy of
SDMs, particularly in areas where environments are spa-
tially heterogeneous (Naimi et al. 2014). Removing highly
uncertain locations within heterogeneous environments
is one strategy to reduce problems of positional uncer-
tainty (Naimi et al. 2014). Another approach is to ensure
that positional accuracy is not greater than the resolution
of the environmental layers used in modeling.
Ideally, information from these pre-existing data

sources should provide a fairly complete picture of the
distribution patterns of a variety of taxa around the globe.
Unfortunately, many of the databases of species distribu-
tion contain information that is incomplete or spatially
biased. Comparably few records exist for invertebrates
or from less-developed countries (Kamino et al. 2012;
Beck et al. 2014), whereas at-risk species or developed
regions may be disproportionately represented in inven-
tory data (Schmidt-Lebuhn et al. 2013). Taxonomic
biases in coverage may be particularly vexing when
attempting to model entire guilds or communities of spe-
cies, as data variability will constrain the number of spe-
cies that can be modeled. Spatial bias is also problematic

Which components of G- and E-space do SDMs actu-
ally estimate? The answer depends in part on the form
of the BAM diagram for a given species and study area,
the methodology used, and the nature of the presence
records collected (Peterson et al. 2011). For instance, it
is often assumed that biotic interactions influence spe-
cies distribution and abundance at finer scales than abi-
otic characteristics such as climate. If this is true, then
large-scale distribution patterns which are the focus of
many SDMs will not be strongly influenced by biotic
interactions. This would correspond to a BAM diagram
where the ‘A’ circle was contained completely within
the ‘B’ circle, and hence distribution models would likely
estimate a niche that was closer to EA than one where
biotic interactions restricted distribution patterns
(reviewed by Peterson et al. 2011). Even when studies

are conducted across the range of a species, and using
an adequate set of presence records, limited dispersal
or biotic interactions usually prevent a species from
occupying certain areas, thus restricting the estimate
of the species niche. As a general rule, SDMs probably
estimate some component of the niche of a species that
falls along a continuum from EO to EA, and hence predict
suitable habitat outside of the currently occupied area
and somewhat into GI (Peterson et al. 2011). However,
the choice of method and type of data will determine
the usefulness of the SDM output to model distinct com-
ponents of geographic distribution and niches (Jiménez-
Valverde et al. 2008), and thus care needs to be taken in
interpretation if SDMs are to be used as a basis for con-
servation or ecological research (Hortal et al. 2012;
Kamino et al. 2012).
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when considering any given species. Spatially biased data
can arise from a number of sources: certain areas may be
more likely to be sampled due to accessibility, certain
areas may be targets for extensive surveys, or certain areas
may be more heavily sampled if data sources are mixed
(e.g. mixing museum records that have few locations in
any given region with radio telemetry data that have many
locations in a few regions (Kramer-Schadt et al. 2013).
Problems with spatial bias in distribution modeling,
and potential corrections, are discussed in Section 15.3.2.
Although biodiversity inventories contain a wealth of

information that is easily accessible, it is prudent to scru-
tinize these records carefully, and understand potential
biases in the data (Beck et al. 2014). As part of our own
research utilizing museum records for SDMdevelopment
for well-known mammal species, we have found it

necessary to individually contact museums or utilize
other sources of information to increase the sample size
and geographic spread of locations for a variety of species.
For example, to obtain sufficiently large datasets of pres-
ence records for our work on distribution modeling of
North American mesocarnivores (Peers et al. 2013;
Thornton and Murray 2014), we combined information
from freely accessible biodiversity databases (e.g. Global
Biodiversity Information Facility), data from numerous
museums that we contacted individually, and data on har-
vest records obtained from government agencies in over
20 states and provinces. Increasing recognition of pro-
blems with biased or incomplete data, and other limita-
tions of biodiversity inventories, will hopefully lead to
various methods to reduce these problems, either
through increased digitization and error checking of

Table 15.1 Examples of common sources of species distributional data (note that this is not an exhaustive list, andmost of these sources do
not have data on species absence).

Full Name
Taxonomic
Group

Geographic
Coverage Web Address

Global Biodiversity Information
Facility

Broad Global www.data.gbif.org/welcome.htm

TheWorld Information Network
on Biodiversity

Broad 146 Countries www.conabio.gob.mx/remib/cgi-bin/clave_remib.cgi?
lengua=EN

European Natural History
Specimen Information Network

Broad Europe cordis.europa.eu/projects/rcn/52229_en.html

Canadian Biodiversity
Information Facility

Broad Canada www.cbif.gc.ca/eng/home/?id=1370403266262

Distributed Information
Network For Biological
Collections

Broad Brazil www.splink.org.br/index?lang=en

Instituto Nacional de
Biodiversidad

Broad Costa Rica atta.inbio.ac.cr

FishNet Fish North America fishnet2.net

HerpNET Reptiles/
Amphibians

Global herpnet2.org

Missouri Botanical Garden
(Tropicos)

Plants Global www.tropicos.org

Ornithology Information System Birds Global ornis2.ornisnet.org

Biodiversity Information Serving
Our Nation

Broad United States bison.usgs.gov/#home

INaturalist Broad Mainly United
States

www.inaturalist.org/observations

North American Breeding Bird
Survey

Birds North America www.pwrc.usgs.gov/bbs/RawData/Choose-Method.cfm

Christmas Bird Count Birds North America birds.audubon.org/christmas-bird-count

eBird Birds Global ebird.org/ebird/map

Biological Records Center/
National Biodiversity Network

Broad United Kingdom nbn.org.uk/
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inventory records, use of additional sources (such as pri-
vate collections), development of more systematic meth-
ods such as targeted surveys, or increased use of large-
scale citizen science efforts (Cases-Marce et al. 2012;
Schmidt-Lebuhn et al. 2013; Duputié et al. 2014).

15.2.2 Environmental Data

Selecting which environmental variables to include in
SDMs depends in large part on the availability of data
sources and scale of the analysis (Peterson et al. 2011).
For most large-scale SDMs, researchers choose a variety
of abiotic variables such as temperature or precipitation,
and therefore work within the framework of estimating
Grinnellian niches. However, even within this framework,
choices must be made about the types of variables to
include. Austin (2007) provides a breakdown of environ-
mental variables into proximal versus distal variables
based on their degree of causality. Species respond
directly to proximal variables whereas they respond in
an indirect manner to distal variables via a correlation
with other proximate variables. For example, a
drought-intolerant species may respond directly to an
environmental variable representing the number of days
without rain as a proximate variable, whereas it would
respond indirectly to mean annual precipitation as a dis-
tal variable, via the negative relationship between annual
precipitation and days without rain. Most readily availa-
ble environmental layers at large spatial extents are likely
distal in nature, which requires care in the selection of
environmental variables and in the interpretation of their
influence. For researchers working at smaller spatial
scales, other types of environmental variables represent-
ing biotic interactions with predators or competitors,
resources, and microclimate can also be included. Disa-
greement persists regarding the importance of these
variables, and how best to incorporate their influences,
at the larger extents and resolutions that characterize
the correlative SDMs discussed in this chapter.
Various sources exist for environmental data com-

monly employed in large-scale distribution modeling,
and more sources are regularly appearing as remote-
sensing databases become more accessible and additional
sensors are employed (Franklin 2009). Commonly used
sources include climatic, topographical, and land cover
layers (Table 15.2). Franklin (2009) gives an excellent
overview of the types of environmental data used in
SDMs. As with any analysis utilizing large-scale environ-
mental coverages, care must be taken that information
from spatial layers is accurate and of good quality. Ensur-
ing quality may not be difficult when dealing with
“preprocessed” environmental coverages such as World-
Clim data (Hijmans et al. 2005), but may involve

substantial effort if more specialized coverages must be
obtained and analyzed.
Often one of the most difficult choices in developing an

SDM is deciding which environmental layers to use as the
predictor variables. Variable selection should ideally be
based on a priori knowledge of species ecology
(Chapter 2), and include variables that most closely
reflect environmental gradients important to the species
as either proximate or distal factors. In practice, key fac-
tors are usually not known, and a wide selection of vari-
ables is included. By including a large number of variables
in an SDM, another problem is induced:multicollinearity
among predictors. The problem of correlated predictor
variables in a regression setting is discussed elsewhere
(Chapter 2). Here, we emphasize that correlated predic-
tors make interpretations regarding the most important
environmental drivers of species distribution patterns
problematic, regardless of the procedure used for model
fitting. Correlations also create problems when extrapo-
lating SDMs to different time periods or locations,
because correlations among predictors may change in
scale and direction. Therefore, a judicious selection of
predictor variables, with some pre-processing to remove
highly correlated environmental variables, is usually good
practice (Elith et al. 2011).
One final consideration is the temporal matching of

environmental and species data. The timing of the collec-
tion of the species data should reflect the timing of the
collection of the environmental data, to a reasonable
degree (Peterson et al. 2011). For example, if one wanted
to develop distribution models for extinct Passenger
Pigeons (Ectopistes migratorius), using presence records
collected from 1850 through 1910, it would be prudent
to use historic climate averages from a similar time range
in an attempt to match presence records with appropriate
environmental data. There are no hard and fast rules for
what corresponds to an adequate degree of match
between presence records and environmental data, and
consideration of how fast environmental layers are likely
to change over time is warranted. Land cover layers may
change quite dramatically over short time periods com-
pared to climatic layers, and therefore require more pre-
cise matching to species data for unbiased inference.

15.2.3 Model Fitting

Once the species data and environmental data have been
obtained and preprocessed, model fitting can proceed
(Figure 15.1). There are three main types of SDMs, distin-
guished by how they deal with locality data for species:
presence-only, presence-background, and presence-
absence (Figure 15.3). A variety of modeling algorithms
can be used to fit these data, but an overview of all these
different analytical methods is beyond the scope of this
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chapter. We will introduce data requirements, analytical
processes, and pros and cons of a subset of thesemethods.
Elith et al. (2006), Elith and Leathwick (2009), and Frank-
lin (2009) provide a more comprehensive overview of
many different algorithms for fitting species distribution
data.

1) Presence-only models make use of data on species
presence alone. Therefore, these SDMs characterize
the locations of known presence, without reference
to locations of absence or what locations might be
available to the species in the study area. Environmen-
tal envelope and environmental distance analyses are
commonly used with presence-only data. For exam-
ple, envelope methods such as BIOCLIM typically
calculate the range (or 95% CI) of the values of

environmental variables at presence locations of a spe-
cies, and then compare all points on the landscape to
see if those points fall within this multidimensional
envelope to produce a binary map of suitable/
nonsuitable habitat (Beaumont et al. 2005). In
contrast, environmental distance analyses (e.g.
DOMAIN, Mahalanobis distance) classify locations
on a landscape in terms of their suitability based on
their distance in environmental space to known pres-
ence records. Output from these models shows how
similar each area is to environments of known pres-
ence and is used to determine how favorable the hab-
itat is for the species. Generally, presence-only SDMs
have less discriminative capacity, and lower perfor-
mance, than presence-background or presence-
absence models (Elith et al. 2006), and have been

Table 15.2 Sample of various sources of large-scale environmental data commonly used in distribution modeling.

Full Name
Geographic
Coverage Time Frame /Resolution Web Address

Climate

WorldClim Global 1950–2000/ 30 arc-
seconds

www.worldclim.org

CliMond Global 1950–2000/ 10 arc-
minutes

www.climond.org

PRISM United
States

1971–2010/ 30 arc-
seconds

www.prism.oregonstate.edu/

North American Regional
Reanalysis

North
America

1979–Present/ 32 km nomads.ncdc.noaa.gov/data.php?name=access#narr_datasets

Canadian Center for
Climate Modeling and
Analysis

Global 2020–2080/ 30 arc-
seconds

www.ccafs-climate.org/data

NASA Earth Exchange
Downscaled Project

United
States

1950–2100/ 800 m theclimatedatafactory.com/?
gclid=EAIaIQobChMI1bGSjuHp4AIVgR-
tBh3q4gIQEAAYASAAEgIskfD_BwE

Land Cover

GlobCover Global 2009/ 300m due.esrin.esa.int/page_globcover.php

National Gap Analysis
Program (GAP)

United
States

1999–2001/ 30 m gapanalysis.usgs.gov/gaplandcover/data/download

U. S. Environmental
Protection Agency

North
America

1987 (continuously
updated)/ shapefile

www.epa.gov/wed/pages/ecoregions/na_eco.htm

Global Land Cover
Facility

Global Broad www.landcover.org/data

GeoBase Canada 1996–2005/ 30 m www.geobase.ca/geobase/en/find.do?
produit=csc2000v&language=en

Soils/Topography

Harmonized World Soil
Database (HWSD)

Global 2008/ 30 arc-seconds webarchive.iiasa.ac.at/Research/LUC/External-World-soil-
database/HTML

Shuttle Radar Topography
Mission

Global 2000/ 30 arc-seconds www.worldclim.org/current
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supplanted by these improved methods. However,
presence-only methods can be valuable in situations
where available data are limited, or when the underly-
ing assumptions of more complex methods cannot be
met. For example, Falcucci et al. (2013) used presence-
only data and Mahalanobis distance analyses to model
the potential distribution of wolves (Canis lupus)
recolonizing the European Alps. The authors argued
that more complex presence-absence or presence-
background methods were not advisable for their
study due to a lack of absence data and the inability
to define a background area in a rapidly expanding
population of wolves.

2) Presence-background modelsmake use of data on spe-
cies presence, and data related to the background
environment in which the species is located. These
SDMs compare the environments of locations of spe-
cies presence versus the “background” of the available
environment in the study area, to try and determine
which environments are favored by the species. Pres-
ence-background techniques are equivalent to use-
availability designs in resource selection studies, but
the two lines of investigation have been developed
independently (McDonald 2013; Warton and Aarts
2013). Here, we discuss techniques commonly
applied in the SDM literature, and we refer the reader
to Chapter 14 for a discussion of use-availability
methods.
Generally in presence-background SDMs, a large

number of randomly selected background points are
selected for comparison with the presence records.
The number of background points selected, and

whether or not to select background points in a biased
manner, depends on the type of analysis employed
(Barbet-Massin et al. 2012). Note that the background
points that characterize the available environment
may include known presence records, or could fall in
areas that may or may not hold populations of the spe-
cies of interest. We combine presence-background
SDMs with presence-pseudo-absence SDMs. In the
latter case, the background locations are selected to
explicitly exclude locations of known presence, but
otherwise, the techniques are similar and can be fit
using the same statistical models. The types of algo-
rithms that can be used to fit presence-background
datasets are various and include: (i) common regres-
sion methods (e.g. generalized linear models [GLMs];
generalized additive models [GAMs]; andmultivariate
adaptive regression splines [MARS]); (ii) machine
learning techniques (e.g. boosted regression trees
[BRT]; random forests [RF]; artificial neural networks
[ANNs]; and maximum entropy models [MaxEnt]);
(iii) ecological niche-factor analysis (ENFA);
(iv) genetic algorithms for rule prediction (GARP);
and (v) spatial point process models.
Regression techniques are well established in the lit-

erature and relate the response variables (presence and
background or pseudo-absence points) to single or
multiple environmental predictors. GLMs are able to
model relationships between response and predictor
that generally include linear, cubic, or quadratic terms.
GAMs and MARS are able to fit more complex
relationships between the response variable and the
environmental predictors (e.g. complex curves), via

Presence records
(no information on

absence, or
background/pseudo-

absence records)

Presence plus
background or

pseudo-absence
records

Presence-
absence records

Detection-
nondetection

Climate envelope
and distance-

based methods

Relative suitability Relative suitability
Probability of

presence
Probability of

presence

Regression,
machine

learning, and
point process
techniques,

among others

A suite of
regression and

machine
learning

techniques,

among others

Occupancy
models

Data Type

Data
Analysis
Methods

Output

Figure 15.3 Flowchart for
determining the methods and
output of species distribution
model (SDMs) that result from
different data types. For presence-
absence models, the model output
may be probability of presence or
relative suitability depending on
whether or not detectability was
near 100%.
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smoothing functions (GAMs) or piecewise linear fits
(MARS). MaxEnt models are one of the more popular
machine learning methods for fitting SDMs. These
models essentially minimize the entropy between
two probability densities, one for the occurrence
records and one for the background records, defined
in environmental space (Elith et al. 2011). Maximum
entropy models can also fit complex response curves.
Spatial point process models have recently been uti-
lized to fit SDMs. These algorithms model the spatial
location and number of presence records jointly, as
an intensity function (or expected number of presence
records per unit area). Covariates can influence this
intensity function much like they can in regression
models (Renner and Warton 2013).
The output of presence-background models is the

relative suitability of a site for occupancy – in other
words, a ranking of the sites in terms of their favor-
ability to the species. This fact has been underap-
preciated in the literature, where the output of
presence-background SDMs is often referred to
incorrectly as probability of occurrence (Yackulic
et al. 2013), and can have major implications for
the utility of SDMs to answer a variety of questions
(Section 15.2.4).

3) Presence-absence models make use of data on species
presence and species absence (areas that have been
searched for the species, but where the species was
not detected). Note that these SDMs are appropriate
when absence locations are not “false absences” that
result from a failure to detect a species at a site. If
imperfect detection is a problem, then occupancy
modeling study design and statistical analysis should
be performed (Chapter 3). By comparing environmen-
tal conditions at species presence records versus envi-
ronmental conditions of confirmed absence records,
these models seek to identify how habitats that are
occupied differ from those that are not occupied.
Presence-absence models can be fit using many of
the same techniques listed above for presence-
background techniques (e.g. GLMs, GAMS, MARS,
regression trees). Output from presence-absence
methods can be interpreted as probability of occur-
rence for a given location on the landscape – in other
words, the proportional likelihood that a site is occu-
pied, given its location and the suite of environmental
predictors. For example, a typical model for a GLM
with presence-absence data employs the logistic link
to model probability of presence as a function of envi-
ronmental predictors:

ln
π x

1−π x
= α+ βx, 15 1

where π is probability of presence, x is one or more cov-
ariates, α is an intercept and β is the coefficient for the
effect of the covariate on the log odds of presence. Rear-
ranging this equation gives the probability of presence as
a function of the intercept and covariates:

π x =
exp α+ βx

1+ exp α+ βx
15 2

Given that a statistical algorithm has been selected to
model presence-only, presence-background, or pres-
ence-absence data, methods must be used to compare
multiple models and determine the influence of predictor
variables on the response.Wewill not engage in a detailed
discussion of these issues, but refer the reader to
Chapter 2, which deals with the topic of model selection
and predictor influence in detail.

15.2.4 Interpretation of Model Output

The output of statistical models based on presence-
absence data can typically be used to predict occurrence
probability across geographic space. Thus, output from
these models predicts the absolute probability that a
species occurs at a particular site or location, dependent
on the suite of environmental covariates at that location.
In contrast, output of statistical models based on pres-
ence-background data typically can only be used to pre-
dict relative occurrence probability across geographic
space. Output from these models provides information
on the suitability of sites for the species that is propor-
tional, but not equivalent to, the probability of occupancy
(Hastie and Fithian 2013). To convert output of these
models to absolute probability of occupancy, information
on the prevalence of the species (total no. of sites occu-
pied in the study area) is required, and that information
is not retrievable from presence-only or presence-
background data (Phillips and Elith 2013). For example,
if we have presence records of a species from 20 of a pos-
sible 200 sites in a study area but no data on absence, we
do not know if this species is rare and well surveyed (with
low prevalence), or common but poorly surveyed (with
high prevalence).
Some statistical methods can make use of supplemen-

tary information on prevalence, such as counts or
presence-absence surveys in other locations, or expert
opinion, to estimate occupancy probability from pres-
ence-background data (Phillips and Elith 2013; Dorazio
2014). Similarly, output from presence-background algo-
rithms can be post-processed to provide estimates of
absolute probability of occupancy, but information must
be available to inform a parameter in the model that gives
the probability of presence at sites with “typical” condi-
tions for the species. However, this information is lacking
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for most species (Elith et al. 2011). Several authors have
suggested that presence-only data can indeed be used
to estimate the absolute probability of presence (Lele
and Keim 2006; Royle et al. 2012; Rota et al. 2013). How-
ever, debate remains regarding the usefulness and appli-
cability of these methods, due to their strict assumptions
(Hastie and Fithian 2013; Phillips and Elith 2013; Guil-
lera-Arroita et al. 2015). Therefore, unless supplementary
information is available, the modeler must assume
that output from presence-background analysis gives a
relative probability of occupancy, and not an absolute
estimate. Similarly, large-scale presence-absence data,
when detectability is less than one, also may only be able
to estimate relative probability of presence (Guillera-
Arroita et al. 2015, Figure 15.3).
Significantly, the inability to estimate absolute proba-

bility of presence from presence-only or presence-
background data greatly reduces the ability to answer
many key conservation and management questions, such
as estimates of area of occupancy or changes in occupied
area over time (Guillera-Arroita et al. 2015). These limita-
tions demonstrate the value of well-designed surveys that
record presence-absence data (or detection-nondetec-
tion) for many applications of SDMs. However, relative
probability of presence is still informative for a number
of important ecological and conservation questions such
as examining relative changes in suitability over time, or
spatial prioritization exercises.
Indeed, the subject of data types and how it relates to

SDM output and usefulness is receiving increasing atten-
tion (Dorazio 2014; Guillera-Arroita et al. 2015). Rules of
thumb emerging from research on distribution models
generally use presence-absence data when available
for development of SDMs, as these are more likely to
result in data that provide absolute probability of pres-
ence, and are more robust to sampling bias and reduce
problems associated with selecting a background extent
(Section 15.3.3). Unfortunately, the vast majority of
large-scale data that are used for SDMs only have infor-
mation on species presence, greatly limiting the options
of the modeler. Recent critiques of presence-only or pres-
ence-background models (Yackulic et al. 2013), and our
own experience with numerous reviewers, highlight the
skepticism with which many researchers approach the
results of such analyses. From a practical standpoint,
the availability of data on species presence and the urgent
need for large-scale modeling of distribution necessitate
presence-background models for the near future. More-
over, output from these models has been useful for
informing about distribution patterns and range shifts
under a variety of circumstances (Peterson 2003; Peter-
son et al. 2011), and thus has considerable merit. Consid-
ering all these issues together, we recommend a careful
reading of recent literature on interpretation of different

kinds of SDMs, using the most informative data possible
for each species, and consideration of the question to be
addressed, prior to engaging in modeling.

15.2.5 Model Accuracy

Given that an SDM has been developed, one of the most
important procedures is to evaluate model accuracy
(Figure 15.1). Best practices for species distribution mod-
eling require fitting the model using a “training” set of
presence or presence-absence records, and then using a
“testing” set of records to validate model accuracy. In
any exercise of model evaluation with SDMs, decisions
regarding how to select the test data with which to eval-
uate the model must be considered carefully. The alterna-
tives include model interpolation where the same data is
used to train and test the mode,l versusmodel extrapola-
tion where separate datasets are used to train and test the
model. For example, the data can be split into single train-
ing and testing sets, split into k-fold partitions of testing
and training data, or the test data can be a completely
independent dataset in space or time. The latter approach
may be best for obtaining realistic understanding of
model accuracy, however, ensuring similar time spans
for training and testing data is crucial in case suitability
has changed through time (Chapter 2).
We focus here on two facets of model accuracy for

SDMs: discrimination capacity and calibration (or relia-
bility). Discrimination refers to the ability of models to
correctly predict the status of known presence and
absence locations – in other words, the agreement
between known observations and model predictions for
occurrence. Discrimination is the most commonly used
approach to evaluate SDM accuracy. Discrimination is
usually assessed via a confusion matrix that cross-
tabulates the predicted and observed presence-absence
values (Table 15.3). Two types of errors are possible: false
positive errors of commission, where the model predicts
presence when in fact the species was absent, and false
negative errors of omission, where the model predicts
absence when in fact the species was present. Using the
confusion matrix, a variety of accuracy statistics can be
calculated, including sensitivity and specificity, overall
accuracy, the Kappa statistic, the true skill statistic, and

Table 15.3 Confusion matrix for presence-absence data.

Prediction
from model

Observed response

Presence Absence

Presence TP (true positive) FP (false positive)

Absence FN (false negative) TN (true negative)
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the F-measure, among others (Fielding and Bell 1997; Liu
et al. 2011). Sensitivity is the probability that a particular
known presence location is correctly classified, and is
given by the formula:

TP TP+ FN , 15 3

where TP is proportion of true positives and FN the pro-
portion of false negatives (Table 15.3). Specificity is the
probability that an absence location is correctly classified,
and is given by the formula:

TN FP+TN , 15 4

where TN is the proportion of true negatives and FP the
proportion of false positives. The true skill statistic (TSS)
provides another measure of accuracy and is calculated as
sensitivity + specificity − 1. Generally, several different
measures of accuracy should be computed to test model
performance, as each measure quantifies a different
aspect of predictive power (Elith and Graham 2009).
However, the choice of statistic employed should also
depend on the goal of the analysis: to emphasize reduc-
tion of commission errors, omission errors, or both.
For example, in using SDMs to guide reserve design selec-
tion, it may be prudent to weight misclassifications of
absences – commission errors – as more detrimental
than misclassifications of presences (Lobo et al. 2008).
A weighting procedure would help guard against unreal-
istically optimistic scenarios, where models overpredict
presence of species in reserves, and would be especially
recommended in situations where the cost of protecting
an unsuitable reserve or area is quite substantial.
All of the above metrics of model discrimination are

considered threshold dependent. The modeling results,
which are usually continuous measures of suitability or
probability of occurrence, must be converted to binary
measures of predicted presence-absence before the met-
rics can be calculated. The researcher must determine a
cut-off point above which continuous output from an
SDM is converted to “presence,” and below which the
output is converted to “absence.” The threshold used to
determine predicted presence locations is therefore an
important choice for the modeler to make. One objective
approach to threshold selection is to choose the threshold
value as the value that can maximize predictive accuracy
of an independent evaluation dataset (Liu et al. 2005).
Other ad hoc approaches are also possible, such as the
minimum predicted probability value of a training or test
presence location.
Threshold-independent measures of model accuracy

also exist (Liu et al. 2011), and one of the most widely
used measures is the Area Under the Receiver Operating
Characteristic curve (AUC). The AUC value of an SDM is
interpreted as the probability that the model will rank a
randomly chosen presence site higher that a randomly

chosen absence site. AUC values range from 0.5 to 1, with
values of 0.5 indicating discrimination no better than ran-
dom, values of greater than 0.7 indicating reasonable dis-
criminative capacity, and values of 1.0 indicating perfect
discrimination.
Measures of discriminative capacity work well and are

easy to interpret when SDMs have been developed from
presence-absence data. When SDMs are developed from
presence-background data, discriminative capacity is
harder to measure. The problem arises because true
absence is not known, and background locations may
contain presence or absence of the species. For thresh-
old-dependent measures of discrimination, the omission
error can still be calculated from the observed presence
data and hence measures such as model sensitivity can
be estimated, but the commission error cannot be calcu-
lated (Li and Guo 2013). Lack of commission errors limits
the types of accuracy assessments that can be employed.
Li and Guo (2013) have recently recommended the use of
a modified F-measure for use with accuracy assessment
of presence-background data that performs similarly to
the traditional F-measure used with presence-absence
data. More developments in this area are needed as
presence-background modeling continues to grow in
application.
Threshold-independent measures are also compro-

mised by the use of presence-background data for mod-
eling. Although AUC is commonly employed as an
accuracy measure for presence-background data and is
integrated into common software packages such as
MaxEnt, it suffers from several drawbacks that limit its
application (Lobo et al. 2008; Peterson et al. 2008; Jimé-
nez-Valverde et al. 2013). AUC values will be highly sen-
sitive to the extent of the background used to create the
models (Peterson et al. 2011). For example, larger back-
ground areas used to compare with presence locations
will often artificially inflate AUC values due to the fact
that background locations will be drawn from areas that
may not have been accessible, or fromwhich the species is
excluded by other factors. The problem is easy to envi-
sion: the environment of nearby sites is expected to be
more similar than the environment of distant sites, and
selecting background locations from areas that are farther
away from the presence locations will inflate AUC values
(Hijmans 2012). For example, in developing distribution
models for Canada lynx, selecting a background size
equivalent to all of North America results in AUC values
0.10 higher than selecting a background size just a little
larger than the current range of the species. However,
the exact same presence dataset is used in both exercises.
Similar reasoning holds when looking at AUC values for
species with different range sizes: AUC values from SDMs
will be artificially higher for species with small range,
because test and training presence data will tend to be
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closer together (Hijmans 2012). Sampling bias in pres-
ence data can also inflate AUC values. In this case, if test
data for model evaluation are drawn from a dataset that
suffers from sampling bias, they will suffer from the same
bias and tend to reflect modeling outputs, inflating AUC
values. Hijmans (2012) has recently proposed a procedure
to account for some of these problems through adjust-
ment of AUC values by use of pairwise distance sampling
of presence and background locations, and use of null
models.
Calibration (reliability) is another means of examining

model accuracy, and refers to the agreement between pre-
dicted probabilities of occurrence and the observed pro-
portion of sites occupied (Li and Guo 2013). For example,
if a species occupies 25 of 50 sites in a certain type of envi-
ronment, a well-calibrated model would predict close to
50% probability of presence in that environment. Calibra-
tion is muchmore rarely employed as a means to evaluate
SDMs, but is independent of discrimination as a measure
of model quality, in that a poorly calibrated model can
have excellent discrimination, and vice versa (Phillips
and Elith 2010). The discrepancies arise because discrim-
ination measures the ability to separate presence and
absence based on predictions of the model, but the abso-
lute values of those predictions are unimportant (Lawson
et al. 2014). Calibration is sometimes assessed with
binned calibration plots, where model output is parti-
tioned into a number of bins, and then the fraction of true
presences is plotted against the average model output
value in each bin (Pearce and Ferrier 2000). Once again,
presence-background data present added difficulties in
estimating calibration of a model, but recently developed
presence-only calibration plots (POC plots) can be used
(Phillips and Elith 2010).
Evaluation of SDMs remains an active area of research.

However, a cautious approach is to examine several dif-
ferent metrics for evaluating a model’s accuracy, and
note potential drawbacks to any one approach. For pres-
ence-absence SDMs, combining calibration and discrim-
ination metrics is recommended for gaining a broader
understanding of model performance. For presence-
background models, employing some combination of
recently developed techniques such as the adjusted
F-measure, adjusted AUC, or POC plots, may be recom-
mended as a method to reduce bias and provide better
estimates of model accuracy. Sensitivity is also a reliable
metric from presence-background methods because it
does not rely on pseudo-absence in the calculation.
Use of a spatially independent dataset to test predictions
cannot be overestimated as an important step to take
with presence-absence or presence-background SDMs
if the model will be used to extrapolate results
(Muscarella et al. 2014; Radosavljevic and Ander-
son 2014).

15.3 Common Problems when Fitting
Species Distribution Models

15.3.1 Overfitting

As with many regression techniques, overfitting is a con-
cern with species distribution modeling. Overfitting
occurs when model complexity is too high and a large
number of predictor variables are used in the samemodel,
or the response curves are too complex, so that the model
becomes too tightly constrained to the input data used to
train or fit the model (Chapter 2). Models that are overfit
will perform poorly when extrapolated to new environ-
ments or locations. The increasing availability of software
tools to fit SDMs using a large number of predictors has
led to an explosion of studies that are likely overfit to the
training data (Peterson et al. 2011). Overfitting can best
be detected by testing models on completely independent
datasets (in space or time) of presence, or presence-
absence, records. Careful a priori selection of predictor
variables to avoid collinearity before modeling can help
alleviate this problem (Chapter 2). The simple step of
examining pairwise correlation between predictor vari-
ables and eliminating one of the variables with high
correlation (r > 0.70) may decrease the possibility of
overfitting, and aid interpretation of model output.
Usually, the variable that has the most proximate role
in determining distribution patterns, based on a priori
knowledge, is retained.
Various means of model selection can be used to

compare performance of models of differing complex-
ity, thus reducing the possibility of producing overly
complex models. Akaike’s Information Criterion
(AIC) is commonly used with regression methods fit
to presence-absence data to help in producing parsimo-
nious models (Chapter 2), but cannot be used with all
SDM modeling algorithms. AIC can also be estimated
from some presence-background models (Warren and
Siefert 2011), and is increasing in use as a method to
select among models (Radosavljevic and Anderson
2014; Warren et al. 2014). Many of the metrics men-
tioned previously for assessing model accuracy (such
as AUC) have also been used to select models of differ-
ing complexity in species distribution modeling. For
example, overfitting can be identified by models that
perform much better in terms of AUC values on train-
ing data than test data (Warren and Siefert 2011), par-
ticularly if the held out data are spatially independent
(Merow et al. 2014). Merow et al. (2014) provide an
excellent overview of the trade-off between simple vs.
complex models, and how these trade-offs relate to a
variety of different study objectives for SDMs. We rec-
ommend judicious a priori selection of a limited num-
ber of predictor variables, followed by a performance
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comparison among simple and complex models based
on AIC, AUC, or other performance metrics, to select
a parsimonious but informative model.

15.3.2 Sample Selection Bias

Spatial sampling bias is one of the more difficult issues to
deal with in species distribution modeling, and can
severely affect model quality (Phillips et al. 2009). Reduc-
tions in model quality due to sampling bias occur because
geographically biased data are likely to also exhibit envi-
ronmental bias, and thus, environments that are surveyed
heavily will appear to be more suitable to a species.
A fitted SDM therefore may provide a model of sampling
effort, rather than species distribution (Figure 15.4). Note
that sampling bias is more of a problem with presence-
only or presence-background techniques; presence-
absence SDMs are generally more robust to sampling bias
(Phillips et al. 2009) because the absence and presence
data will show the same pattern of spatial bias (Elith
et al. 2011). Spatial sampling bias is the rule rather than
the exception when dealing with datasets of species pres-
ence records (Yackulic et al. 2013), and thus demands
careful consideration in the modeling process.
Despite its prevalence and importance, adjusting for

sampling bias remains a poorly studied area of species

distribution modeling and is often overlooked when fit-
ting and interpreting models. Correcting sampling bias
when only data on species presence are available can
occur in several ways, none of which are completely sat-
isfactory. Subsampling or spatially filtering records by
reducing the number of occurrence records in over-
sampled regions is a means to reduce clumping of the
presence records and thus reduce the effect of spatial bias
in the data (Veloz 2009). Subsampling can improve pre-
dictive abilities of SDMs (Kramer-Schadt et al. 2013; Boria
et al. 2014; Fourcade et al. 2014), and our own work has
shown that subsampling produces much more realistic
models than raw, uncorrected data. Indeed, for models
of coyote distribution, we found that subsampling the
presence records provided a much more realistic fit to
the known distribution of the species than the full, unfil-
tered dataset (Thornton and Murray 2014). In a compar-
ison of multiple bias-correction techniques, Fourcade
et al. (2014) found subsampling to be one of the most con-
sistently effective techniques to adjust SDMs for sampling
bias. Filtering presence records in environmental, as
opposed to geographic, space is also possible and has been
found effective (Varela et al. 2014). However, subsampling
may not be practical when dealing with small datasets,
may not entirely eliminate the clumping in the presence
records, and may degrade model performance if the

Use of target group

background

No adjustment
for sampling bias

Figure 15.4 Example of the problem of
sampling bias with presence-only data.
Top image shows the location of
presence records for Canada lynx
(Lynx canadensis) in North America.
A clumping of location records can be
seen in several regions (e.g. Ontario,
British Columbia) due to the uneven
availability of high-resolution harvest
records and collection bias from
museums. A habitat suitability model
from MaxEnt with no adjustment for
the spatial bias in occurrence records is
shown at the bottom left, and a habitat
suitability model using a target group
background is shown on the bottom
right (increasingly dark colors indicate
higher predicted suitability). Note
that when no adjustment is made,
the predicted areas of high habitat
suitability are tightly constrained to the
areas of high clumping in the presence
records, indicating that the model
reflects sampling bias, not real patterns
in habitat suitability. The target group
background approach helps alleviate
this problem, providing a more realistic
suitability model.
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spatial clumping of presence records is due to the actual
distribution patterns of the species (e.g. a species prefers a
particular soil type that is clumped in space), as opposed
to being driven by sampling bias. Another approach is to
include covariates in the model that may reflect the sam-
pling bias, such as distance to roads. However, this may
only be useful when the bias is known a priori and can
be reasonably modeled with additional covariates. Spatial
point process models may lend themselves particularly
well to this type of correction. In a recent paper by Renner
et al. (2015) that sought to model incidental sightings of
an endemic tree (Eucalyptus sparsifolia) using point proc-
ess models, spatial bias was modeled by including dis-
tance from roads and distance from urban areas,
operating under the assumption that these areas would
be more likely to be traveled, and thus, more likely to
result in opportunistic sightings of the species.
A third approach for presence-background techniques

is to bias the selection of background or pseudo-absence
data in the same manner that the presence data are
biased. Data selection can occur in one of two ways:
(i) developing a bias grid that reflects either a priori
knowledge of sampling bias, or is based on densities of
presence records, where background records are
sampled preferentially from those areas that have high
densities of presence records (Elith et al. 2010); or
(ii) use of a target group background (Phillips et al.
2009). We have used the former approach to model dis-
tribution patterns of Canada lynx and bobcats (Lynx
rufus, Peers et al. 2013, 2014), where subsampling pro-
duced unrealistic models based on a priori knowledge
of distribution patterns, and the use of a bias file pro-
duced much more realistic models. However, the bias
file approach, particularly when based on density of
presence records, is an ad hoc approach, and some com-
parisons suggest it does not perform as well as basic spa-
tial filtering (Fourcade et al. 2014). The use of target
group background involves selecting background loca-
tions only from areas that have been surveyed for other
taxonomically similar species to the focal species, and
using a similar sampling strategy as the protocols to gen-
erate presence records for the species of interest
(Figure 15.4). For example, if the goal was to develop
a model of the distribution of a mesocarnivore based
on occurrence locations obtained from harvest records,
background locations would be sampled only from those
areas in the study region that contained at least one
occurrence location from harvest records of a similar
mesocarnivore species. The approach assumes that the
“target group” appropriately represents the spatial bias
in the presence records for the species of interest, so care
must be taken in selecting this group. Target group
background approaches have been found to improve
model quality in multiple studies but may not eliminate

bias entirely (Phillips et al. 2009; Syfert et al. 2013). Phil-
lips et al. (2009) developed presence-background SDMs
using a variety of modeling algorithms and datasets, and
found that target group approaches improved AUC
values from independent presence-absence test data
for most groups and models. Last, spatial point process
models may advance our understanding in this area,
as these models offer diagnostic tools for checking for
spatial bias/nonindependence of presence-only records,
which is currently lacking from analyses such as MaxEnt.
If nonindependence is detected, area-interaction models
can be fit to adjust for this bias (Renner and
Warton 2013).
Good practice suggests that presence records should be

examined visually for spatial bias at the outset of any anal-
ysis, and the likelihood that the bias is driven by sampling
artifacts or real patterns in distribution should be
assessed. If the records are likely impacted by sampling
bias, methods should be used to correct for spatial bias
in the occurrence records during the modeling process.
Given recent research, and our own experience, as a gen-
eral rule of thumb we suggest first considering subsam-
pling or filtering of the presence records, or explicitly
modeling the bias with additional covariates. If those
methods are not reasonable to employ for a particular
dataset, target group approaches may be most appropri-
ate. Sensitivity analyses are also recommended, to deter-
mine whether results change drastically depending on the
type of bias correction used.

15.3.3 Background Selection

When engaging in presence-background modeling, one
of the key decisions that modelers must make is choice
of the background extent. The background extent defines
the available environment: the environmental attributes
that will be used to compare against species’ presence
records to develop a model of the species distributional
limits. Decisions on an appropriate background extent
and the number of random samples from that back-
ground to select for comparison with presence records
may be a function of the software or statistical procedure
used (Giovanelli et al. 2010), and can lead to both over-
and underestimating predictions regarding model perfor-
mance (Lobo and Tognelli 2011). Furthermore, changing
the background used in the model may alter the ecolog-
ical question that is being addressed. For example, using a
background of all Australia for a species endemic to the
southwest poses the question: why is the species only in
southwestern environments (Elith et al. 2011)?
In general, the background area should include the full

environmental range of the species, excluding areas that
have not been surveyed, or where the species does not
occur due to barriers in dispersal, such as elevation. If
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selecting background points from environments well
beyond species’ dispersal potential, the modeler is operat-
ing under the assumption that the area is unsuitable with-
out the specieshaving sampled this region.Therefore, large
background extents tend to produce apparently better
models in terms of discrimination, but that are largely
uninformative (Lobo et al. 2010; Acevedo et al. 2012).
Decisions on background extents may need to be spe-

cies-specific, taking into account dispersal attributes and
geographical characteristics as well as the time span of
the species’ presence on the landscape, and environmental
changes that have occurred during that period (Barve et al.
2011). For example, invasive species that recently arrived
could have a background extent consisting of the present
distribution buffered by an estimate of the maximum
dispersal distance achieved since their time of arrival, if
the rate of spread is predictable (Barve et al. 2011).
A framework can also be established to define the area that
has the highest probability of being accessible to a species
while simultaneously avoiding regions that are uninform-
ative for an ecological model (Acevedo et al. 2012). Gen-
eral rules of thumb would suggest selecting a background
that is not too far removed from the range limits of the spe-
cies, and perhaps doing a sensitivity analysis of different
background extents when developing models.

15.3.4 Extrapolation

Many common applications of SDMs require extrapola-
tion of the model predictions to new regions or time per-
iods, for example, using SDMs to predict how the range of
a species will shift due to climate change, or predicting
suitable habitat in a region that has never been surveyed.
Transfer of model predictions can be problematic if
extrapolating outside of the training data, where the
model is used to predict responses or distribution under
novel environmental conditions. As a simple example of
this, imagine that an SDM is developed for a given place
and time that indicates how suitability of a site will change
as the temperature varies within the range of 0–20 C.
What happens when that model is used to predict to a
location/time where the temperatures increase to
25 C? What will be the form of the response curve?
Not only is extrapolation to values outside of that used
to calibrate the initial model problematic, but problems
also arise with respect to extrapolation to new combina-
tions of multiple predictors (Owens et al. 2013). Regard-
less of the nature of the novel conditions, assumptions
must be made about the shape of the response curves
of probability of presence or habitat suitability as it relates
to environmental variables that extend beyond the train-
ing data, which adds considerable uncertainty to the pre-
dictions. There are options for how to extrapolate
responses to novel environments, including truncation

and clamping (Figure 15.5). When engaging in extrapola-
tion, it is highly recommended to employ multivariate
environmental similarity surfaces (MESS) or mobility-
oriented parity (MOP). These two tools compare the
environmental space of the data used to develop models
versus the environmental space into which the model is
extrapolated, to develop maps that indicate where the
most novel environmental conditions exist in the extrap-
olation space (Elith et al. 2010; Owens et al. 2013). Use of
these tools can be a way to visualize areas where model
results likely have high uncertainty because they are
extrapolating well outside the training range.
For presence-background methods, projecting models

into future climates or new geographic space can add
uncertainty to decisions regarding an appropriate size
for the background extent. Owens et al. (2013) note that
for species that have presence records that fall toward
the edge of the available environment space, extrapolation
is likely to be more uncertain than for species where pres-
ence records are centrally located within the available
environmental space. The discrepancy arises because
algorithms for the central locations will be better able to
model necessarily unsuitable environments. Even if mod-
els are developed using the full range of the species,
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Figure 15.5 Hypothetical response curve obtained from a species
distribution model. The solid curve shows the model fit for how
probability of occupancy (or environmental suitability) changes as
a function of temperature in the study area. Note that the response
curve only extends to the limits of the environmental data in the
study area (which in this case, reached 20 C). If this model is used
to extrapolate to time periods or places where temperature
reaches 25 C, the response curve must be extended in some way:
a) represents truncation, where all temperatures beyond 20 C are
considered unsuitable; b) represents clamping, where all
temperatures beyond 20 C are considered to stay at the same
level of suitability as the highest temperature in the training data;
and c) represents extrapolation, where response to temperatures
beyond 20 C is assumed to fit some sort of more complex model
(e.g. a curvilinear or linear rise or decline).
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including areas within their dispersal limits, projections
well outside this area will still involve considerable extrap-
olation into environments beyond the training data (Elith
et al. 2011). Thus, the degree of uncertaintywhen extrapo-
lating SDMsmay vary according to the intricacies of sam-
pling and environmental space for a particular species.

15.3.5 Violation of Assumptions

Correlative species distribution modeling has at least
three implicit assumptions that are necessary to consider
in the modeling process: (i) Equilibrium: When develop-
ing SDMs, the species of interest is assumed to be in
equilibrium with its environment. The assumption
may not be met for invasive species that are expanding
their range, or for species that are experiencing range
contraction due to land use or climate change. Again,
this is primarily a problem with presence-background
methods, and not presence-absence approaches. Elith
et al. (2010) detail some possible techniques to deal with
violations of this assumption, for example, by restricting
the background extent to reflect the fact that a species is
currently expanding its range and has not yet sampled
the entire study region. (ii) Niche conservatism: SDMs
also assume niche conservatism, in that the relationship
between environmental predictors and species occur-
rence is not variable in space or time. The prevalence
of niche conservatism is an ongoing debate, and one that
has been generated in large part over concerns about
how well SDMs can be translated to new time periods
or spatial locations (Pearman et al. 2008; Peterson
2011). Modeling subspecies independently may be one
way to account for spatial variability in niche character-
istics (Pearman et al. 2010). (iii) Microrefugia: Microen-
vironments are often ignored, due to the relatively large
spatial scales at which SDMs are often applied. However,
such environments may be critical to the persistence of
certain species, but this information will not be captured
in most models based on coarse-resolution environmen-
tal predictors. The issue may be addressed in the near
future, as the resolution of environmental data obtaina-
ble with remote sensing increases and there is a push to
collect datasets of presence (or presence-absence)
records at a fine resolution over large spatial extents
(Hannah et al. 2014).

15.4 Recent Advances

SDMs are continuing to increase in sophistication and the
pace by which SDMs are becoming increasingly complex
is among the most rapidly evolving areas of population
ecology today. Outside of continuing developments in

statistical methodology and niche ecology, SDMs may
advance in three other emerging areas with new models
that include dispersal, population dynamics, or biotic
interactions.

15.4.1 Incorporating Dispersal

Correlative SDMs are commonly used for extrapolation of
distribution patterns in space or time. Predicting a shift in
the occupied range of a species, however, requires that the
dispersal potential of the species be considered. Dispersal
potential has been suggested as themost important deter-
minant for the expansion rate of invasive species and
demands full consideration when understanding the
ability of species to keep pace with moving suitable envir-
onments (Schloss et al. 2012; Travis et al. 2013). It is
imperative that SDMs extrapolating distribution patterns
also incorporatemeasures of a species’ dispersal potential.
Initially, SDMsused either unlimiteddispersal or nodis-

persal as possible scenarios in their projections (Thuiller
et al. 2004). In this case, species were assumed to be able
to occupy all available suitable habitat no matter how far
outside the current range, or a species could not occupy
any suitable habitat outside the current range. Recent
studies have incorporated some aspect of dispersal into
their predictions to generate partial dispersal models
(Bateman et al. 2013). The simplest methods for incorpor-
ating dispersal constraints into SDMs have used standard
dispersal distances for a group of species multiplied over
the time of projection to restrict future habitat suitability
(Williams et al. 2005; Midgley et al. 2006; Reside et al.
2012). In other words, suitable habitat beyond the disper-
sal distance of the species of interest is considered unsuit-
able, and is then removed from themap of suitable habitat
during post-processing. For example, Reside et al. (2012)
developed future SDMs for over 200 species of birds
inhabiting tropical savannas of Australia. To incorporate
dispersal limitations, the authors limited suitable habitat
to within 30 km of current range limits for every decade
of change, based on average range shifting rates in birds.
Such approaches may be more accurate than unlimited
or no dispersal models, but still ignore important factors
influencing a species’ dispersal potential (Bateman et al.
2013). A slightlymore sophisticated approach is to use dis-
persal kernels, where the probability of dispersing and
occupying new habitat is a function of distance to cur-
rently occupied habitat. For example, Summers et al.
(2012) modeled response of plant species to climate
change by using SDMs to indicate areas of potential future
suitability. Dispersal into future habitat was modeled
based on a negative exponential function, whereby cells
close to currently occupied habitat weremuchmore likely
to be colonized than those farther away. Recently, models
have been developed that allow the incorporation of
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multiple factors that impact a species’ ability to track suit-
able habitat throughdispersal (Iverson et al. 2004;Midgley
et al. 2010; Engler et al. 2009, 2012). Models with move-
ment can all be termed hybrid models, as they combine
SDM output with simple or complex models of dispersal
and demography. By integrating population dynamics and
dispersal into the predictions of future ranges, these mod-
els may improve predictions of future distribution pat-
terns. However, they do require a greater amount of
information, and thus may only be applicable to a small
number of species.
The above approaches have combined dispersal with

SDMs to produce spatially explicit predictions of extra-
polated distribution patterns in space and time, but other
approaches address the question of whether or not a spe-
cies can keep up with its shifting suitable climate (Brotons
et al. 2012). For example, Leroux et al. (2013) used reac-
tion–diffusion equations and information on the intrinsic
rate of increase and rate of shift of climatic conditions to
estimate the dispersal distance needed to keep pace with
shifting habitat suitability. Other studies have combined
SDMs with metapopulation models to project species
distributions through time (Fordham et al. 2012;
Naujokaitis-Lewis et al. 2013). The latter models repre-
sent the most inclusive modeling attempts to date, but
key assumptions regarding the link between SDM pre-
dicted probability of occurrence with population dynam-
ics used in metapopulation models remain largely
untested (Bateman et al. 2013).
The more complex partial dispersal models are an

improvement from the more simplistic projections that
ignore dispersal limitations, however, caution is war-
ranted. Accurate information for dispersal parameters
is not available for most species. Minor alterations in
values used for various dispersal parameters, which rep-
resent conservative uncertainties in species dispersal
potential, can lead to drastically different projections of
range shifts (Peers et al., unpublished data). The role of
rare, long-distance dispersal events in tracking suitable
habitat through time may be important, but remains
unexplored. Furthermore, species dispersal rates may
not be fixed through time but subject to evolution
(Travis et al. 2013), which has been shown at the
range-edge of invasive species (Lindström et al. 2013).
Regardless of the method used and potential lack of infor-
mation, incorporating dispersal constraints into SDMs is
becoming a common practice of the “next-generation”
approaches for understanding species’ responses to envi-
ronmental change.

15.4.2 Incorporating Population Dynamics

Hybrid SDMs have also started to be used in combination
with sophisticated, spatially explicit population modeling

to incorporate additional demographic complexity
beyond just movement. Here, SDMs are used to initially
define habitat patches and perhaps also initial patch-
carrying capacity, and then stage- or age-structured
matrix population models are applied to simulate change
in distribution or abundance over time or across space
(Keith et al. 2008; Anderson et al. 2009; Fordham et al.
2013). A metapopulation approach allows incorporation
of local population dynamics such as density dependence
and demographic and environmental stochasticity, as
well as spatial population dynamics such as dispersal
between patches, to provide a more realistic understand-
ing of how distributions may shift over time. These
coupled niche-population models are better able to cap-
ture details such as time lags and thresholds in response
of species to climate change that are not included in
simple correlative SDMs, and can incorporate added
complexities such as land-use changes (Anderson et al.
2009; Franklin 2010). The SDM alone, and more complex
coupled-niche population models, have not been exten-
sively compared. Limited data suggests similar perfor-
mance in predicting current distributions, but divergent
future predictions (Fordham et al. 2013). Other types of
hybrid models include the coupling of SDMs with spa-
tially explicit individual-based population models, and
with occupancy dynamics (Franklin 2010; De Caceres
and Brotons 2012). Working with 12 species of open-
habitat bird species in Catalonia, De Caceres and Brotons
(2012) used correlative SDMs to develop an initial distri-
bution map and future habitat suitability maps, and then
occupancy models to examine colonization processes in
grid cells.
Although hybrid models incorporating dispersal or

local population dynamics may address some of the most
critical limitations of correlative SDMs, particularly when
extrapolating distribution patterns across space or time,
there is an obvious trade-off between complex, more
mechanistic models and simple, correlative models.
Franklin (2010) provides a rule of thumb in this regard,
suggesting that at a minimum, dispersal constraints
should be accounted for in some way in SDMpredictions,
either through simply post-processing models to elimi-
nate habitat beyond the migration rate of the species,
or applying more complex grid-based simulations of dis-
persal. If knowledge of a species’ life history and habitat
requirement is available, more complex coupled-niche
population models may be employed to improve
predictions.

15.4.3 Incorporating Biotic Interactions

One implicit assumption of many SDMs is that biogeo-
graphic patterns at a range-wide scale are responsive to
abiotic factors, with biotic interactions only influential
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at smaller spatial scales or through effects on local pat-
terns of abundance. Debate remains regarding the
importance of predator–prey dynamics, facilitation, com-
petition, and other biotic interactions for large-scale
SDMs (Kissling et al. 2012; de Araújo et al. 2014; Araújo
and Rozenfeld 2014). Although it could be argued that
biotic interactions are implicitly incorporated in themod-
eling process because species presence or presence-
absence records will hold a signal of this interaction, such
an argument does not consider extrapolations in space or
time which require information on all important predic-
tors – thus, it remains important to parse the abiotic envi-
ronmental signal from the biotic one, if the biotic signal is
indeed influential. The weight of recent work appears to
support the idea that large-scale species distributions can
also be altered by biotic interactions (Wisz et al. 2013;
Araújo and Rozenfeld 2014; de Araújo et al. 2014). For
example, distribution and abundance of several taxa have
been strongly linked to the presence of plant species
(Novotny et al. 2006; Kissling et al. 2007). Predators
can control the range limits of prey species in numerous
ecosystems (Estes et al. 2011) and predator and prey rich-
ness are strongly linked at macroscales (Sandom et al.
2013). Displacement from competitors can also alter
broad-scale relationships between species and their envi-
ronment (Peers et al. 2013). Given this growing body of
evidence, inclusion of biotic interactions in species distri-
bution modeling is potentially desirable, especially when
estimating range shifts resulting from invasions or
anthropogenic change.
The proper way of incorporating biotic interactions in

SDMs remains an active area of study. One simple
method is to apply post-processing to the output of an
SDM, whereby the distribution of one species is restricted
in some way based on knowledge of the distribution of
another species. For example, a butterfly distribution
might be restricted to areas that contain suitable host
plants, no matter how suitable the environment may be
in other locations. Such an approach is only feasible when
a priori information exists regarding a strong interaction
between two or more species. Another possible method
for incorporating biotic information is to include inter-
acting species or dietary resources as predictor variables
in model development (Heikkinen et al. 2007; Pellissier
et al. 2010; Araújo et al. 2014). Information on the distri-
bution, abundance, or habitat suitability of a potentially
interacting species is included in the model-fitting proc-
ess in the same manner as other environmental predictor
variables. Studies employing this technique have demon-
strated more realistic or better-fitting models of distribu-
tion patterns when incorporating biotic information
compared to models based solely on environmental vari-
ables (Heikkinen et al. 2007; Preston et al. 2008; Aragón
and Sánchez-Fernández 2013). However, the approach

has been criticized because biotic interactions in the
model may be correlated with abiotic factors, and the
causal links among biotic interactions are uncertain.
Moreover, SDMs developed with biotic predictor vari-
ables may fit better than models from abiotic variables
alone, but improvement in SDM fit can also be achieved
by including noninteracting species in SDMs (Giannini
et al. 2013), suggesting that improvement in fit with biotic
variables could be a statistical artifact. It may also be
problematic to include biotic interactions in SDMs, if
the biotic variable is affected by its interactions with
the species of interest, such as resources that are affected
by consumptive activities (Anderson 2013).
More complexmethods formodeling biotic interactions

have recently been suggested. Pollock et al. (2014) recom-
mend the application of joint SDM, whereby distributions
of multiple species are modeled simultaneously based on
environmental variables, and correlated residuals between
species can reveal information on positive or negative
interactions. Trainor et al. (2014) presented another
approach, where data on the spatial location of trophic
interactions between species is modeled explicitly for the
example of predation by lynx on snowshoe hares. They
found that a normal SDM for lynx, where locations of lynx
presence from telemetry data were related to environmen-
tal variables, differed from a trophic interaction distribu-
tion model (TIDM) where the spatial location of
predation events was related to environmental variables.
The results suggest that SDMs may under- or over-
represent conditions needed to maintain key interactions.
However, both Pollock et al. (2014) and Trainor et al.
(2014) focused their studies at relatively small scales– their
application to large-scale models, or models that rely on
presence-only or presence-background data, may be lim-
ited. Studies have also begun using surrogates for biotic
interactions, where variables indirectly reflecting gradients
in biotic interactions across a geographic extent are incor-
porated intomodels. For example, variables reflecting veg-
etation height or biomass could be applied as surrogates of
competitive intensity in plants (Midgley et al. 2010).
The importance of considering biotic interactions in

SDMs is perhaps most pressing with models of species
range shifts in response to climate change. In fact, biotic
interactionsmaybemore important thanphysiological tol-
erance of temperature and precipitation, in predicting
response to climate change (Urban et al. 2013). Limited
work incorporating biotic interactions into future predic-
tions has been done to date, and has generally revolved
around use of biotic predictor variables or post-processing
of distribution patterns (Hof et al. 2012; Peers et al. 2014).
However, considerable uncertainty remains regarding our
ability to model interactions that are not well understood
using SDMs, and in predicting how these interactions will
behave innovel abiotic/biotic environments that aredriven
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by climate change (Anderson 2013). Some of the more
complex interaction models may be an improvement in
modeling distributions, but uncertainty within each
parameter on model performance will be an important
insight moving forward (Naujokaitis-Lewis et al. 2013).
Given the weight of evidence showing the importance of
biotic interactions in mediating macroscale distribution
patterns, methods for incorporating this information in
SDMs will remain a key goal of future research.

15.5 Software Tools

15.5.1 Fitting and Evaluation of Models

The two most commonly used software tools for fitting
distribution models are packages in R (hwww.r-project.
org) and MAXENT (Ahmed et al. 2015). For presence-only
models, thedismopackage inRprovides functions for fit-
ting climate envelope and distance-based models
(Hijmans et al. 2015). For presence-background models,
the stand-alone software MAXENT will fit models of max-
imum entropy (www.cs.princeton.edu/~schapire/max-
ent), and these models can also be fit within the dismo
package. MAXENT is user-friendly, provides numerous
options, evaluation methods, and mapping tools (e.g.
MESS maps), and is used for two of the online exercises
in this chapter. Software tools for implementing many
other methods for modeling presence-background, or
presence-absence data, such as GLM, GAM, and BRT,
can be found in a variety of packages within R. In particu-
lar, the biomod2 package allows for the fitting of ten
different algorithms (Thuiller et al. 2012), including
regression and machine learning techniques, as well as
ensemble modeling abilities. Many of the R packages have
functions for pre-processing species and environmental
data. In addition, there are some useful stand-alone
packages in this regard, such as spThin, which spatially
subsets species occurrence data to reduce clumping.
SDMtoolbox in ArcMap allows for several different
functions for pre-processing species and environmental
data for analysis in SDMs (Brown 2014). GARP models
of distribution can be fit using DesktopGarp, and an
ENFAcan be conductedwithin theBiomapper software.
Many of the software packages for fitting distribution
models also offer a variety of options formodel evaluation,
including dismo, biomod2, and MAXENT. Another R
package, ENMEval, provides additional tools for model
evaluation of MAXENT models (Muscarella et al. 2014),
including AIC statistics that are absent from the stand-
alone software. In addition, ENMEval provides auto-
mated splitting of testing and training data in different
ways, such as in spatial blocks by latitude and longitude,
that may be useful for evaluating overfitting and model

extrapolation performance of MAXENT models. More
recently, two online sources allow for the development
of SDMs using several different modeling techniques.
These tools include SPACES: Spatial Portal for Analysis
of Climatic Effects on Species, and ModEco: Integrated
Software for Species Distribution Analysis and Modeling.

15.5.2 Incorporating Dispersal or Population
Dynamics

The Program SHIFT was developed for tree species and
incorporates dispersal probabilities into a model (Iverson
et al. 2004), taking into account the influence of abundance
of the species near the range limit, the forest density within
and beyond this limit, and the distance between cells. The
Program BioMove was developed for plant species, and
integrates SDMs with demographic rates, dispersal para-
meters, and landscape-level processes including species’
responses to vegetation structure (Midgley et al. 2010).
TheProgramMigClimuses output fromcurrent andpro-
jected SDMs, along with multiple demographic- and dis-
persal-related parameters that can be easily manipulated
to generate predictions of future distribution patterns
(Engler et al. 2009, 2012; see the online exercises for a
detailed description). Although designed with plants in
mind,MigClim is flexible enough to be used tomodel dis-
persal dynamics for a variety of species.

15.6 Online Exercises

The online exercises for our chapter illustrate species dis-
tribution modeling based on locality records for the
striped skunk (Mephitis mephitis). Exercise 1 uses
the tools of MaxEnt to develop a range-wide model of
the probability of occurrence. MaxEnt assumes that sam-
pling of presence records is unbiased and we illustrate
how spatial rarification of occurrence records can be used
to account for spatial bias. Exercise 2 extends the model
to predict the impacts of climate change on the species
distribution. We explore changes in species distributions
under different scenarios of climate change. Species dis-
tributional responses could be affected by other factors,
including dispersal capability. Exercise 3 illustrates use
of the Program MigClim to combine scenarios of cli-
mate change with information on dispersal distances to
predict future species distributions.

15.7 Future Directions

The rapid growth in species distribution modeling is
likely to continue over the coming years, as new methods
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and techniques begin to address concerns that have
arisen from the initial work in this field. Indeed, a new
generation of models will likely be needed to deal with
the stickiest issues that plague many distribution models,
such as incorporation of biotic interactions. However,
progress in the field will be hampered by continued lack
of comprehensive large-scale datasets of species distribu-
tion (Duputié et al. 2014). Continued digitization of
museum records and other sources of occurrence data
will aid in the development of more comprehensive data-
sets of species occurrence, and represents an important
step forward, but there is a pressing need to generate
more presence-absence (or detection-nondetection) data
for species at large scales. The issue is particularly perti-
nent given the advantages of presence-absence distribu-
tion models over presence-only models that have been
discussed in this chapter. Citizen science efforts may offer
a way forward and are gaining increasing attention as an
approach for generating better ecological data on species
distributions and abundance (Dickinson et al. 2012).
Outside of generating better distribution data, methods

for combining different data sources, in an effort to cor-
rect for the deficiencies of presence-only data, represent
another promising approach to improving data quality
and interpretation from SDMs. Fithian et al. (2015) pro-
vides a method to account for sampling bias in presence-
only datasets by modeling multiple species that suffer
from similar bias, and where a subset of the species have
presence-absence data available. Dorazio (2014) details
an approach that combines large-scale presence-only
data with smaller-scale count or occupancy to correct
for bias and imperfect detection in presence-only models.
These kinds of innovative models may allow for more
flexible application of presence-background modeling
efforts.
On the other side of the modeling equation, increased

use of remote sensing to generate environmental predic-
tors for use in SDMs is another area that we expect will
contribute to enhancing the utility of these models over
the coming decades. The variety of environmental predic-
tors that can be obtained from remote sensing data is a
vast but still relatively underutilized resource in distribu-
tion modeling. In particular, remote sensing platforms
can be used to generate large-scale proximal predictors
for use in modeling, such as the Normalized Difference
Vegetation Index (NDVI) or vegetation structure and sea-
sonality, with great potential to improve SDMs given
their likely strength of influence on distribution patterns
(le Roux et al. 2013; Jarnevich et al. 2014). Indeed, addi-
tion of these variables to topographic or climatic predic-
tors have been found to improve predictions from SDMs
(Cord and Rödder 2011; Parvianinen et al. 2013; Wilson
et al. 2013). Moreover, remote sensing may contribute to
the development of future predictions of land-use change

to match with future climate predictions (Halmy et al.
2015) – the inability to model land use in the future is
a current deficiency in our ability to predict future range
limits of species with SDMs.
We also expect increasing integration of SDMs with

population demographic approaches (Fordman et al.
2014). Although these are only applicable to a subset of
species which have considerable demographic data, the
advantages in obtaining a more realistic understanding
of mechanisms that are driving distributional changes
is considerable. Indeed, the union of population ecology
and demography with large-scale niche models may be
one way to address disadvantages with either approach
– the lack of realism in large-scale distribution models,
and inability to scale up for demographic models.
Improvements in methodology and data are certainly

important in pushing the field of distribution modeling
forward, but an increasing emphasis on using SDMs to
address key outstanding ecological and evolutionary
questions is also an emerging area. Already, an increasing
number of studies are using SDMs to test ecological ques-
tions such as niche conservatism and species’ evolution-
ary history. Many of the ecological questions that SDMs
may illuminate are of keen interest to the field of popula-
tion ecology, such as biogeographical patterns in distribu-
tion and abundance, controls on range limits, and
competitive interactions. Similarly, the promise of using
SDMs to address key conservation problems is only in
its infancy, and as these models become more rigorous,
and our interpretations become more nuanced, SDMs
will become a key part of the tool box for managers
and conservation biologists. SDMs are already used
extensively to examine impacts of climate change on spe-
cies and for priority-setting exercises for protected areas,
but we envision a larger role. For example, we recently
used SDMs to forecast suitable present-day habitat for
de-extinction candidates such as the Passenger Pigeon,
in an effort to assess the feasibility of this potentially
transformative conservation strategy. In another fascinat-
ing conservation application, SDMs are being used to
model high-use areas for poachers of tigers (Panthera
tigris) to aid law enforcement efforts in deterrence efforts.
One avenue of development for SDMs that we expect

will contribute to their ability to address key questions
in ecology and evolution is the increased integration of
distribution models with genetic, phylogeographic, iso-
topic, or other forms of data. For example, the combina-
tion of SDMs with stable isotope data has revealed novel
insights into the distribution and origin of migratory spe-
cies (Flockhart et al. 2013; Cardador et al. 2015). SDMs
are also starting to be used to address questions outside
the ecological disciplines. SDMs are being combined with
human demography and paleogeography data to examine
hypotheses regarding past human distribution, impacts
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on the environment, and resource use (Franklin et al.
2015; Tallavaara et al. 2015). Therefore, as SDMs become
more sophisticated and increasingly integrated with other
forms of data, our ability to tackle a wide variety of ques-
tions in a diverse number of fields and subfields will be
greatly enhanced, highlighting the tremendous potential
and flexibility of these techniques for research in the
twenty-first century.
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Summary

Due to the large number of available statistical methods, the R software has become a central tool for ecologists. This software
was originally designed to “turn ideas into software,” according to John Chambers. Users can easily program their ownmethods
for the R environment and bundle them into a package; the “Comprehensive R Archive Network” (CRAN) hosts more than
7500 packages. Thus, R has become the lingua franca of statistics. In this chapter, I describe the basic concepts that will allow
readers to learn R. I first present how to work with vectors, matrices/arrays, and lists in R. I also describe how to write a func-
tion, as well as the basic control-flow constructs that facilitate programming. I finally present how to define the class of an
object. The primary message of this chapter is that the main skill required to use R is to know how to find, read, and understand
help in R. Many resources are given in this chapter to develop this skill. A web exercise, available at the URL of the book, allows
the reader to practice these concepts.

16.1 An Introduction to R

16.1.1 The Nature of the R Language

During the S-plus user conference held in New Orleans in
1999, the biostatistician Frank Harrell posed the question,
“Can one be a good data analyst without being a half-good
programmer? The short answer to that is, ‘No.’ The long
answer to that is, ‘No.’” Indeed each case has its
specifics, and therefore each dataset requires its own data
analysis strategy, as the chapters of this book clearly
illustrate. The analyst must be able to implement techni-
ques on a computer, which requires basic programming
skills.
Common low-level programming languages, such as C

or Fortran, are not convenient for data analysis. Such
compiled languages are efficient for intensive calculation,
but require a considerable knowledge in computer sci-
ence: one has to know how to manage the computer
memory, and how the different types of data (e.g. double,
integer, long integer) are handled by the computer. The
learning curve of these languages is steep, and data
analysts often do not have enough time to invest in it.
In addition, even when the analyst has strong program-
ming skills, writing a program using such languages is

usually cumbersome, with considerable time spent in
debugging, and does not fit well with the needs of the
analyst to quickly implement a statistical technique
during the step of data exploration. Exploratory analysis
is where the R environment is especially useful.
Ross Ihaka and Robert Gentleman, from Auckland

University (New Zealand), developed the R environment
to provide a statistical environment to their laboratory
in 1992, and based it on the S language (Ihaka and
Gentleman 1996). S was invented at the AT&T Bell
laboratories by John Chambers and his colleagues during
the mid-1970s, and gained success in the community of
applied statisticians, due to its simplicity and its flexibility.
The S language has been especially designed to allow the
“half-good programmer” to easily implement statistical
solutions to particular problems, without requiring a
deep understanding of computer programming.
With the help of Martin Mächler (ETH Zürich, Switz-

erland), Ihaka and Gentleman released the R environ-
ment as open-source software in 1995. Presently, the
Comprehensive R Archive Network (CRAN) is the core
of an increasingly growing R community, contributing
to the development of the functionalities of this language.
The R environment is extendable: the S language has

been designed to encourage the user to “slide into
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programming, perhaps without noticing,” and the R
language, which is a dialect of S, shares this characteristic.
Therefore, it is easy for users to program their own
functions, and to bundle them into a package. Packages
built by the users can then be uploaded on CRAN
(cran.r-project.org), and thereby be made available for
all R users. At the time of writing, there are more than
7500 available packages, and this number is continually
growing. R users can therefore have access to most statis-
tical methods, whatever the scientific field in which they
have been developed including statistics and biological
science, but also geography, geology, forensic science,
political science, and economy. The R environment also
provides numerous graphic functions and is suitable for
data exploration, as I demonstrate later in this chapter.
R is a scripting language: users can program their data

analysis in a text file and source it in the R environment to
allow its execution. However, the R environment in itself
does not allow the writing of scripts. It is possible,
although inconvenient, to write such scripts in any text
editor available on the computer (e.g. on Microsoft
Windows, Notepad, Wordpad, or even Microsoft Word).
However, it is preferable to write such scripts in an
Integrated Development Environment (IDE), a software
application designed for the writing of R scripts. Such
IDEs provides functionalities that facilitate the develop-
ment of R programs such as parentheses matching,
indentation of the code, or syntax coloring, and interact
deeply with the R environment (typically, the R code
can be sourced to R directly from the IDE, allowing a
quick debugging of the code). Many IDEs are available
for the R environment. Thus, the software GNU Emacs
(www.gnu.org/software/emacs) is highly customizable,
and thanks to the ESS extension (ess.r-project.org), it
can be used to write R scripts and source. However,
despite its high flexibility, new users prefer more user-
friendly software to write their R programs, such as the
commonly used RStudio (www.rstudio.com).

16.1.2 Qualities and Limits

The R language hasmany qualities. It is a simple, intuitive,
and elegant language. The R functions usually have a
name that can be found easily (t.test() for a t-test,
anova() for an Analysis of Variance, lm() for a linear
model, and glm() for a general linear model). As already
noted, no deep knowledge in computer programming is
required to use R. In addition, numerous graphical
functions are available, allowing the user to easily design
publication-quality figures. Moreover, since it is used by
data analysts inmany fields, it is one of the software where
the number of available statistical methods is the largest.
However, R also has characteristics that can be consid-

ered as drawbacks. Statistical analysts may be used to

different types of statistical software, where statistical
methods are accessed through mouse-clickable menus
and carried out with the help of dialog boxes. New users
are often dubious when they face the R prompt for the
first time. Whereas “traditional software” does not
require any learning phase and can be used almost
immediately, the learning curve of the language R is
steeper. However, as noted in Frank Harrell’s comments
highlighted earlier, a sensible data analysis usually cannot
be conducted by someone who is not at least a half-good
programmer.
Another criticism of R stems from a fundamental prop-

erty of this language: R is an interpreted language. In
other words, every command typed at the R prompt
has to be interpreted by the R software prior to its
execution. On the other hand, programs written using
compiled languages, such as C or Fortran, can be
executed directly. When a statistical method requires a
large number of calculation steps such as Monte Carlo
Markov chains, the corresponding R program can be
slow. Several R functions can be used to circumvent this
drawback to some extent (e.g. the function lapply()),
but such functions cannot be used in all contexts. For this
reason, when an intensive calculation is implemented in R
by a programmer, the core of the approach is usually
programmed in a low-level language (usually C or
Fortran), and interfaced in R. However, when R users
want to implement an intensive calculation in pure R,
they should be prepared to wait a long time before the
calculation ends.

16.1.3 R for Ecologists

Because of the central place of statistics in ecological
studies, the availability of all common statistical methods
makes R an ideal tool for ecologists. Thus, many seminal
books describing the use of common statistical methods
in ecological studies explain how to implement them in R,
for example Bolker (2007) on statistical modeling in
ecology, Zuur et al. (2009) on mixed models, and Borcard
et al. (2011) on how to use common factor analyses and
spatial statistics in ecological studies.
But R also provides tools that are used only in ecology

(see for example the primer to ecology by Stevens 2009).
Thus, ecological populationmodels can be developed in R
with the package popbio (Stubben and Milligan 2007);
the packages adehabitatLT, adehabitatHR, and
adehabitatHS provide methods to analyze animal
home ranges, animal movement data, and habitat selec-
tion by the wildlife (Calenge 2006); and the package
ResourceSelection can be used to fit resource selec-
tion functions (Lele et al. 2015). The CRAN website con-
tains a web page that describes many packages of interest
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to ecologists (at the URL: cran.r-project.org/web/views/
Environmetrics.html).
As noted by many authors (e.g. De Leeuw et al. 2007), R

has become the lingua franca of statistics; any new statis-
tical method proposed in the literature is now available in
R, no matter the particular scientific field where it has
been originally developed. Thus, although the previous
chapters in the present book are not specific to R, most
of the methods can be performed in R, and R serves as
the basis for the online exercises that accompany each
chapter.

16.1.4 R is an Environment

It should now be clear that R is not simply a software
package. It is also an environment designed to enhance
the communication between users and developers across
the disciplines of statistics, ecology, and computer
science. John Chambers and his colleagues designed the
S language “to turn ideas into software” (Chambers
1998), and the R environment also shares this property.
Thus, some functions are implemented only to

illustrate an idea. For example, the help page of the func-
tion pie(), which draws pie charts, clearly advises the
user against its use because of the low readability of such
displays (alternative methods are proposed on the help
page); the help page of the function SnowsPenultima-
teNormalityTest() in the package TeachingDe-
mos contains interesting information regarding the
uselessness of normality tests. Therefore, there is much
more to be gained from the R environment than simply
the execution of statistical tests.
Furthermore, R packages always propose a point of

view on the methods that they implement. Therefore,
the same method can be implemented in different
packages, but with different points of view. For example,
the bivariate kernel method is a general method that
smooths a point pattern in a two-dimensional space
(Silverman 1986). This approach is implemented in
several R packages, including:

1) the function kde2d() (package MASS): can be used
to smooth a point distribution on a scatterplot relating
two random variables;

2) the function kernel2d() (package splancs): can
be used to smooth a point pattern in geographi-
cal space;

3) the function kernelUD() (package adehabi-
tatHR): can be used to estimate the utilization distri-
bution from animal radio-tracking data.

The implementedmethod is the same for all these func-
tions. But these functions are different because they are
designed to work on different types of data, in different
contexts. Of course, it is possible to use, say, the function

kde2d() to estimate the utilization distribution of an
animal, but the use of kernelUD() is more convenient
here: the R object returned by the function kernelUD()
can be used by other functions of the package adehabi-
tatHR for further analysis, such as the estimation of the
home range or the study of the interaction between ani-
mals. Other R packages do not provide functions for the
use of the kernel method in this context, because their
author(s) did not design the function for this kind of
use. The philosophy underlying a package is usually
described in the documentation of the package (help
pages, tutorials, articles in scientific journals, mailing lists,
etc.), and the package user should be aware of the purpose
and goals.
Any user can write a package for the R software and

submit it to CRAN. The package should respect several
guidelines: the functions available in a package should
be thoroughly documented, no compiled code should
be included in the sources, and the licensing information
should be clearly indicated. When a package is submitted,
the CRAN system carries out a large number of automatic
tests to check that these guidelines are respected. How-
ever, CRAN does not test the soundness of the
approaches implemented in a package. It is not required
to beta-test a package prior to its submission to CRAN. It
is therefore up to the users to decide whether they should
use a given function implemented in a given package; they
can decide to use it because they know and trust the pro-
grammer, or because the package has been thoroughly
tested in the scientific literature, or because they have
checked the code themselves. It is, however, risky to
blindly use any function available in any random package,
without knowing the context in which it has been
proposed.
The main message of this chapter is that R should never

be used uncritically. There is no excuse for failing to read
thoroughly the documentation prior to the use of a
function.

16.2 Basics of R

In this section, I describe the basic commands that the
new user needs to know in order to use R efficiently.
The R software can be downloaded fromCRAN at the fol-
lowing URL: cran.at.r-project.org. The reader should also
install an IDE (see section 16.1.1 for a list of programs) to
facilitate code writing. Usually, organizing the code in an
IDE prior to its execution in R is a means to keep track of
the analyses performed on a dataset, which should be the
norm to allow reproducible research. The code presented
in this chapter is also available as a text file on the website
of the book, and can be opened in an IDE prior to its
execution.
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When we launch R for the first time, this software
shows the symbol “>.” This symbol is named the prompt;
it indicates that R is ready to take a command. R can be
used to perform simple calculations. For example, if
you type 3∗6 at the prompt and then type enter:

> 3*6
[1] 18

R calculates the result of this product, and displays the
result. R detects when a command is not complete. For
example, if you do not close a parenthesis, R will assume
that the command that you have typed is not complete.
R will then ask the user to complete the command by
replacing the prompt by the symbol “+.” For example:

> (3*6
+ )
[1] 18

In the rest of this chapter, when I show some R code,
I also include the prompt, so that the user can see exactly
what R returns after the execution of the code.

16.2.1 Several Basic Modes of Data

Everything in R is an object. Each object has a name that
can be called by the user, and contains data. Open R, and
type the following commands at the command prompt:

> foo <- 3
> foo
[1] 3
> # R is case sensitive: the following
> # returns an error
> Foo
Error: object 'Foo' not found
> foo + 2
[1] 5
> bar <- foo + 2
> bar
[1] 5

Note that any text following a dash # is considered as a
comment and is not interpreted by R. The symbol <− is
used inR to assign a value to an object. Thus, the first com-
mand assigns the value 3 to the object named foo. Calling
foo at the command line prints its value. In the fourth
command, we add the value 2 to the object foo. As
foo contains the number 3, R prints the object 5. The last
command illustrate how the results of this operation can
be stored in a new object bar. And again, the object
bar contains the value 5. This example also illustrates
how to use the common basic operations (+, −, ∗, /) in R.
The objects foo and bar are now stored in the R

environment. The function ls() can be used to list

the objects in the environment, and the function
rm() can be used to remove some of them:

> ls()
[1] "bar" "foo"
> rm(bar)
> ls()
[1] "foo"

The object foo stores a numeric value. However, we
can store values of other modes in an object. There are
many storage modes that can be handled by R (integer,
raw, etc.), but basically, the new R user needs to know
only three storage modes: (i) the mode numeric is
used to store real numbers; (ii) the mode character is
used to store character strings; and (iii) the mode logical
is used to store logical values (TRUE or FALSE).
The mode character is illustrated in the following

self-explanatory example:

> myString <- "A character string must be
enclosed in single or double quotes"
> myString
[1] "A character string must be enclosed in
simple or double quotes"

Common operations with the logical mode are illus-
trated in the following example:

> ## Is 3 greater than 5 ? The following
> ## operation returns a logical value
> Is3GreaterThan5 <- (3 > 5)
> Is3GreaterThan5
[1] FALSE
> ## Then 3 is lower than 5 ?
> 3 < 5
[1] TRUE
> ## Is 3 < 5 and 4 < 3 ?
> (3 < 5)&(4 < 3)
[1] FALSE
> ## Is 3 < 5 or 4 < 3 ?
> (3 < 5)|(4 < 3)
[1] TRUE
> ## Equality can be tested with ==, and
difference with !=
> 3 == 5
[1] FALSE
> 3 != 5
[1] TRUE
> ## Last, the sign ! is used to denote the
> ## logical complement
> ## (i.e., if A is TRUE, then !A, 'not A',
> ## is FALSE)
> !Is3GreaterThan5
[1] TRUE
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Logical values can be coerced to numerical values, and
vice versa:

> as.numeric(TRUE)
[1] 1
> as.numeric(FALSE)
[1] 0
> as.logical(1)
[1] TRUE
> as.logical(0)
[1] FALSE

Note the value NA is used by R to store missing values
for all modes (NA stands for “Not Available”). For the
numeric mode, when a missing value is used in a calcu-
lation, the result is also a missing value (e.g. 3 + NA
returns a missing value). For the logical mode, R respects
the rules of logical calculus, as illustrated below:

> ## Will it rain tomorrow? We do not know, so
> ## we use NA
> RainTomorrow <- NA
> ## Sunshine at the time of writing? We
> ## know it:
> SunshineNow <- TRUE
> ## Snow at the time of writing? We also
> ## know it:
> SnowNow <- FALSE
>
> ## Now consider the two conditions:
> ## RainTomorrow and SunshineNow
> ## Since one of these conditions is NA, we
> ## do not know whether both are TRUE
> RainTomorrow&SunshineNow
[1] NA
> ## But we know that at least one of these two
> ## conditions is TRUE
> RainTomorrow|SunshineNow
[1] TRUE
> ## We know that it is not snowing now, but we
> ## do not know if it will rain
> ## tomorrow, so that we cannot be sure that
> ## at least one of these conditions
> ## is TRUE. Therefore, the result is NA
> RainTomorrow|SnowNow
[1] NA

16.2.2 Several Basic Types of Objects

We now describe more precisely the R objects them-
selves. The new R user really needs to know only four
basic types of objects: (i) vectors; (ii) matrices and arrays;
(ii) lists; and (iv) functions.
Vectors: vectors are one-dimensional objects used in R

to store several values of the same mode in one object.
Thus, it is not possible to store both character and

numeric values in the same vector. Vectors aremost com-
monly created using the function c():

> # Create a vector containing 6 numeric
> # values
> myVector <- c(2, 1, 3, 8, 9, 2)
> myVector
[1] 2 1 3 8 9 2
> # The length of this vector is:
> length(myVector)
[1] 6

Note that in the previous section, the objects foo, bar,
myString, and myLogical were vectors of length one.
The elements of a vector can be recovered with the
bracket notation:

> # Prints the second element of the vector
> myVector[2]
[1] 1
> # Creates another numeric vector
> myIndex <- c(2,4)
> # Prints the second and fourth elements
> # from myVector
> myVector[myIndex]
[1] 1 8
> # Or, more directly:
> myVector[c(2,4)]
[1] 1 8
> # stores the result in another vector
> myOtherVector <- myVector[c(2,4)]
> myOtherVector
[1] 1 8

It is sometimes useful to generate vectors of consecu-
tive integers. This is possible with the help of the colon
“:”. For example:

> # generates a vector of consecutive
integers from 2 to 5
> 2:5
[1] 2 3 4 5
> # Prints the elements 2 to 5 from myVector
> myVector[2:5]
[1] 1 3 8 9

Negative indices can be used to remove elements from
a vector:

> ## prints myVector without the first
element
> myVector[-1]
[1] 1 3 8 9 2
> ## prints myVector without the first and
> ## fifth elements
> myVector[c(-1, -5)]
[1] 1 3 8 2
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In this example, specific elements are extracted from
the vector by passing another vector of integers inside
the brackets. However, R also allows us to extract
elements with the help of a vector, as illustrated in the
following example:

> GreaterThan4 <- (myVector > 4)
> GreaterThan4
[1] FALSE FALSE FALSE TRUE TRUE FALSE
>
> # The logical vector GreaterThan4 has the
> # same length as myVector
> # It contains TRUE if the corresponding
> # element in myVector is > 4
> # and FALSE otherwise
>
> # This vector can be used to print the
> # elements of myVector that are
> # greater than 4:
> myVector[GreaterThan4]
[1] 8 9
> # Or, more simply:
> myVector[myVector > 4]
[1] 8 9

Last, it is also possible to redefine the value of one or
several vector elements using the bracket notation, and
even to extend the length of a vector:

> ## define a vector of length two
> myvec <- c(10, 20)
> ## add a third element to this vector
> myvec[3] <- 40
> myvec
[1] 10 20 40
> ## Substitute new values into the first
> ## two elements:
> myvec[1:2] <- c(80, 90)
> myvec
[1] 80 90 40

Matrices and arrays: a matrix is a collection of data
elements, all of the same mode, arranged in a two-
dimensional rectangular layout. A matrix is typically
created from a vector with the help of the functionmatrix,
as in the example below:

> myMatrix <- matrix(myVector, nrow = 3)
> myMatrix

[,1] [,2]
[1,] 2 8
[2,] 1 9
[3,] 3 2
> # number of columns
> ncol(myMatrix)
[1] 2

> # number of rows
> nrow(myMatrix)
[1] 3

The vector myVector created previously is of length
six. When we create the matrix, we indicate here how
many rows the matrix should contain, in this case, three.
Because the vector is of length six, the resulting matrix
has two columns. The matrix is then filled with the
elements of the vector (filling the rows first and
then the columns). Elements of the matrix can be recov-
ered or assigned with the help of the bracket notation
[row_number, column_number]. If the element
row_number (or column_number) is missing, then
the result is a vector containing all the rows (or columns)
for the given column (resp. row). This operation is
illustrated in the example below:

> ## Recover the element located in the
> ## third row and the second column
> myMatrix[3,2]
[1] 2
> ## Recover the second and third rows in the
> ## first column
> myMatrix[2:3, 1]
[1] 1 3
> ## Recover the second row
> myMatrix[2,]
[1] 1 9
> ## Recover the second column
> myMatrix[,2]
[1] 8 9 2
> ## Example of assignation. We change the
> ## first row of the matrix
> myMatrix[1,] <- c(9, 5)
> myMatrix

[,1] [,2]
[1,] 9 5
[2,] 1 9
[3,] 3 2

Again, negative indices and logical vectors can be used
for assignation and subsetting:

> myMatrix[-1,]
[,1] [,2]

[1,] 1 9
[2,] 3 2
>
> myMatrix[c(FALSE, TRUE, TRUE),]

[,1] [,2]
[1,] 1 9
[2,] 3 2

A matrix organizes data in a two-dimensional struc-
ture. R also provides a broader type of multidimensional
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structure, named “array.” A matrix is a special type of
array, with two dimensions. It is possible (though not
common) to organize data in arrays with three or more
dimensions. Arrays are created with the help of the func-
tion array():

> ar <- array(1:24, dim=c(4,3,2))
> ar
, , 1

[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

, , 2

[,1] [,2] [,3]
[1,] 13 17 21
[2,] 14 18 22
[3,] 15 19 23
[4,] 16 20 24

In this example, we create a three-dimensional array
containing the integers 1 to 24. The first dimension
contains four elements, the second one contains three
elements, and the last one contains two elements.
Similarly, extraction can be done with the help of the
bracket notation:

> ar[4,2,1]
[1] 8

And similarly, subsetting and assignation can be done
with the help of vectors of positive integers, negative
integers, or logical values.
Lists: a list is a collection of R objects. A list can store

any type of R object (vectors, matrices or arrays,
functions, and even other lists). One given list can store
elements of different modes. It is typically created with
the function list(). For example here is a list with a
vector, a matrix, a string, and a logical vector:

> myList <- list(myVector, myMatrix,
+ "a character string", myVector > 4)
> myList
[[1]]
[1] 2 1 3 8 9 2

[[2]]
[,1] [,2]

[1,] 2 8
[2,] 1 9
[3,] 3 2

[[3]]
[1] "a character string"

[[4]]
[1] FALSE FALSE FALSE TRUE TRUE FALSE

Lists are considered internally as generic vectors.
Therefore, it is possible to recover or modify subparts
of the list using the bracket notation:

> myList[2:3]
[[1]]

[,1] [,2]
[1,] 2 8
[2,] 1 9
[3,] 3 2

[[2]]
[1] "a character string"
> myList[1]
[[1]]
[1] 2 1 3 8 9 2
> ## Example of assignation
> myList[3] <- list("Another string")

Similarly to vectors and matrices, it is possible to subset
or assign elements in a list using a vector of positive inte-
gers, negative integers, or logical values. Note that the use
of the single bracket notation on a list returns a list. Sim-
ilarly, only another list can be assigned as a given element
of a list using this notation. If we want to extract or change
the object stored in a particular element of the list, we have
to use the double bracket notation. For example, to recover
or change the object stored in the first element of the list:

> myList[[1]]
[1] 2 1 3 8 9 2
> myList[[1]] <- "yet another character
string"

Since the double bracket notation does not necessarily
return a list, it is not possible to use it to extract several
elements of the list. Therefore, the following command
is invalid:

> myList[[1:3]]
Error in myList[[1:3]] : recursive
indexing failed at level 2

Note that the elements of a list can be named. This is
also true for vectors and matrices, but it is more impor-
tant for lists, as the elements can be recovered with their
name, using the $ notation. For example:

> ## This list has two named elements
> myList2 <- list(theVector = myVector,
+ TheMatrix = myMatrix)
> ## Call the element theVector
> myList2$theVector
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[1] 2 1 3 8 9 2
> ## Same result as
> myList2[[1]]
[1] 2 1 3 8 9 2

Functions: functions are R structures designed to per-
form operations on other R objects. Each time that the
user writes a command at the R prompt and hits the
“Enter” key, one or several functions are executed. An
R function is typically called by its name followed by par-
entheses. Inside the parentheses, the user must pass the
arguments required by the function. We have already
described several functions previously, such as c(),
matrix(), and list(). Let us consider the function
round(), which rounds the values in a numeric vector.
The list of arguments of this function can be printed with
the function args():

> args(round)
function (x, digits = 0)
NULL

The function round() takes two arguments: x contain
the vector of value(s) to be rounded, and digits is the
number of decimal places to be used (an integer is
expected). The function defines a default value
digits = 0, which means that by default, this function
rounds x to the nearest integer. The following commen-
ted example illustrates the use of this function:

> ## Rounding using the default value for
> ## digits, i.e. digits = 0
> round(x = 3.78)
[1] 4
> ## Note that it is not necessary to specify
> ## x explicitly (see below)
> round(3.78)
[1] 4
> ## Now, round to the first decimal place
> round(x = 3.78, digits = 1)
[1] 3.8
> ## When the arguments are named, the order
> ## of the arguments is not important
> round(digits = 1, x = 3.78)
[1] 3.8
> ## However, when the arguments are not
> ## named, R interprets the arguments
> ## in the same order as the one indicated by
> ## args()
> ## In other words, The following command
> ## is identical to the previous one:
> round(3.78, 1)
[1] 3.8
> ## But this one is not:
> round(1, 3.78)
[1] 1

> ## Here, R understands x = 1 and digits
> ## = 3.78
> ## (as digits should be an integer,
> ## R interprets it as 4)

To find out which type of objects is expected by a func-
tion, we can use the important function help():

> help(round)

The function help() is so intensively used that a
shortcut is available in R: typing the name of the function
after a question mark is an alias to call the help page:

> ?round

The help page describes the arguments of the function
and gives details on how the function should be used, as
well as implementation details and examples of use. The
next section describes more precisely how to find help
in R.

16.2.3 Finding Help and Installing New
Packages

The CRAN provides more than 7500 R packages, with
each package generally providing numerous functions.
As the reader can imagine, even the most experienced
R users do not know all the functions available in all
packages. The main skills required to use R are: (i) the
ability to find the function suitable to perform a particular
operation; and (ii) the ability to find help on how to use
this function. In this section, I focus on these skills.
Numerous functions are intended to help the user to

find help within the R software. The user already knows
the function help(). However, the use of help() sup-
poses that the user already knows the name of the func-
tion that he wants to use. In most cases, the new R user
will know the name of the statistical method that he
wants to use, but not the name of the function(s) that
implement it. This is where the function help.
search() is the most useful (see the help page of
the function help.search() for a detailed descrip-
tion of this function, by typing ?help.search at the
command prompt).
For example, imagine that we have two vectors a and b,

representing the value of two variables measured on
seven animals:

> a <- c(3, 2, 5, 7, 1.5, 12, 4.1)
> b <- c(17, 18, 12, 20, 3, 8, 40)

We would like to calculate a Spearman correlation
coefficient between these two variables, and test its signif-
icance. However, we do not know the name of the func-
tion that we need to call to perform these operations. We
use the function help.search() to search a character
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string in the help pages of the functions available on your
system. For example:

> help.search("correlation")

Note that the quotes are important (as indicated on the
help page, the main argument of the function help.
search() should be a character string, therefore
enclosed in quotes). Onmy system, this command displays
a list of 115 functions with a help page where the word
“correlation” has been found. This result will likely be dif-
ferent on another system: because this function searches
patterns on the R help pages available on a computer,
the number of matches will depend on the set of packages
installed on the system. In my case, it will be too long to
study the help pages of 115 functions to identify the func-
tion that I need. We may therefore refine the search:

> help.search("Spearman correlation")

Help files with alias or concept or title
matching 'Spearman correlation' using
fuzzy matching:

stats::cor.test Test for Association/
Correlation Between
Paired Samples

Type '?PKG::FOO' to inspect entries 'PKG::
FOO', or 'TYPE?PKG::FOO' for
entries like 'PKG::FOO-TYPE'.

There is only one function that matches the pattern, the
function cor.test(), available in the package stats,
which is loaded by default. We have more information
about this function by typing ?cor.test at the
command prompt. Take the time to read the help page
of a function that you do not know! The author of the
function generally presents important information on
the help page of a function, and it is a common error
among new R users to overlook this step. Failing to read
the documentation may lead to a misuse of the function,
and therefore, to incorrect results.
On this help page, we see that the function cor.test

() tests “for association between paired samples, using
one of Pearson’s product moment correlation coefficient,
Kendall’s tau, or Spearman’s rho”. This function takes an
argument named method:

method: a character string indicating
which correlation coefficient is
to be used for the test. One of
'"pearson"', '"kendall"', or
‘"spearman"’, can be abbreviated.

This help page provides all the required information to
run this function. We are now able to calculate the

Spearman correlation coefficient between a and b, and
to test whether it is significantly different from 0
(two-sided test, see the help page):

> cor.test(a, b, method="spearman")

Spearman's rank correlation rho

data: a and b
S = 48, p-value = 0.7825
alternative hypothesis: true rho is not
equal to 0
sample estimates:

rho
0.1428571

It turns out that the coefficient is rather low at rho = 0.14,
and not significantly different from 0, with a P-value of
P = 0.78. This example is a simple one, because the func-
tion that we were looking for was already present on our
system. However, in many cases, we will need functions
implemented in packages available on CRAN, but not
on our system. For example, imagine that we want to fit
a random forest to our data for predictive purposes
(Breiman 2001). Using the approach described above:

> help.search("random forests")
No vignettes or demos or help files found
with alias or concept or
title matching 'random forests' using
fuzzy matching.

However, this approach is common in statistics, and it
would be surprising if it was not available in R. The func-
tion RSiteSearch() can be used in the same way as
help.search() to find the function implementing it
on CRAN:

> RSiteSearch("random forests")

This opens a browser window listing all the web pages
on CRAN where the search pattern is present. Looking at
the results, we can see that there are many packages that
propose an implementation of methods related to ran-
dom forests (nonexhaustive list):

1) The package bigrf implements the fit of random for-
ests on large datasets.

2) The package randomForestSRC implements the
fit of random forests for survival, regression, and
classification.

3) The package randomSurvivalForest imple-
ments the fit of random survival forests.

4) The package varSelRF implements the variable
selection in a random forest fit.

5) The package randomForest implements “Breiman
and Cutler’s random forests for classification and
regression.”
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The function RSiteSearch() returned 537 results at
the time of writing! The list of results illustrates an impor-
tant characteristic of the R software that we have already
discussed. Each function implements a particular point of
view on the approach, and the user should be aware of the
differences between the points of view. As for most topics
in science, we can see from these results that there are
many points of views on random forests: on the algo-
rithms that can be used to implement a given approach,
on the kind of data required as input, or on the kind of
results expected. It is dangerous to randomly pick one
of these functions, hoping that we make the correct
choice. Users are expected to know exactly what they
want to do.
For example, imagine that you want to fit a random for-

est as described by Breiman (2001). Browsing the results
of RSiteSearch(), we can see that the package ran-
domForest seems to implement this approach, as and
cites explicitly the Breiman and Cutler’s approach.
Browsing the web (Google “randomForest R"), we
learn that this package includes the original C code of
the Program “Random Forests” written by Breiman
(2002), and provides an R interface to this reference pro-
gram (see for example finzi.psych.upenn.edu/R/library/
randomForest/DESCRIPTION). Browsing the web fur-
ther, we discover a scientific paper describing the pack-
age, and how it should be used (Liaw and Wiener
2002). This function seems to be the best choice, given
our objectives. Browsing the mailing lists hosted on the
R website (especially the R-help mailing list), we also
obtain additional information on the use of this approach
(required sample sizes, common errors in using this func-
tion). Background research is part of the scientific work
expected before the analysis, and cannot be overlooked.
Now, imagine that we are satisfied with the package

randomForest. We can download and install it in R,
using the function install.packages():

> install.packages("randomForest")

The package is then loaded into R with the function
library():

> library(randomForest)

Then, we can see the list of functions available in that
package:

> help(package = "randomForest")

The function randomForest() of this package
seems to perform the desired operation. As previously,
you can obtain additional information on this function
by typing ?randomForest at the command prompt.
I stress that it is important to read thoroughly all the

material related to the programs that you want to use,
and the help page generally provides useful references

related to the method. The reader should be aware that
there is absolutely no warranty that the methods available
in a given R package are sound for the issue at hand.

16.2.4 How to Write a Function

Writing a custom R function is easy. The definition of a
function has the following structure:

functionName <- function(arguments)
{

body of the function
...
return(result)

}

The first line of the code defines the function, and curly
brackets are used to group together the command lines
that build the body of the function. We consider the clas-
sical example of a function that converts a number C of
Celsius degrees into a number F of Fahrenheit degrees.
The conversion formula is the following:

F = C × 9/5 + 32

We would like to create a function that takes a number
of Celsius degrees as an argument and returns a number
of Fahrenheit as output. You can write the following
function in an IDE (Section 16.1.1):

Celsius2Fahrenheit <- function(Celsius)
{

Fahrenheit <- Celsius * 9/5 + 32
return(Fahrenheit)

}

Just copy and paste this function into R (or source the
file in R with the function source()). You can now use
it for conversion. For example:

> Celsius2Fahrenheit(40)
[1] 104

It is important to understand the scope of variables in R.
In the above example, the object Celsius was defined in
the arguments of the function. Now, what would happen
if we had an R object named Celsius in the R global envi-
ronment? Would there be confusion between the object
Celsius in the function and the object Celsius in the global
environment? This can be easily checked:

> Celsius <- 200
> Celsius2Fahrenheit(40)
[1] 104

This does not change the result. Actually, R defines a
temporary local environment for the function to store
the value of the variables passed as arguments (here
Celsius = 40), as well as the value of the variables
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created in the body of the function (here Fahrenheit).
This environment is deleted when the function returns its
value. When an object name is called within a function, R
first searches this object in this temporary local
environment, and, if it does not find it, R searches for it
in the global environment. For example, consider the
following example:

> foo <- function(x)
+ {
+ return(x + y)
+ }
> foo(3)
Error in foo(3) : object 'y' not found

Here, we define a function taking only one argument x.
The body of the function contains only one command:
the sum x + y. However, the object y has not been
defined in the arguments or in the body of the function.
In addition, there is no object y in the global environ-
ment. Therefore, calling foo(3) assigns three to x,
but y has no value. The function therefore returns an
error. Now consider this example:

> y <- 2
> foo(3)
[1] 5

We define an object y in the global environment. The
function foo() finds the object x in the temporary
environment of the function, and the object y in the
global environment.
Basic control-flow constructs are available to facilitate

programming. We present the most common construct,
but there is a help page that lists them all (type ?Control
at the command prompt). The if... else...
construct can be used to test a condition. For example,
consider the function Celsius2Fahrenheit()
programmed previously. We could program another func-
tion to convert Fahrenheit degrees to Celsius degrees. Or,
we could program a more general function that converts
between Celsius and Fahrenheit or conversely, depending
on the value of an argument. The following function illus-
trates the use of the if... else... construct for this
function. You can write the following function in an IDE:

ConvertDegrees <- function(Degrees,
conversion="CelsiusToFahrenheit")
{
if (conversion == "CelsiusToFahrenheit") {

DegreesOut <- Degrees * 9/5 + 32
} else {

DegreesOut <- (Degrees - 32) * 5/9
}
return(DegreesOut)

}

This function takes two arguments: the first one is a
number of degrees, and the second one indicates the type
of desired conversion. By default, the argument conver-
sion is set to “CelsiusToFahrenheit.” In the
body of the function, we first test the type of expected
conversion. If the user asks for “CelsiusToFahren-
heit,” then we use the formula to convert Celsius
degrees to Fahrenheit degrees. If conversion takes
any other value, we use the formula to convert Fahrenheit
to Celsius. Write this function in an IDE, then copy it and
paste it in R (or source it in R with the function source
()). You can then use it for conversion:

> ConvertDegrees(40)
[1] 104
> ConvertDegrees(104,
+ conversion="Fahrenheit2Celsius")
[1] 40
> ConvertDegrees(ConvertDegrees(40),
+ conversion="Fahrenheit2Celsius")
[1] 40

16.2.5 The for loop

Another useful construct is the for loop. It can be used
to repeat an operation numerous times: The example
below illustrates the use of the for loop:

> vec <- 1:5
> for (i in vec) {
+ cat("The variable i now takes the value",
+ i, "\n")
+ }
The variable i now takes the value 1
The variable i now takes the value 2
The variable i now takes the value 3
The variable i now takes the value 4
The variable i now takes the value 5

The function cat() collapses its arguments into a
character string and prints it in the console (note that
\n is the character used for the newline). The for loop
is here repeated on a vector of length 5, containing the
integers from 1 to 5. At first, the variable i takes the first
value of this vector, i.e. the value 1. The body of the loop is
executed and all the commands in this loop are executed
with the value i = 1; the function cat() therefore prints
the value of the variable i = 1. Then, i is incremented: it
takes the second value in this vector, i.e. the value 2. This
operation is repeated for all the values of the vector.
The for loop is extremely useful when an operation is

to be repeated many times. For example, imagine that you
have a folder with many files that you wish to import in R.
Rather than importing themmanually one after the other,
you can define a vector containing the names of the files
in that folder (there is a function to build such a vector:
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list.files()) and build a for loop to import them
in a list, i.e. something like:

lifi <- list.files()
results <- list()
for (i in 1:length(lifi)) {

results[[i]] <- read.table(lifi[[i]])
}

However, thefor loop has a drawback: relying too heav-
ily on for loops can make the script run slow: at each iter-
ation, the code inside the for loop must be interpreted
and then executed. The interpretation step can be slow
when the number of commands or the number of itera-
tions in the for loop is large. In such situations, it is often
preferable to rely on vectorized functions such as lapply
(), which perform the interpretation step only once.

16.2.6 The Concept of Attributes and S3 Data
Classes

Any R object has an attribute list that can optionally be
used to store additional information about the object.
The attributes list can be accessed with the function
attributes(), and any particular attribute can be
defined and set with the function attr(). The following
example illustrates this concept:

> age <- c(3,2,5,6)
> attr(age, "units") <- "Months"
> age
[1] 3 2 5 6
attr(,"units")
[1] "Months"
> attributes(age)
$units
[1] "Months"

In this example, the vector age contains the age of a
sample of four animals. We have defined an attribute
named “units” to store the measurement units for
the age (we could of course have used a completely
different name). This attribute is considered as meta-
information on the object.
Why should we use attributes? The average R user will

rarely define the attributes of the objects. However, it is
important to understand them, as they are intensively used
by R programmers to store information in the output of a
function. For example, consider the function na.omit
(), that removes missing values from a vector:

> vec <- c(3, NA, NA, 5, 6)
> vecWithoutNA <- na.omit(vec)
> vecWithoutNA
[1] 3 5 6
attr(,"na.action")
[1] 2 3

attr(,"class")
[1] "omit"

The function na.omit() returns the desired vector,
without missing values, but also defines two attributes.
We will describe later the special attribute “class”.
The attribute “na.action” stores the position in the
original vector of the removed missing values, so that it
is still possible to rebuild the original vector from
vecWithoutNA, if desired.
There is an attribute that has a special meaning in R: the

attribute “class”. In the previous sections, we have
described the basic object types available in R (vectors,
matrices and arrays, lists, and functions). Actually, it is
possible to extend this list by defining your own object
classes based on these basic types. R provides a simple
class definition mechanism. The classes created using this
approach are named S3 classes (standing for language S
version 3, where this mechanism has been developed).
For example, imagine a study of the relationship between

the age of an animal (in months) and its weight. We have a
small sampleof animals, eachanimalbeing captured several
times. For each animal, we have the following information:

1) Whether the animal is a female (TRUE) or a
male (FALSE)

2) A vector of the animal age at each capture (of variable
length depending on the number of capture)

3) A vector of weights at each capture (same length as the
vector of ages)

The elements are of different modes (logical, numeric),
so that we need to use the only object type allowing to
store different modes, i.e. a list. We could define a list
to store the information for a given animal. For example,
for the first animal:

> # The vector of ages for animal 1
> vecage <- c(2, 4, 7, 12, 32)
> # The vector of weights for animal 1
> vecweight <- c(5, 25, 32, 50, 120)
> Animal1 <- list(Female = TRUE,
+ age = vecage, weight = vecweight)

The object Animal1 stores all the information related
to animal 1. Most R users will be satisfied with this
approach, and will not go further. However, R program-
mers think differently. If this type of study is common,
then for every animal in this type of study, we will have
this type of information. Therefore, we could define a spe-
cial type of list designed to store this information. More
formally, we define a class of objects. We could name this
class “Animal”, for example. The class “Animal” that
we define is a list with three elements: (i) a logical value
named Female; (ii) a numeric vector named age; and
(iii) a numeric vector named weight. To define the class
of an object in R, we use the function class():
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> class(Animal1) <- "Animal"
> Animal1
$Female
[1] TRUE

$age
[1] 2 4 7 12 32

$weight
[1] 5 25 32 50 120

attr(,"class")
[1] "Animal"

The function class() just defines an additional
attribute to the object Animal1, the attribute “class”.
This function does nothing more than:

> attr(Animal1 , "class") <- "Animal"

Why should we bother with this particular attribute?
And if we really want to define a new attribute to define
the type of an object, why should we use the attribute
“class” rather than any user-defined attribute,
like “type” or “AnyNameIWishToRepresentA
Category”?
The point is that this particular attribute “class” is

important because it can be used to define the behavior
of some special functions, named generic functions.
Generic functions have a behavior that depends on the
class of the object passed as argument. There are many
generic functions available in R, especially graphic func-
tions (e.g. plot(), hist()). We will focus of the func-
tion summary(), which provides a summary of an
object. If you look at the help page of this function, it is
clearly indicated:

'summary’ is a generic function used to
produce result summaries of the results
of various model fitting functions

Actually, when the function summary() is called on
an object, this function first checks the class attribute
of the object. In our case, the class of the object Animal1
is “Animal”. Then, this function searches in the global
environment a function named summary.Animal(). If
there is such a function in the environment, the generic
function summary() will call this other function sum-
mary.Animal(), and pass the object as argument. If
there is no function summary.Animal(), the generic
function summary() will use the function summary.
default() (this default method is generally described
on the help page of the generic function, in this case
summary()).
In our case, we have defined a class named “Animal”,

but we have not defined any function named summary.
Animal(). Therefore, when we call the function

summary of this object, it calls the function summary.
default():

> summary(Animal1)
Length Class Mode

Female 1 -none- logical
age 5 -none- numeric
weight 5 -none- numeric
>
> ## This is the same as:
> summary.default(Animal1)

Length Class Mode
Female 1 -none- logical
age 5 -none- numeric
weight 5 -none- numeric

However, it is possible to define a method to the
generic function summary() for the class “Animal.”
For example, you can write the following function in
an IDE:

summary.Animal <- function(object, ...)
{
cat("Object of Class 'Animal'\nThere are",

length(object$age),
"captures of this animal\n")

}

The function summary.Animal() just prints some
information on the object. Copy and paste this function
to the command prompt. Now, when you will call the
function summary(), it will call the method
summary.Animal():

> summary(Animal1)
Object of Class 'Animal'
There are 5 captures of this animal

An important concept when working with object
classes is the inheritance. In our example, we may wish
to define a finer class “FrenchAnimal” that contains
all the elements of the parent class “Animal” (a logical
element named Female, and two numeric vectors
named age and weight), but which also contains an
additional element “Location” giving the official code
from the French institute for Statistics, Institut national
de la statistique et des études économiques (INSEE), of
the municipality where it has been captured. Because this
code is specific to France, it would be pointless for ani-
mals captured in other countries. However, it could pos-
sibly be useful for mapping purposes when we have this
information. Because this new class has the same ele-
ments as the class “Animal”, all the functions designed
to work with the class “Animal” would also work with
the subclass “FrenchAnimal”. We say that the class
“FrenchAnimal” extends the class “Animal”. And
we say that the object inherits both classes. This
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inheritance can be stated in the class attribute, by provid-
ing a character vector containing all the classes that a
given object inherits. So, for example:

> # The vector of ages for animal 2
> vecage <- c(2, 4, 7, 12, 32)
> # The vector of weights for animal 2
> vecweight <- c(5, 25, 32, 50, 120)
> Animal2 <- list(Female = TRUE,
+ age = vecage, weight =
+ vecweight, location=71270)
> class(Animal2) <- c("FrenchAnimal",
+ "Animal")

Then, generic functions having methods for these two
classes can be used. Note that any generic function fun
() will first search a function named fun.FrenchAni-
mal() and pass the object to it. If there is no such
function, it will search a function named fun.Animal
() and pass the object to it. And if there is no such
function, it will pass the object to the function fun.
default().
Note there is a special generic function that the user

should know: the function print(). This function is
called invisibly each time that the name of the object is
typed at the command prompt. That is:

> 3
[1] 3
> # is the same as
> print(3)
[1] 3

Therefore, it is possible to define a print() method
for any object class. For example, we could define a
print() method for the class “Animal”. For the sake
of simplicity, in our example it is identical to the function
summary.Animal():

print.Animal <- function(x, ...)
{

cat("Object of Class 'Animal'\n",
length(x$age)
"captures of this",
"animal\n")

}

Write this function in an IDE and copy-paste it to the
command prompt. Then, each time you will simply call
Animal1, it will call the function print.Animal():

> Animal1
Object of Class 'Animal'
5 captures of this animal

Note that the availability of the function print.
Animal() does not change the content of the object

Animal1; it changes only the way it is printed.
Defining print methods is common in the R environ-
ment. For many functions, the object returned con-
tains numerous large elements (e.g. a list of vectors
containing thousands of values), and it is not conven-
ient to print the whole content of an object each time
the object is called. The availability of print methods
allows us to print only a short description of the
object.
Thus, the content of the object may differ from

what is printed. When a function returns an object,
and when the user needs to use components of this
object, it is always useful to know the structure of
the class to which this object belongs. The structure
is usually described on the help page of the function
(section “value” of the help pages). The user may also
look at the structure of the object, thanks to the func-
tion str():

> str(Animal1)
List of 3
$ Female: logi TRUE
$ age : num [1:5] 2 4 7 12 32
$ weight: num [1:5] 5 25 32 50 120
- attr(*, "class")= chr "Animal"

Another way is to use the function unclass(), that
deletes the attribute “class” of an object:

> unclass(Animal1)
$Female
[1] TRUE

$age
[1] 2 4 7 12 32

$weight
[1] 5 25 32 50 120

16.2.7 Two Important Classes: The Class
factor and the Class data.frame

Section 16.2.6 described the S3 class-definition mechan-
ism available in R. Most packages in R define their own
classes and methods for these classes. It is therefore vir-
tually impossible to describe all of them. However, there
are two classes that are so commonly used in R, that
deserve their own section: the class “factor” and the
class “data.frame”.
The class “factor” is used to handle qualitative vari-

ables in R. Objects of class “factor” are defined with
the function factor() (see the help page of this func-
tion). The following example shows an example of use
of this function:
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> fac <- c("Adult", "Young", "Young",
+ "Adult", "Young")
> age <- factor(fac)
> age
[1] Adult Young Young Adult Young
Levels: Adult Young
> ## The function attributes()
> ## lists all attributes of object
> attributes(age)
$levels
[1] "Adult" "Young"

$class
[1] "factor"
>
> unclass(age)
[1] 1 2 2 1 2
attr(,"levels")
[1] "Adult" "Young"

In this example, the vector fac is a character vector
containing the age class of several animals. The animal
may be either young or adult. The function factor()
returns an object of class “factor”, with an attribute
named “levels”. As the name indicates, this attribute
defines the two levels of the factor. The returned vector is
itself a vector of integers, each integer corresponding to
one particular level. Thus, the value 1 is associated with
the first level, “Adult”, and the value 2 is associated
to the second level, “Young.” The use of the class
“factor” is preferred when dealing with qualitative
variables in the R functions, for several reasons. First,
there are many functions designed to work on this class.
For example, you can get or redefine the list of levels of
the factor with the function levels(); there is amethod
for the function summary(); etc.

> levels(age)
[1] "Adult" "Young"
> levels(age) <- c("Old", "Baby")
> age
[1] Old Baby Baby Old Baby
Levels: Old Baby
> summary(age)
Old Baby

2 3

In addition, factors need less computer memory than
character strings. Memory management is often a prob-
lem in Rwhen working with large datasets. Last, the use of
this function allows us to make sure that the levels of the
factor are those that we expect. Consider the following
example:

> fac <- c("Adult", "Young", "young",
+ "Adult", "Young")

> age <- factor(fac)
> age
[1] Adult Young young Adult Young
Levels: Adult young Young

It is clear that there is a typo here, as three levels are
defined instead of two. In this case, it is easy to spot
the difference between “Young” and “young” because
there are only five elements in the vector, but error check-
ing is harder when the dataset is large.
There is another important class that the reader should

know: the class “data.frame”. This class is designed
to store data tables. Basically, the class “data.frame”
is a list of vectors, all the vectors having the same length.
Objects of this class are createdwith thehelpof the function
data.frame(). Note that functions for data import into
R, such as read.table() or read.csv(), also return
data frames. We illustrate this class in the example below:

> # The vector of ages for animal 1
> vecage <- c(2, 4, 7, 12, 32)
> # The vector of weights for animal 1
> vecweight <- c(5, 25, 32, 50, 120)
> df <- data.frame(age=vecage,
+ weight=vecweight)
> df
age weight

1 2 5
2 4 25
3 7 32
4 12 50
5 32 120
>
> unclass(df )
$age
[1] 2 4 7 12 32

$weight
[1] 5 25 32 50 120

attr(,"row.names")
[1] 1 2 3 4 5

Objects of the class “data.frame” can be handled in
the same way as list. Therefore, to get the second value
from the variable age, just type:

> df$age[2]
[1] 4
> # Or
> df[[1]][2]
[1] 4

The class “data.frame” can also be considered as a
two-dimensional object, in the same way as a matrix.
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Therefore, it is possible to extract values from the object
using the matrix bracket notation:

> df[1,2]
[1] 4

Note the difference between the matrix and the data.
frame. The matrix is a two-dimensional structure, but
the different columns of the object should be of the same
mode (all numeric, all logical, all character). Because a
data frame is basically a list, the different columns may
belong to different modes.

16.2.8 Drawing Graphics

One of the great strengths of the R environment is the abil-
ity to easily draw insightful graphics. R developers have
provided many ways to build graphics. The interested
reader may have a look at the packages ggplot2 and
lattice, which contain numerous interesting functions
for plotting data. In this section we will present only the
base graphics, the most common approach to plot data.
The base R environment provides numerous functions

to plot data. For example, the function plot() can be
used to display scatterplots, the function hist() can
be used to draw histograms, the function boxplot()
can be used to draw boxplots, the function barplot
() can be used to display bar charts, and the function
dotchart() can be used to display dot charts.
We will not illustrate all these functions here (we rec-

ommend reading the help page of these functions; see
also the excellent book by Beckerman and Petchey
2012). Rather, we will focus on one of these functions,
the function plot(), and illustrate how customized
graphics can be done in R. To illustrate these functions,
we will work on an example dataset already available by
default in the R environment, the dataset trees (see
the help page of this dataset by typing ?trees at the
command prompt). This dataset is a data frame with
three variables, giving the girth, the height, and the vol-
ume of 31 black cherry trees. The function head() dis-
plays the first six rows of this data frame:

> head(trees)
Girth Height Volume

1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7

First, we could have a look at the relationship between
the height and the volume, without taking the girth into
account. As noted previously, this is achieved with the
help of the function plot(). Note that plot() is a
generic function; therefore the use of plot in this case is

identical to the use of the function plot.default(),
as the objects given as arguments do not have any class:

plot(trees$Height, trees$Volume, xlab =
"Height of the tree",

ylab = "Volume of the tree",
main = "Relationship between height and

volume",
pch = 3)

The arguments of the function plot() allow control
on the various elements of the plot (see the help page
of the function plot.default(), which gives many
details on how to use this function). The arguments xlab
and ylab set axis labels, main sets a main title, and
pch = 3 set crosses for points. The results are displayed
in Figure 16.1.
We first use the function cut() to divide the range of

the variable Girth into three classes:

> girthcla <- cut(trees$Girth, 3)
> girthcla
[1] (8.29,12.4] (8.29,12.4] (8.29,12.4]

(8.29,12.4] (8.29,12.4] (8.29,12.4]
[7] (8.29,12.4] (8.29,12.4] (8.29,12.4]

(8.29,12.4] (8.29,12.4] (8.29,12.4]
[13] (8.29,12.4] (8.29,12.4] (8.29,12.4]

(12.4,16.5] (12.4,16.5] (12.4,16.5]
[19] (12.4,16.5] (12.4,16.5] (12.4,16.5]

(12.4,16.5] (12.4,16.5] (12.4,16.5]
[25] (12.4,16.5] (16.5,20.6] (16.5,20.6]

(16.5,20.6] (16.5,20.6] (16.5,20.6]
[31] (16.5,20.6]
Levels:(8.29,12.4](12.4,16.5](16.5,20.6]
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Figure 16.1 Plot of the relationship between the height and
volume of 31 black cherry trees.
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The resulting vector is a factor with three levels. Now,
we will display the relationship between the height and
the volume for the different girth classes. We have many
ways to do so, but we will try two different approaches.
We first draw a blank graphics with the function plot

() and then add the points with the function points().
We will use different points symbols for the three classes:

> ## Note the use of type = "n", which does not
> ## draw the points
> plot(trees$Height, trees$Volume, xlab =
"Height of the tree",
+ ylab = "Volume of the tree",
+ main = "Relationship between height
and volume",
+ type = "n")
>
> ## and different point shapes
> shap <- c(8, 17, 1)
>
> ## Then use a for loop to draw the points on
> ## this device
> for (i in 1:3) {
+ points(trees$Height[girthcla ==
+ levels(girthcla)[i]],
+ trees$Volume[girthcla ==
+ levels(girthcla)[i]],
+ pch=shap[i], cex = 1.5)
+}

Here, we used the function points() to add points to
a pre-existing graphical window. We have increased the
size of the points by defining cex = 1.5 (the default value
for cex is 1). There are many functions that can be used
to add graphical elements to a graphical window. Thus,
the function lines() can be used to add lines; the func-
tion polygon() can be used to add a polygon to a plot;
the function symbols() can be used to draw various
symbols on a plot (circles, square, etc.). Last, we can
add a legend to the plot with the function legend():

> legend(65,70, levels(girthcla),
+ pch=shap, cex = 1.5)

The resulting plot is displayed on Figure 16.2.
Now, we discuss the important function par().

The reader is strongly encouraged to spend some time
in reading the help page of this function, as its use is
required to produce publication-quality figures. This
function can be used to control graphical parameters,
including the size of margins in a plot, the font of axes
labels and of the title, the length of the ticks on the axes,
etc. It can also be used to drawmulti-panel figures, thanks
to the argument mfrow. For example, we could plot the
relationship between the height and the volume for the
three girth classes separately (i.e. one panel for each girth
class):

> # Define a multi-panel figure made of 2
> # columns and 2 rows:
> par(mfrow=c(2,2))
> # Then, a for loop to draw the three plots
> for (i in 1:3) {
+ plot(trees$Height[girthcla ==
+ levels(girthcla)[i]],
+ trees$Volume[girthcla ==
+ levels(girthcla)[i]],
+ pch=3, xlab="Height",

ylab="Volume",
+ main = levels(girthcla)[i])
+}

The resulting plot is displayed on Figure 16.3.

16.2.9 S4 Classes: Why It Is Useful to
Understand Them

In Section 16.2.5, I have described the basic S3 class-
definition mechanism, relying on the setting of an attrib-
ute named “class”. This mechanism is simple, but it
has drawbacks: the only thing that defines a class is the
attribute “class” of the object. Therefore, nothing pre-
vents the user to set a given class attribute to the wrong
type of object, leading to further errors, sometimes unno-
ticed. For example, try to create an object of the class
“data.frame” without the function data.frame():

> JustATry <- list(var1 = c(1,3,2),
+ var2 = c(3,2,1))
> class(JustATry) <- "data.frame"
> JustATry[1,2]
[1] 3
> nrow(JustATry)
[1] 0
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Figure 16.2 Plot of the relationship between the height and the
volume of 31 black cherry trees. The different symbols correspond
to different classes of girths.
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Remember that a data frame is a list of vectors, all of
them having the same length. The object JustATry that
we have created satisfies these criteria. However, there are
also other criteria that define a data frame. Thus, a data
frame should have an attribute named “row.names”,
corresponding to a character vector of the same length
as the elements of the data frame, and containing the
names of the rows. We forgot to define this attribute,
and the function nrow(), that relies on it, indicates erro-
neously that the data frame is empty. For this reason, it is
always recommended to rely on the functions designed to
create the class rather than trying to create it ourselves.
We should have used the function data.frame(), that
creates all the required elements:

> JustATry2 <- data.frame(var1=c(1,3,2),
+ var2 = c(3,2,1))
> nrow(JustATry2)
[1] 3

Moreover, generic functions work in a simplistic way
with S3 classes: they check the attribute “class” of
the first argument to select the suitable method. How-
ever, it would be interesting to define methods that
depend on the class of all the objects passed as arguments.
That is, if we have a function MyFunction() taking two
arguments x and y, we may wish to define four different
methods for the four signatures:

myFunction(x = Object_of_class_A, y =
Object_of_class_B)

myFunction(x = Object_of_class_B, y =
Object_of_class_A)
myFunction(x = Object_of_class_B, y =
Object_of_class_B)
myFunction(x = Object_of_class_A, y =
Object_of_class_A)

Of course, it is possible to create two methods
myFunction.A() and myFunction.B() and to
use a if... else... condition in these functions to
check the class of y and use appropriate commands.
However, programming may quickly become cumber-
some in such situations.
This is where the S4 classes are the most useful.

The S4 class-definition mechanism is intended to
provide formal classes to the R environment. More
precisely, when a S4 class is defined by R program-
mers, they create a prototype of the object that stores
all the features that characterize it. This prototype is
located somewhere in the global environment. The
prototype also contains a formal inheritance hierarchy
stored in it. The user does not have to know where
this prototype is, but only has to know that when
an object of class S4 is created, the function that cre-
ates it checks that all the requirements of the class are
satisfied. Also, generic functions can be defined and
the method is selected depending on the signature of
the function, and not only on the class of the first
argument.
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Figure 16.3 Plot of the relationship
between the height and the volume of
31 black cherry trees. The different
panels present this relationship for the
different classes of girths.
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For example, consider the useful package sp, which
provides S4 classes for spatial data. First load the package,
and load the example dataset meuse, which is a data
frame containing the value of several variables mapped
over a grid:

> ## First install the package sp if it is not
> ## available
> install.packages("sp")
> ## loads the package sp
> library(sp)
> data(meuse)
> head(meuse)

1 Ah 50
2 Ah 30
3 Ah 150
4 Ga 270
5 Ah 380
6 Ga 470

We create an object of the class “SpatialPoints”
to store the coordinates of the points:

> sppo <- SpatialPoints(meuse[,1:2])
> class(sppo)
[1] "SpatialPoints"
attr(,"package")
[1] "sp"

We can look at the structure of this object:

> str(sppo)
Formal class 'SpatialPoints' [package
"sp"] with 3 slots
..@ coords : num [1:155, 1:2] 181072

181025 181165 181298 181307 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : NULL
.. .. ..$ : chr [1:2] "x" "y"
..@ bbox : num [1:2, 1:2] 178605 329714

181390 333611
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:2] "x" "y"
.. .. ..$ : chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS'

[package "sp"] with 1 slots
.. .. ..@ projargs: chr NA

The function str() indicates that the object belongs
to a formal class. An S4 object is an empty list, and all
the data are stored in the attribute list. For S4 objects,
these attributes are named “slots,” and are accessed with
the at sign, @. For example, to get the bounding box in
this object, you can type:

> sppo@bbox
min max

x 178605 181390
y 329714 333611

However, it is usually not recommended to handle these
slots directly. Programmers usually provide functions to
work with these slots. Thus, to get the bounding box of an
object of class “SpatialPoints” it is preferable to use
the functionbbox().Thestructureof theclass isdocumen-
ted on the help page of the class, available by typing:

> help("SpatialPoints-class")

More generally, for a class “X”, information on the
class can be found by typing help(“X-class”). This
help page describes the structure of the class, its position
in the inheritance hierarchy, and the methods associated
to the different signatures implying an object of the class
“SpatialPoints”. For example, the help page indi-
cates a method for the function plot:

plot 'signature(x = "SpatialPoints",
y = "missing")': plot points

Therefore, to plot the points, we can type:

> plot(sppo)

We do not show the resulting plot, to be concise.
We have noted previously that for each S4 class, there is

a prototype somewhere in the environment. Although
this is not of prime interest for the R user, who will never
have to use it, we show how this prototype is stored in the
environment:

> ## The function apropos() finds all the
> ## elements in the global
> ## environment with a name matching a
> ## given pattern

x y cadmium copper lead zinc elev dist om ffreq soil lime
1 181072 333611 11.7 85 299 1022 7.909 0.00135803 13.6 1 1 1
2 181025 333558 8.6 81 277 1141 6.983 0.01222430 14.0 1 1 1
3 181165 333537 6.5 68 199 640 7.800 0.10302900 13.0 1 1 1
4 181298 333484 2.6 81 116 257 7.655 0.19009400 8.0 1 2 0
5 181307 333330 2.8 48 117 269 7.480 0.27709000 8.7 1 2 0
6 181390 333260 3.0 61 137 281 7.791 0.36406700 7.8 1 2 0
landuse dist.m
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> apropos("SpatialPoints")
[1] ".__C__SpatialPoints"

".__C__SpatialPointsDataFrame"
[3] "rbind.SpatialPoints"

"rbind.SpatialPointsDataFrame"
[5] "SpatialPoints"

"SpatialPointsDataFrame"
>
> ## The object .__C__SpatialPoints
> ## contains the prototype for the class:
> .__C__SpatialPoints
Class "SpatialPoints" [package "sp"]

Slots:

Name: coords bbox proj4string
Class: matrix matrix CRS

Extends: "Spatial"

Known Subclasses:
Class "SpatialPointsDataFrame", directly
Class "SpatialPixels", directly
Class "SpatialPixelsDataFrame", by class
"SpatialPixels", distance 2

Thus, the prototype is an object of class“classRepre-
sentation” and contains all the relevant information for
the class: (i) what are the required slots; (ii) what class of
objects these slots must be; (iii) which class it extends;
and (iv) which classes extend it (subclasses). The interested
user can look at the structure of this object:

> str(.__C__SpatialPoints)

Weomit the output of this function and do not describe
the S4 classes further. The interested reader will find all
relevant information in Bates (2003).

16.3 Online Exercises

Three online exercises for this chapter will provide an
introduction to Program R. Exercise 1 is an example of
a graphical exploration of data on the ecological niches
of two species of grouse in France: Rock Ptarmigan (Lago-
pus muta) and Black Grouse (Tetrao tetrix). The example
illustrates base functions for importing and summary of
data, creating graphs, and programming loops. Exercise
2 illustrates steps for using a generalized linear model
(GLM) to model species occurrence as a function of hab-
itat variables. Exercise 3 shows how predicted values from
the GLM can be plotted to visualize the model results.

16.4 Final Directions

In this chapter, we have described the basics of R. As we
have indicated many times, the main skill required to use
R is to know how to find help (Section 16.2.3). The reader
should also know that there are numerous R resources in
all possible formats available on the internet:

1) The website of the R software (www.r-project.org)
contains numerous manuals describing particular
approaches related with R (how to make a package,
internal structures in R, etc.). Many tutorials and
wikis in various languages are also available on
this site.

2) The R Journal (journal.r-project.org/current.html)
publishes papers on new approaches implemented
in the software and changes in the software. It super-
sedes the former journal R News (www.r-project.org/
doc/Rnews), which also provided interesting informa-
tion on the R software.

3) A central hub of content collected from bloggers who
write in English about R is available at the URL: www.
r-bloggers.com (573 bloggers contribute to this hub at
the time of writing).

4) The R website hosts numerous mailing lists related to
this software. The reader will be interested to know
that this sites also hosts thematic lists, such as the list
r-sig-ecology related to the use of R in ecology, and r-
sig-Geo related to the use of R with geographical data
and mapping, etc. (see a complete list at the following
URL: www.r-project.org/mail.html).

5) There are also R user groups connecting local people
interested with R (see a list at rwiki.sciviews.org/doku.
php?id=rugs:r_user_groups).

We finish the chapter with a final humorous note:

> ## Install the package fortunes
> install.packages("fortunes")
> ## loads the package
> library(fortunes)
> ## Never forget: ?fortune to find help on
> ## the function
> fortune("Yoda")

Evelyn Hall: I would like to know how (if )
I can extract some of the information from
the summary of my nlme.
Simon Blomberg: This is R. There is no if.
Only how.
– Evelyn Hall and Simon 'Yoda' Blomberg
R-help (April 2005)
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